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Abstract 

 
Designing and studying computer models of 

polymeric materials enhances student learning of 
the properties of these molecules.  We have 
developed a simulation of ideal linear and star 
polymers on a two-dimensional square lattice by 
employing random numbers to decide upon the 
direction of polymer growth. Each configuration 
so generated forms an independent sample for 
statistical averaging. The mean-square radius of 
gyration, <S2>, and its error have been computed 
for linear polymers and for star polymers with 
three to six arms. The data follows the expected 
scaling laws. The g ratio, <S2> star / <S2> linear, is in 
excellent agreement with the theoretical 
predictions of Zimm and Stockmeyer, who 
showed that  g = (3 f - 2) / f 2, where f is the 
number of branches in the star polymer.  This 
project is suitable for junior/senior majors in 
engineering, mathematics or science. 

 
Introduction 

 
Understanding the nature of polymeric materials 

is important for students in a variety of specialties.  
Computer modeling[1][2] has greatly enhanced 
our understanding of these materials. The key to 
comprehending their behavior is to understand 
how molecular constitutients give rise to 
observable macroscopic properties[3]. At a very 
high level of abstraction all the atoms making up 
the monomer building blocks are grouped into a 
spherical “bead” and then the polymer is treated as 
a set of such linked beads. These beads can be 
connected in many different ways. In a linear 
chain, for example, the beads are linked so that 
each is connected to only two others, except of 
course for the end beads. In a star polymer there is 
a core bead which is connected to a number of 
linear branches. Hence, if m is the number of 

beads in one linear branch of a star polymer 
containing f branches, the total number of beads in 
the star polymer, N, is given by  

 
 N = fm + 1.                                          (1) 
 
Real polymers display “excluded” volume 

effects because units cannot pass through each 
other. Ideal polymer systems, however, allow for 
this possibility and the units can even overlap 
during their movement. Ideal polymer systems are 
important because they represent the first 
approximation to real polymers. Moreover, many 
properties of ideal polymers can be calculated 
exactly by studying random walks. The computer 
algorithms needed for simulating ideal polymers 
are much simpler than those needed to study real 
polymers [4]. 

 
  Although every polymer can assume a different 

spatial configuration in time, its over all shape can 
be characterized by its mean-square radius of 
gyration, <S2>.  It is well-known that for very 
long ideal polymers, <S2> follows a scaling law 
[5] 

 

      <S2>  =  A (N - 1) B                                (2) 
 

in which the coefficient, A, is determined by the 
details of the polymer model but the exponent, B, 
is a universal quantity equal to 1.00 for all ideal 
polymers. By calculating the mean-square radius 
of gyration of a linear chain and a star polymer 
separately, we can determine a useful parameter 
for comparing the shapes of two different kinds of 
polymers.  This parameter is called the g ratio and 
it is defined as the ratio of the radii of gyration: 

 
              g = <S2>star / <S2> linear                    (3) 
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Zimm and Stockmeyer [6] showed for ideal 
polymers that  

 
             g = (3 f - 2) / f 2                                (4) 
 
The goal of this project was to test the validity of 

this theoretical g ratio using computer simulated 
models of linear and star polymers. The computer 
programming and analysis were further simplified 
by employing a two-dimensional system. 

 
Method 

 
In these simulations the polymers are described 

in a two - dimensional, X -Y coordinate system. 
The location of the geometric center of each bead 
in the polymer is defined by two, one-dimensional 
arrays, X and Y. The initial bead is always 
assigned the coordinate of the origin (0, 0).  The 
distance between two connected units is assumed 
to be a constant of magnitude one. The polymers 
are “grown” on the two-dimensional square lattice 
by using a random number, RN between 0 and 1, 
to select one of the four possible directions of 
“growth”: right, left, up or down. Hence, if the up 
choice is made after the i -1 - th bead has already 
been placed, the coordinate of the new i-th bead 
becomes  

 
              X[i] = X[i - 1]                               (5a) 
and 
 
              Y[i] = Y[i - 1] + 1                         (5b) 
 
This process is continued until a total of N 

coordinate locations have been generated. 
 
A star polymer is created by first growing one 

branch, with m beads, from the central core by the 
procedure already described for the linear chain. 
The growth of the second branch begins again 
from the central core bead until the m additional 
beads are placed. Then the next branch is begun 
and the process is continued until all f branches 
have been completed. 

 
The computer program which performs the 

simulation   of   the  linear  and  star  polymer  was  
 

written in C and compiled and executed in a Linux 
environment on a Dell PC using the open source 
gcc compiler. 
 

In summation, the total number of times that the 
random walk growth process is executed is, N for 
a linear chain, and fm for a star polymer. These 
procedures generate one configuration.  Each 
random walk growth process has been repeated 
Nc times so that Nc independent polymer 
configurations are created for data collection.  The 
current simulations used Nc = 300,000.  

 
The square radius of gyration, S2, for both the 

linear chain and the star polymer for the same 
total number of beads, N, has been computed for 
each generated configuration k from the equation 

                                  N 
    S2(k) =  1 / (2N2)   ∑ [  (Xi(k) – Xj(k)) 2  +     
                                  i,j 
 
                  (Yi(k) – Yj(k)) 2  ]                        (6) 
                                           
 

where Xi(k) and Yi(k) are the X and Y coordinates 
of the i-th bead in the k-th configuration and Xj(k) 
and Yj(k) are the corresponding coordinates of the 
j-th bead. The set of S2(k) values were then further 
averaged over the total number of configurations 
generated to determine the mean-square radius of 
gyration, <S2> and its standard deviation from the 
m ing the equations [7] ean, σ <S

2
> employ                                              

                                       Nc                                          
              <S2> =  (1/Nc) ∑ S2 (k)                (7a) 
                                       k=1 
 
  σ <S

2
>   =  [ (<S4> - <S2>2) / (Nc-1) ]1/2      (b) 

 
Results 

 
Table I presents the simulation results for all the 

systems studied. The number in parenthesis 
denotes one standard deviation in the last 
displayed digit.  Note that a star polymer with two 
branches (f = 2) is equivalent to a linear chain.  It 
is clear from the radius of gyration data that 
polymers with a given number of units N become 
more compact as the number of branches 
increases.  
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Table I Simulation Data for <S2>  
 

 
 
Weighted nonlinear least-squares fits [7] to the 

<S2> data in Table I gave the parameters reported 
in Table II. The number in parenthesis denotes 
one standard deviation in the last displayed digit.   
The agreement of these empirical exponents with 
the expected ideal value of 1.00 is reasonable.  
Star polymers with a fixed total number of units 
will have shorter branches as the number of 
branches increases, and thus will not be as 
effective in probing the large polymer limit.   

 
Table II Power Law Fit Parameters for 

<S2> = A (N – 1) B
 

    f     A      B 
     2  0.175(1)  0.992(1) 
     3 0.141(1) 0.986(1) 
     4 0.119(1) 0.978(1) 
     5 0.103(1) 0.971(1) 
     6 0.092(1) 0.963(1) 

 
The <S2> simulation data are plotted along with 

the power law fit equations in Figure 1. 
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Figure 1: The variation of <S2> with N for two 

dimensional star polymers. The lines are the fit 
equations and the circles are the simulation values 
for f = 2, 3, 4, 5, and 6. 

One notes the excellent fit for each f value over 
the entire range of N. 

   N    f =2    f =3    f =4    f =5    f =6 
  61   10.17(1)     8.02(1)     6.54(1)    5.52(1)     4.79(1) 
121   20.14(2)   15.78(1)   12.78(1)   10.72(1)    9.24(1)      
181   30.17(4)   23.56(2)   19.02(2)   15.91(1)   13.69(1)      
241  40.13(5)   31.36(3)   25.29(2)   21.13(1)   18.13(1)      
301   50.25(6)   39.21(4)   31.56(2)   26.33(2)   22.59(1)      

The g ratios have been calculated from the 
radius of gyration data in Table I and the error in 
this quantity has been computed from the standard 
equation [7] relating the error in a ratio σA/B to the 
error in the numerator σA and the error in the 
denominator σB 

 
  σ A/B   = (A /B) [ (σA/ A) 2  +   (σB / B) 2 ]1/2  (8) 

 
The simulation g ratios are listed in Table III. 

The number in parenthesis denotes one standard 
deviation in the last displayed digit.   

   
Table III Simulation g ratios 
 

   N       f = 3      f = 4      f = 5      f = 6 
    61 0.788(1)  0.643(1)  0.543(1)  0.471(1)  
  121 0.784(1)  0.634(1)  0.532(1)  0.459(1)  
  181 0.781(1)  0.631(1)  0.527(1)  0.454(1)  
  241 0.781(1)  0.630(1)  0.527(1)  0.452(1)  
  301 0.780(1)  0.628(1)  0.524(1)  0.450(1)  
 

These computer results are for finite N whereas 
the Zimm-Stockmeyer equation is for infinite N. 
To determine the value of g as N approaches 
infinity, one plots g vs. 1/N so that when N → ∞, 
1/N → 0. The g value for infinite N can thus be 
found by determining the intercept of this graph 
after fitting a weighted least-squares linear line in 
1/N to each set of data in the tables. The 
extrapolated g ratios are displayed in Figure 2 and 
compared to the Zimm-Stockmeyer predictions in 
Table IV.  
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Figure 2: The g ratio for two dimensional stars. 

The lines are the fit equations and the circles are 
the simulation values for f = 3, 4, 5, and 6.  

 
Table IV Comparison of extrapolated computer 

g ratios to the theoretical infinite bead values 
 

f   Computer Theory1

3  0.779 (1)    0.778 
4  0.625 (1)    0.625 
5  0.520 (1)    0.520 
6  0.445 (1)    0.444 

  
 1 See reference 6 
 
One notes that there is excellent agreement, 

within the statistical errors, with the theoretical 
predictions.  
 

Conclusion 
 
 A random walk model has been employed for 

simulating linear and star polymers on a two-
dimensional lattice.  The mean-square radius of 
gyration and its error have been determined for a 
range of N. It is found that the data obey the 
expected power law with a power nearly equal to 
1.0. The g ratio, which is one measure of the 
shape differences between star and linear 
polymers, has an extrapolated value, for all the 
systems studied, which is in excellent agreement 
with the Zimm-Stockmeyer theoretical predictions 
[6]. These types of simulations provide projects in 
which students can get experience in developing 
models, programming in some high level 
language, performing statistical analysis and 

employing graphing software; a skill set which 
will be very useful in their future careers. 
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