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Abstract 

 
  Many polymer properties are altered by 
branching. Monte Carlo computer simulation is 
a useful tool for exploring these changes. This 
paper examines one, two, and three-junction 
ideal polymers. The current simulations are in 
fine agreement with theoretical and other 
simulation studies. This area of polymer science 
provides a store of possible student projects. In 
order to work in this field, students need to 
master both computer programming and 
statistics.   

 
Introduction 

 
  It is well-known that the presence of branching 
alters the behavior of polymeric materials. Since 
highly branched structures are of current interest 
in applications such as nano-cages for drug 
delivery, it is important to systematically 
investigate the influence of increased branching. 
There have been many studies of the properties 
of star polymers. These contain a central 
junction point with f branches of equal length 

connected to it. A three-branched star is 
represented in Figure 1 by B whereas a non-
branched linear chain is represented by A. The 
simplest two-junction polymers are H-comb 
polymers. These polymers have a central 
“backbone” branch connecting the two junctions 
together and each of these junctions also has 
two other branches attached to them. Thus, H-
comb polymers contain one internal branch and 
four external branches for a total of five 
branches. These are represented by C in Figure 
1. One can imagine an H-comb as a three 
branched star with two extra branches attached 
to the end of any of the three branches. The 
simplest three-junction polymers are the TTT 
and HH-comb polymers which contain seven 
and eight branches, respectively. These are 
represented by D and E in Figure 1. In TTT-
combs two branches are internal (e.g. connect 
junctions) and five are external, whereas in HH-
combs there are two internal and six external 
branches. A TTT polymer can be envisioned as 
an H-comb with two additional branches 
attached to the end of one of its external 
branches.  Finally, the HH-comb is formed by

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Two dimensional projections of the different polymers:  (A) Linear, (B) 3-Branched Star,     
(C) H-comb, (D) TTT-comb, and (E) HH-comb. 
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attaching the end of one branch of a three-
branch star to a junction of another 3-branched 
star, and then attaching two further branches. 
 
 In a previous publication in this journal, Zajac 
and Bishop [1] used a Monte Carlo growth 
method to simulate three dimensional ideal 
linear polymers. They computed a variety of 
polymer properties such as the mean-square 
radius of gyration, <S2>, its components along 
the principal orthogonal axes [2], λ1, λ2, and λ3, 
and the mean asphericity, <A>. They found 
excellent agreement with theoretical values. In 
this work, the same Monte Carlo growth method 
is extended to simulate ideal three, five, seven, 
and eight-branched polymers in three 
dimensions.  

 
Method 

 
  Each growth algorithm utilizes the linear 
polymer growth algorithm as described in Zajac 
and Bishop [1], with slight modifications. In the 
case of the three-branched star, the first polymer 
unit is placed at the origin (0, 0, 0). The first 
branch is grown to include a pre-specified 
number of polymer units, N. Then, the second 
branch is started once again at the origin, and 
grown to include N additional units. The same 
method is employed for the third branch. Note 
that this growth technique places three 
overlapping units at the origin. In the case of the 
H-comb, a three-branched star is grown as 
described above. However, this time, a new 
origin is moved to the end of the third branch of 
the star and then two more branches are grown 
from this new origin. For the TTT-comb, first an 
H-comb is grown. Then, a new origin is moved 
to the end of the fifth branch, where two more 
branches are grown. Finally, for the HH-comb, 
one three-branched star is grown from the end 
of another. Then, two more branches are grown 
from the end branch of the second star.  After 
each polymer is completely constructed, a 
number of properties are calculated for that 
configuration, as was done in Zajac and Bishop 
[1]. One additional property examined here is 
the g-ratio, which is the ratio of the radii of 

gyration of a branched polymer to a linear one 
when both polymers contain the same number 
of units. The radii of gyration of all polymers 
are known to follow the scaling law [3]    
  

                    <S2> =  C (TN − 1) 2ν .              (1) 
 
Here, TN is the total number of units (TN = f * 
N). The coefficient, C, is a model dependent 
amplitude but the exponent, 2ν, is universal and 
equal to 1.00 for all large ideal polymers. The g-
ratio for ideal f-branch star polymers has been 
obtained by Zimm and Stockmayer [4]: 
 
                       gstar = (3f – 2) / f2 .             (2) 

 
Hence, when f = 3, gstar = 0.778. Casassa and 
Berry [5] obtained a general equation for the g-
ratio of uniform, ideal comb polymers with j 
three-functional junctions regularly spaced 
along the backbone: 
 
gcomb = r − r2 (1 – r) / (j + 1) + 2 r (1 – r) 2 / j              
             + (3j – 2) (1 – r) 3 / j2  .                     (3) 
 
Here, r is the ratio of the number of units in the 
comb backbone to the total number of units in 
the polymer. In the case of H-combs, r = 3/5 and 
j = 2, thus gcomb = 0.712. TTT-combs have r = 
4/7 and j = 3, giving gcomb = 0.668. Von Ferber, 
et al [6] found the g-ratio of HH-combs, 0.578, 
by examining the form factor. 
 

Results 
 

  The simulation has been developed using the 
Visual Studio C++ compiler on a PC. All the 
runs employed 10,000 independent samples and 
the results are contained in Tables I and II. The 
errors have been calculated via the methods of 
Zajac and Bishop [1]. In the tables the number 
in parenthesis denotes one standard deviation in 
the last displayed digit; for example, <λ1> = 
5.08(2) means that <λ1> = 5.08 ± 0.02. 
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Table I: Properties of Multi-Branched Polymers as a Function of the Number of Units per Branch, N. 
 

N <λ1> <λ2> <λ3> <S2> <A> <λ1>/<S2> <λ2>/<S2> <λ3>/<S2> 
3-Branched 

20 5.08(2) 1.74(1) 0.625(3)   7.44(3) 0.294(1) 0.682(1) 0.234(1) 0.084(1) 
30 7.76(4) 2.61(1) 0.940(4) 11.32(4) 0.299(1) 0.686(1) 0.231(1) 0.083(1) 
40 10.48(5) 3.52(2) 1.26(1) 15.26(6) 0.301(1) 0.687(1) 0.231(1) 0.082(1) 
50 13.15(6) 4.43(2) 1.58(1) 19.15(8) 0.300(1) 0.686(1) 0.231(1) 0.082(1) 
60 15.80(8) 5.29(3) 1.89(1) 22.97(9) 0.301(1) 0.688(1) 0.230(1) 0.082(1) 

5-Branched 
20 7.84(4) 2.48(1) 1.01(1) 11.34(5) 0.294(2) 0.692(1) 0.219(1) 0.089(1) 
30 11.90(6) 3.77(2) 1.55(1) 17.22(7) 0.293(2) 0.691(1) 0.219(1) 0.090(1) 
40 16.10(9) 5.07(2) 2.05(1) 23.22(10) 0.296(2) 0.693(1) 0.218(1) 0.088(1) 
50 20.06(11) 6.39(3) 2.59(1) 29.04(12) 0.294(2) 0.691(1) 0.220(1) 0.089(1) 
60 24.43(13) 7.67(3) 3.10(1) 35.20(15) 0.297(2) 0.694(1) 0.218(1) 0.088(1) 

7-Branched 
20 10.27(6) 3.18(1) 1.37(1) 14.82(6) 0.292(2) 0.693(1) 0.215(1) 0.092(1) 
30 15.57(9) 4.88(2) 2.08(1) 22.53(9) 0.289(2) 0.691(1) 0.217(1) 0.092(1) 
40 21.12(12) 6.53(3) 2.77(1) 30.42(13) 0.295(2) 0.694(1) 0.215(1) 0.091(1) 
50 26.59(15) 8.21(3) 3.47(1) 38.28(16) 0.295(2) 0.695(1) 0.214(1) 0.091(1) 
60 31.98(18) 9.90(4) 4.18(2) 46.06(19) 0.294(2) 0.694(1) 0.215(1) 0.091(1) 

8-Branched 
20   9.78(5)   3.41(1) 1.51(1) 14.70(6) 0.258(1) 0.665(1)    0.232(1)    0.103(1) 
30 14.94(8)   5.18(2)   2.29(1) 22.41(8) 0.259(1) 0.667(1) 0.231(1) 0.102(1) 
40 19.86(10)   6.94(3)   3.06(1) 29.86(11) 0.257(1) 0.665(1) 0.232(1) 0.103(1) 
50 25.26(13)   8.78(4)   3.85(1) 37.89(15) 0.260(1) 0.667(1) 0.232(1) 0.102(1) 
60 30.35(16) 10.55(4)   4.63(2) 45.53(18) 0.260(1) 0.667(1) 0.232(1) 0.102(1) 

 
Table II: Radii of Gyration of Linear Polymers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The <S2> data in Tables I and II were fit by a 
weighted nonlinear least-squares program [7] to 
determine the exponent in the scaling laws, 

Eq.1, and the results are listed in Table III. 
These results are consistent with the theoretical 
value of 1.00. 

 

N <S2> N <S2> 
60  10.01(5) 240 40.00(20) 
90  14.96(7)    250 41.69(21) 
100  16.81(9) 280 46.82(24) 
120  19.91(10) 300 50.26(26) 
140  23.45(12) 320 53.36(27) 
150  25.03(13) 350 58.54(30) 
160  26.77(14) 400 67.02(34) 
180  29.98(15) 420 70.34(36) 
200  33.60(17) 480 80.56(42) 
210  35.01(18)   
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Table III: Scaling Exponent. 
 

Type 2ν 
Linear      0.996(2)   

3-Branches 1.02(1) 
5-Branches 1.02(1) 
7-Branches 1.03(1) 
8-Branches 1.03(1) 

 
 

  The computer results in the Tables are for a 
finite TN, whereas the theoretical results are for 
an infinite number. Another scaling law for any 
property P is 

 
           P   =   P∞ (1 − K / TNΔ)   .                     (4) 
 
Here P∞ is the value of P for infinite TN, K is a 
constant, and Δ is the finite scaling exponent. In 
the ideal polymer regime, Δ has a value of 1.00. 
The P∞ value can thus be found by fitting a 
weighted least-squares line [7] in 1/TN to each 
set of data in the Tables. Then the best linear fit 
was extrapolated in 1/TN to 0 (e.g. TN → ∞). 
The final extrapolated values are presented in 
Table IV along with known theoretical and 
simulation results.  All of the current simulation 
values reported in Table IV are well within two 
standard deviations of the mean, or in the 95% 
confidence interval. 
 
  The ratios of the eigenvalues, <λ1>/< λ3> and 
<λ2>/< λ3>, were computed from the data in 
Table IV and the results are presented in Table 
V. 

Table V: Ratios of Eigenvalues,  
<λ1>/< λ3> and <λ2>/< λ3> . 

 
Type <λ1>/< λ3> <λ2>/< λ3> 

3-Branches 8.52 2.81 
5-Branches 7.79        2.46 
7-Branches 7.72 2.38 
8-Branches 6.55 2.27 

 
  Solc [11] also simulated ideal 3-branched stars 
in three dimensions. He found ratios of 8.47 and 
2.83. The current simulation values are in good 
agreement with his results. These ratios, as well 
as the mean asphericity values, <A>, indicate 
that increased branching makes the polymers 
more symmetrical. 
 

Conclusion 
 

  We have investigated multi-branched, three 
dimensional ideal polymers using Monte Carlo 
growth methods. Many different properties have 
been computed. There is fine agreement with 
theoretical results and other simulations. 
Modeling projects such as the one described 
here provide a clear demonstration of some 
aspects of polymers and thus strongly enhance 
student understanding and intuition. 
 

Appendix: The Manhattan College 
Undergraduate Research Program 

 
  Manhattan College has a long tradition of 
involving undergraduates in research and was 
one of the original members of the Oberlin 50.

 
Table IV: Comparison of Computer Simulation and Literature Results. 

 
        3 Branches        5 Branches        7 Branches        8 Branches 

Property Computer Literature Computer Literature Computer Literature Computer Literature 
<A> 0.305(1) 0.304(a) 0.297(2) 0.297(d) 0.296(2) 0.295(d) 0.260(1) 0.261(d) 

g-ratio 0.780(6) 0.778(b) 0.711(5) 0.712(e) 0.668(5) 0.668(e) 0.574(4) 0.578(f) 
<λ1>/<S2> 0.690(1) 0.691(c) 0.693(1)  0.695(1)  0.668(1)  

<λ2>/<S2> 0.228(1) 0.228(c) 0.219(1)  0.214(1)  0.232(1)  

<λ3>/<S2> 0.081(1) 0.081(c) 0.089(1)  0.090(1)  0.102(1)  

(a) reference 8  (b) reference 4  (c) reference 9  (d) reference 10  (e) reference 5 (f) reference 6. 
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This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science. At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year. In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool. The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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