
A C++ PROGRAMMING SHELL TO SIMPLIFY GUI
 DEVELOPMENT IN A NUMERICAL METHODS COURSE

Greg Mason and Robert Cornwell

Department of Mechanical Engineering
Seattle University

Seattle, WA 98122

Abstract

One of the difficulties with teaching an
introductory programming course using C++ is
that there is no simple way to create a C++
program with a graphical user interface under
the Windows operating system. While the
Microsoft Foundation Classes (MFC) exposes
the full Windows graphical user interface with
C++ classes, MFC has a steep learning curve
and is not practical for an introductory
programming course. The traditional alternative
is to develop simple command line programs.
Research has shown that students are more
enthusiastic about programming if they can
create programs that include graphics and an
interactive interface. This paper presents a C++
programming shell which allows the students to
develop fully functional form based programs
with little of the programming difficulties
associated with the traditional MFC approach.
Since switching to the shell, faculty have
reported a substantial increase in the quality of
the programs the students develop and a
decrease in the amount of time that must be
spent in class explaining how to create the user
interface to get data into and out of a program.

Introduction

Computers are an essential tool in modern

engineering and, as a result, are an important
component of an engineering curriculum.
While there are many commercial engineering
software products for design and analysis,
inevitably, engineers encounter problems that
require some programming. In these cases, the
engineer may be required to tweak code or write
a script to enhance existing software. AutoCAD
users have long been Lisp programmers and
Matlab users regularly produce custom scripts.

While these are not traditional programs, from
the computer science view point, they do require
engineers to have a working understanding of
programming.

At Seattle University, all mechanical and civil

engineering students are required to take a one
quarter numerical methods and programming
course. The course uses C++ for the
programming language. C++ was chosen for
several reasons. First, C++ allows students to
create fast standalone programs which do not
require support from secondary packages such
as Matlab. Thus students can create software
which they will be able to use on a wide range
of computers. Second, C++ requires students to
understand fundamental software concepts such
as memory use, pointers and classes. These
concepts are obscured in high level languages
such as Matlab or even Java. Third, C++ is
used in a required junior level data acquisition
course since it is one of the few languages
supported on the real-time hardware used in this
class. This programming course is a
prerequisite for the data acquisition course.

One of the difficulties with teaching C++ is

that there is no simple way to create a C++
program with a modern user interface under the
Windows operating system. While Microsoft
Foundation Classes (MFC)[1] exposes the full
Windows graphical user interface (GUI) with
C++ classes, MFC has a steep learning curve
and is not practical for a ten week course. We
did not, however, want to relegate our students
to creating simple command line programs.
Research has shown that students are more
enthusiastic about programming if they can
create programs that include graphics and an
interactive interface, Park[2].

66 COMPUTERS IN EDUCATION JOURNAL

The mechanical engineering program’s
solution was to develop a C++ shell program for
use in the programming course. The shell
simplifies the creation of the user interface and
handles many of the tedious tasks associated
with GUI programming. This lets students focus
on the technical details of programming
numerical methods while still having the ability
to create a complete Windows GUI for their
programs with minimal effort.

The remainder of the paper is divided into four

sections. The first provides an overview of the
topics covered in the course and lists the types
of projects completed by the students. The
second includes a technical description of the
shell, an outline of its key features, and a simple
example program. The third shows some
examples of programs complete by students.
Conclusions and recommendation are provided
in the final section.

Course Overview

The programming course is taken by

mechanical and civil engineering students
during their sophomore year. In the quarter
system, the class is a 4-credit course. The
course provides students with fundamental
programming skills and introduces them to
numerical methods commonly used in
engineering. The course builds on analytical
methods the students have already used in their
prerequisite math, physics and engineering
courses. Using C++ to implement the analytical
methods numerically reinforces the analytical
methods, illustrates how analytic methods can
be implemented numerically, and introduces
basic programming practices all at the same
time. The course is the only programming and
numerical methods course the students are
required to take. The course covers the
following topics:

Linear and Polynomial Interpolation

Students use both linear and polynomial
interpolation, primarily Lagrange polynomials,
to extract intermediate data points from a three
dimensional data set. This is typical of
problems encountered in thermodynamics where
experimental data is available for a gas at
several operating conditions, but you need the
data at an intermediate condition.

Statistics and Linear Regression

Students calculate the mean and standard
deviation of a data set and plot the least squares
fit to the data using a straight line and a power
curve. Students also use computer graphics to
plot a two dimensional data set.

Numerical Differentiation and Integration

Students compute numerical derivatives using
backward, central and forward difference
algorithms for a set of data points. Students
develop integration functions using both
Trapezoidal and Simpson’s Rule techniques.
These functions are then used in the student’s
shear and bending moment diagrams programs.
An example of student work is provided in the
student examples section.

Matrices and Systems of Equation

Students use Gauss Elimination with partial
pivoting to solve a truss problem. Their
programs are used to solve for the force in each
truss member and create a 2D plot of the truss
where the truss members are color coded based
on their internal force.

Numerical Solution of Differential Equations

Students use Eulers and Runga-Kutta methods
to solve for the time response of a second order
spring-mass-damper system. Their programs
generate a position versus time graph of the
motion and show an animated simulation of the
system’s movement. An example of student
work is provided in the student examples
section.

COMPUTERS IN EDUCATION JOURNAL 67

Roots of Equations

Students use Marching, Bisection and Regula
Falsi methods to solve for the zeros of a
nonlinear equation. An example of student work
is provided in the student examples section.

In addition to learning to apply numerical

techniques to the solution of engineering
problems, students learn fundamental
programming concepts. These concepts
include, structured programming[3], branching,
looping and functions. Variables are discussed
in the light of their storage requirements and
binary format. String and arrays are used to
organize data. Files are introduced as a way to
provide persistent storage for data. Classes are
utilized in the course, but students are not
required to develop their own class structures.

Programming Shell

The amount of computer work required by the

students in the ten week numerical methods
course is substantial. As discussed earlier, we
did not want students to be encumbered with
interface design and not have the time, or
motivation, to focus on the numerical methods
presented in the course. To aide the students, a
programming shell was developed that
simplifies the creation of Windows programs.
The shell hides the Windows Application
Programming Interfaces (APIs) from the
students, but does not restrict their ability to
create form based Windows programs. The shell
is based on a Win32 program that does not
require any DLL’s, ActiveX or COM
components, so students do not need to worry
about component registration or installations
issues. The finished program is standalone
executable and does not require an installer.

The shell includes features that make it easy

for student to quickly create Windows
programs. These features include:

1) Access to common window interface items,

such as pushbuttons, radio buttons, edit
boxes and dropdown lists. These items are

accessed through a set of classes predefined
in the shell. Students use a set of common
methods, such as setvalue() or getvalue() to
interact with the interface items. Methods
are also included for enabling/disabling,
hiding/showing items and changing the
item’s font. The available GUI classes and
their methods, are summarized in Table 1
(next page).

2) Text parsing functions that can be used to

extract data values from edit boxes. These
methods make it easy for students to enter
large amounts of data into their programs
without using files. Students can copy and
paste data into an edit box and then use the
text parsing methods to extract data into
arrays or variables. The text parsing
function allows the file access topics to be
moved towards the end of the course, since
students do not need to read data from files.

3) A double buffered graphic subsystem. This

system automatically takes care of
refreshing the screen in response to
Windows OS requests and simplifies
plotting and programs with animation. This
relieves the students from the substantial
amount of work that would normally be
involved in implementing graphics. The
shell also includes simple graphics
management features that let students create
flicker-free animations.

4) Integration with Visual Studio’s resource

editor. Students design the GUI layout of
their program using the graphical resource
editor included with Visual Studio. The
programming shell allows the students to
create form based programs using an
approach very similar to that required when
using Visual BASIC.NET or C#.NET.

5) A set of graphing commands. These let

students use engineering units to specify
graph ranges and data. Students can have
multiple graphs in their program and can
respond to user clicks on a graph. All
scaling and graph updates initiated by the
operating system are handled by the shell.

68 COMPUTERS IN EDUCATION JOURNAL

Table 1 User interface class summary.

Class Included Methods Descriptions
BUTTON getValue, enableItem, showItem,

setFont
Use to manage push buttons. Includes
methods to hide and show buttons and
change fonts.

CHOICEBOX getValue, setValue, enableItem,
showItem

Use to manage check and ratio buttons.
Includes methods to check and change
button states.

COMBOBOX getValue, enableItem, showItem,
setListText

Use to manage drop lists such as menus.
Includes methods to change items in the
list.

EDITBOX getValue, enableItem, showItem,
initializeScan, getNextItem, getArray,
getList

Use to manage edit boxes. Includes
methods to set or retrieve text box entries,
and methods for parsing text.

FILENAME getOpenFileName, getSaveFileName Access to standard open and save dialog
boxes.

GRAPH clear, drawBitmap, drawIcon,
drawSymbol, drawText, drawAxis,
setScale, moveTo, lineTo

Use to create and manage graphs. Includes
methods for plotting and scaling graphs,
and responding to user clicks in the graph
area. Graphs can also be used to create
simple animations.

LABEL setValue, enableItem, showItem,
setFont

Use to manage static text. Includes
methods to change text output and font.

MESSAGE askMessage, showMessage Creates popup message boxes.
SLIDER setValue, getValue, enableItem,

showItem, setRange
Use to manage slider interface items.

TEXTFONT Use to manage fonts and change the look
of interface items.

6) Open source code. Students have access to

the full shell source code. Ambitious
students can modify the shell or add features
as needed.

To create a shell based program, students open

the shell template using Visual Studio. The shell
is made up of several source, header and
resource files. Most of these files exist to
provide core functionality for the shell and do
not need to be edited by students. Students
design their program interface using Visual
Studio’s resource editor. This is a graphical
drag and drop editor for placing and sizing
interface items used in their program. Interface
design is similar to designing a form in Visual
Basic or C#.

Once the interface is designed, each interface

item is declared in the main program. This
creates an instance of a C++ class for the

interface item. These objects can then be used
within the program, using class members, to
interact with the interface. The class constructor
for interface items uses the name of the resource
item to associate a particular instance of the
class to a particular interface item. In order to
programmatically respond to user actions, the
students add case statements to the
ProcessButtons() function. This function is
called by the shell whenever the user interacts
with an interface item. Case items are
associated with interface items using the same
resource identification as used in the interface
object construction. The ProcessButtons()
function can also be used to perform actions
automatically when the program starts or stops.

While the ProcessButton switch/case statement

structure is not as elegant as the method used by
MFC, it does lead to simpler code. MFC uses
overwritten member function to respond to user

COMPUTERS IN EDUCATION JOURNAL 69

interface actions. The problem with this
approach is that it requires the use of
preprocessor message maps to associate the
actual Windows OS message with the
overridden class member. These message maps
are automatically generated by the editor when
the programmer creates code to respond to user
actions. Experienced Windows programmers
understand this process. However, automatic
code generation and preprocessor based
message maps are outside the scope of our
introductory programming course. As a result
our shell was designed using a simple
switch/case structure. This structure also
closely matches how the operating system
actually processes user events, and so also helps
students understand how messages are
processed using a single thread.

An example program, that adds or subtracts

two numbers using the shell, is shown in Fig. 1.
User interface items are declared at the top of
the source code. In this example these
correspond to two edit boxes and one label
placed on the interface as shown in the resource
editor, Fig. 2. Events are processed in the
ProcessButtons() function. The switch/case
structure used in the function handles four
events. The START_PROGRAM and
QUIT_PROGRAM cases are predefined in the
shell and are used to initialize or destroy values.
The ADD and SUBTRACT cases correspond to
the Add and Subtract buttons on the user
interface, Fig. 3. Here interface items are
accessed and processed to provide program
functionality.

Student Examples

The success of the shell is best demonstrated

by the programs that the students are able to
create. Because creating a sophisticated user
interface is fairly simple using the shell
approach, students are able to focus more of
their time working on the engineering aspects of
their programs. The software examples

70

#include "support381.h"
#include <math.h>

// Globals --------------------
// Declare all interface items and global variables here

EDITBOX x1input(X1); // input textbox object
EDITBOX x2input(X2); // input textbox object
LABEL answer(XOUT); // output the answer here
// ----------------------------

// ProcessUserEvents -----------------------
//
// Handles events from Windows
// User supply event handlers for each interface item they add
//
// Events can be any of the following:
// 1) START_PROGRAM = program is starting
// 2) QUIT_PROGRAM = program is quitting
// 3) ID of a interfact item = the user pressed the item
// Inputs: id, the ID of the item
// Output: none
// Return: none
// --

void ProcessUserEvents(unsigned long id){
 double x1, x2;
 switch (id) {

 // handle any user actions
 case ADD: // user tapped the add button
 x1=x1input.getvalue(); // get the values
 x2=x2input.getvalue();
 answer.setvalue(x1+x2); // output the answer
 break;

 case SUBTRACT: // user tapped the subtract button
 x1=x1input.getvalue(); // get the values
 x2=x2input.getvalue();
 answer.setvalue(x1-x2); // output the answer
 break;

 case START_PROGRAM: // this occurs at program start
 x1input.setvalue(0.0); // clear everything
 x2input.setvalue(0.0);
 answer.setvalue(0.0);
 break;

 case QUIT_PROGRAM: // this occurs at program end
 break;
 }

}

Figure 1. Example Program Source Code.

Figure 2. Resource Editor Showing
Program Layout Design.

COMPUTERS IN EDUCATION JOURNAL

Figure 3. Final Program.

discussed below were created or extended by
students as homework assignments or, as in the
case of the truss analysis program, by teams of
two to three students over a two week period as
part of a required final project.

Root Finder

The root finder program shown in Fig. 4 was

written by an engineering student for a weekly
homework assignment where students were
required to implement marching, bisection and
regula falsi methods to find the root of an
equation. The user can select an equation type,
enter associated parameters, and enter the search
range. The software plots the equation and
outputs the root of the equation that falls
between the user specified search bounds.
When the user clicks on the graph, the software
outputs the value of the function at the
corresponding mouse location. The program
illustrates the type of user interfaces students
can quickly create using the shell program.

Spring-Mass-Damper Vibration

The spring-mass-damper program shown in

Fig. 5 was written by an engineering student for
a weekly homework assignment where students
were required to implement a Runga-Kutta or
Eulers method to solve a second order
differential equation. The user can vary the
equation parameters and then have the software
simulate the response described by the

Figure 4. Root Finder.

differential equation. During simulation, the
ball and spring, in the center of the screen,
bounce up and down, in real time, according to
the computed solution. The graph on the right
shows a time domain plot of the ball position.
The program illustrates how students can use
the graphing class to create graphs and
animations. This student used the drawIcon
methods to draw the bouncing ball and scaled
the graph with engineering units using the
setScale method. Since the shell uses a double
buffered graphics system, the ball animation is
smooth and flicker free.

Figure 5. Spring-Mass-Damper Vibration.

COMPUTERS IN EDUCATION JOURNAL 71

Shear and Moment Diagram

The shear and moment diagram program

shown in Fig. 6 was written by an engineering
student for a weekly homework assignment
where students were required to use numerical
integration to generate shear and moment
diagrams given a load diagram. Shear is found
by integrating the load, and moment by
integrating the shear. Students modified a
starter program which drew the initial load
diagram. In the program below, the user can
enter various loading cases and have the
software draw the shear and moment diagrams.
When the user clicks on any of the diagrams, the
software displays the corresponding load, shear
or moment value. The program illustrates how
the graph methods can be used to create
complex outputs. Each graph is a separate
entity with its own scaling.

Figure 6. Shear and Moment Diagrams.

Method of Joints Truss Analysis

The Method of Joints truss analysis program is

shown in Fig. 7. The program was developed in
approximately two weeks by a team of three
students as their final project. The user supplies
node, member, force and support information.
The program then draws the truss and identifies
the loaded and supported nodes. A color code is

used to indicate members loaded in tension or
compression. A summary of user supplied
input, resultant reactions and member forces is
also provided in a scrollable editbox.

Figure 7. Method of Joints Truss Analysis.

Conclusions

The Mechanical Engineering Department at
Seattle University has been using the shell
successfully for the past six course offerings and
found it to be a powerful tool for teaching
numerical methods. Prior to using the shell the
department taught the numerical methods course
using either a command line or MFC interface.
Since switching to the shell, faculty have
reported a substantial increase in the quality of
the programs the students develop and a
decrease in the amount of time that must be
spent in class explaining how to create the user
interface to get data into and out of a program.

Two years ago the shell was ported to the

Windows CE real time operating system for use
in a data acquisition and instrumentation class.
Students now use a common programming
structure for both courses, greatly reducing the
amount of time students must spend learning to
program under Windows CE. Since the shell
has a compact structure it is easy for students to
implement both cooperative and preemptive
threads to control timing in their data
acquisition systems.

Since changing to the shell, we have noticed

that students display more enthusiasm for the
class. By the end of the course some students

72 COMPUTERS IN EDUCATION JOURNAL

are creating software packages for their own
use. The only drawback we have noted with use
of the shell is that there are currently no
textbooks that follow this approach. Many
books exist that use either the command line
interface or the full MFC programming
interface. Occasionally students express
frustration at not having a textbook to follow.
We are studying the possibility of creating a
console component that will allow the students
to mimic the iostream library’s cin and cout
methods. This will make it easier for students to
follow examples from books using the console
based approach.

Resources

The shell and the example programs discussed

in this paper are available online at
www.seattleu.edu/scieng/me/C++Programming
Shell The shell requires the C++ component of
Visual Studio 2005 or better.

References

1. Prosise, Jeff, “Programming Windows with

MFC”, Microsoft Press, 1999

2. Park, W, “Why isn’t my professor using

graphics in the freshman programming
course”, Journal of Engineering Education,
Oct 1996, pp331-336

3. Nassi, I. and Shneiderman, B., Flowchart

Techniques for Structured Programming,
SIGPLAN Notices 8, 8 (August, 1973).

Biographical Information

Greg Mason received a BSME from Gonzaga
University, an MS in Computer Integrated
Manufacturing from Georgia Institute of
Technology, and a Ph.D. in Mechanical
Engineering from the University of
Washington-Seattle. He developed a robotics
laboratory for the Department of Defense in
Keyport, WA and was involved in numerous
automation projects, including a robotic
container welding system and a robotic torpedo
fueling system. He has published papers
addressing the uses of advanced controls system
techniques in manufacturing. He is also active in
pedagogical research. He has developed a
handheld data acquisition system which uses the
techniques outlined in this paper and which is
currently in use at Seattle University.

Bob Cornwell received a BS in Civil
Engineering and a MS in Engineering from the
University of Texas-Austin. He received a Ph.D.
in Engineering Mechanics from the University
of Wisconsin-Madison. He has worked for
Exxon Production Research where he
participated in the development of optimization
and reliability methods for offshore structures
and the Boeing Company where he contributed
to the development of analytical methods for
both composite and metallic airframe structures.
His interests involve the application of analytic
methods to the design of mechanical systems.
Since joining Seattle University he has been
involved in the development of the program and
the teaching machine design, mechanics and
numerical methods courses.

COMPUTERS IN EDUCATION JOURNAL 73

http://www.seattleu.edu/scieng/me/C++ProgrammingShell
http://www.seattleu.edu/scieng/me/C++ProgrammingShell

