
COMPUTERS IN EDUCATION JOURNAL 59

A NOVEL, SUSTAINABLE MODEL OF ASSESSMENT OF
PROGRAM OUTCOMES FOR A CSE PROGRAM

Neelam Soundarajan

Computer Science and Engineering
 Ohio State University

Abstract

Assessment of program outcomes and the use of

the results of those assessments to effect program
improvements as well as documentation of the as-
sessment processes and the resulting program im-
provements are key requirements of Engineering
Accreditation Criteria. Over the last several years,
programs have struggled to come up with direct
assessment mechanisms that are not resource-
intensive (in terms of faculty effort and time) and
provide useful results that lead to specific, documen-
table program improvements. In this paper, we re-
port on a novel approach that is both powerful in
terms of its ability to identify specific program im-
provements and, at the same time, requires minimal
resources to administer and hence is sustainable on a
long term basis.

Introduction

Prados, Peterson and Lattuca [1] trace the history
and evolution of engineering education and accredi-
tation criteria through the twentieth century, culmi-
nating in the development of the Engineering
Criteria 2000 (henceforth, EC [2]). The main moti-
vation behind the criteria was to significantly reduce
the specification of curricular content. Instead, each
program was required to identify a set of program
objectives, tailored to the program, and a corre-
sponding set of outcomes, including the eleven out-
comes (3.a) through (3.k) specified as part of
Criterion 3 of EC. A key requirement of EC was a
continuous improvement process based on assessing
the degree to which graduates of the program
achieved the program's outcomes and using the re-
sults of the assessments to effect program improve-
ments. EC also required clear documentation of the
assessment processes, the assessment results, and the
improvements based on an evaluation of these re-
sults. While the curricular flexibility was widely
welcomed, many programs have struggled to meet
the requirements related to assessments of the extent
to which the outcomes were attained, evaluation of
the assessment results, use of the evaluation to iden-

tify possible improvements in the program, and doc-
umentation of all of this.

While a number of different assessment approach-

es have been proposed, some of which we review in
the next section, most of them are very resource-
intensive, especially in terms of faculty time and
effort, both to administer and to document on a long-
term basis. Moreover, there seems little evidence
that programs have been able to effect improvements
that can be directly or primarily attributed to evalua-
tion of the results of these assessments. In this paper
we present an approach that requires only modest
resources to administer, is easy to sustain over the
long term, is easy to document, and allows us to
identify specific problems in the program and possi-
ble improvements to address them.

A key issue related to assessments has been the

question of direct versus indirect assessments. A
direct assessment is one that is based on evaluation
of actual student work by someone who is qualified
to perform the evaluation such as a faculty member
or an internship supervisor. This may be contrasted
with indirect assessments such as opinion surveys
completed by students. It is important to note, con-
trary to what is occasionally claimed, that di-
rect/indirect-ness have no relation to whether the
assessment is quantitative/ qualitative. A direct as-
sessment, for example, an assessment by an
intenship supervisor of an intern, may well be quali-
tative; conversely, an indirect assessment, for exam-
ple an exit-survey by a graduating student, may
evaluate, on a quantitative scale, the extent to which
the student attained the program's outcomes. The
key point of direct assessments is that they are based
on assessing actual student work by people qualified
to do so, not whether the assessments are qualitative
or quantitative.

Direct assessment of outcomes is not an explicitly

specified requirement of EC and, indeed, in the early
years following the establishment of EC, most pro-
grams relied heavily or entirely on indirect assess-
ments. However, it was soon recognized that direct
assessments provide the most reliable assessment of

60 COMPUTERS IN EDUCATION JOURNAL

the extent to which various outcomes are achieved
since they are based on evaluation of actual student
performance in relevant activities. Moreover, direct
assessments are more likely to identify specific
problems in, say, the curriculum of the program, and
hence provide precise ideas for program improve-
ments. Thus, many program evaluators expect to see
at least some use of such assessments. Programs
have, however, struggled to come up with direct
assessment mechanisms that provide useful results
leading to specific, documentable program im-
provements and, at the same time, are not resource-
intensive. Of special concern have been faculty time
and other resources involved in administering the
assessments, collecting and collating the data, etc.
POCAT (for program outcomes achievement test),
the direct assessment approach that we present is, as
we will see, both powerful in terms of its ability to
identify specific program improvements and, at the
same time, requires only modest resources to admin-
ister and sustain on a long term basis. Moreover,
documenting the assessments, its results, and the
program improvements based on the results also
require only modest amount of effort and resources.
It is also worth noting that while POCAT was devel-
oped for use in the author's Computer Science and
Engineering program, the approach can be equally
used in other engineering programs.

The eleven outcomes, 3.a through 3.k, included in

Criterion 3 of EC may be classified into two groups,
the technical outcomes group and the professional
outcomes group. The former group contains such
outcomes as, 3.a: an ability to apply knowledge of
mathematics, science, and engineering; and 3.k: an
ability to use the techniques, skills, and modern en-
gineering tools necessary for engineering practice.
The latter group contains such outcomes as, 3.g: an
ability to communicate effectively. POCAT is in-
tended only for the outcomes in the technical group.
Assessing the outcomes in the professional group
will require other methods. This is to be expected
given the very different nature of the two groups of
outcomes.

One of the key considerations behind the develop-

ment of POCAT was to take account of recent de-
velopments in how individuals learn and how
assessment results can be used to improve student
learning. As Pellegrino [3] argues, "... our assess-
ment system is seriously flawed and broken. Given
the amount that we currently spend on assessment,
we get very little in the way of positive return on
investment. Many believe the return is actually nega-

tive with respect to valued educational outcomes. ...
our approach to asssessment [should be] changed
subtantially so that it can support processes of teach-
ing and learning focused on deep learning and un-
derstanding". The How People Learn (HPL)
framework [4] provides key insights into how stu-
dents learn and the main impediments to improving
their learning. A main point of HPL is that, depend-
ing on the field, students tend to harbor certain
common misconceptions, and these tend to be
among the most important impediments to learning.
As we will see, POCAT has been very effective in
helping identify misconceptions and other essential
difficulties related to specific technical topics and
ideas that students in our program share, allowing us
to develop specific ways to address them, thereby
improving the program.

A second consideration in the development of
POCAT was that it is intended to be an assessment
of the program, not of individual students. One of
the common observations of educators at all levels is
that students "cram" for final examinations in cours-
es and once the examinations are complete, essen-
tially forget most of the material. Moreover,
depending on the particular course, there may be a
considerable period of time between when a student
takes the course and when he/she graduates from the
program. This means, given that program outcomes
are intended to be an indication of the knowledge
and skills that graduates of the program are expected
to possess, using student performance on specific
questions in final examinations in particular courses
to assess the extent to which these outcomes are
achieved, as many programs report doing, seems
rather questionable. As we will see, POCAT is de-
signed to avoid these problems.

The main requirements that we imposed on

POCAT may be summarized as follows:

1. It must provide a direct assessment of the

technical outcomes in EC Criterion 3;
2. It must be an assessment of the program rather

than of individual students;
3. Evaluation of the assessment results must help

identify the kinds of problems that learning
frameworks suggest are the main impediments
to students' deep learning; and help us arrive at
specific changes in our courses to address the
problems, thereby improving the program;

4. The assessments, its results, the evaluation of
the results, and the program improvements
based on the evaluation should be easy to doc-

COMPUTERS IN EDUCATION JOURNAL 61

ument both in order to meet the ABET re-
quirements as well as to help the program fac-
ulty keep track of the evolution of the program
and the rationale behind it;

5. And, perhaps most importantly, that the pro-
cess be sustainable over the long term with
modest resources.

The rest of the paper is organized as follows. In the

next section, we review related work. In particular,
we consider several of the approaches that other
programs have developed to meet the EC require-
ments with respect to assessment and improvement
and some of the problems with these approaches.
Next, we turn to POCAT. We detail its design,
summarize the results we have obtained thus far, and
consider the resources needed to implement it in the
long term. Finally, we summarize how POCAT
meets the above requirements and consider a possi-
ble improvement in POCAT.

Related Work

From the earliest days of EC , one of the key ques-

tions that programs have struggled with was finding
suitable ways to meet EC's requirements regarding
suitable assessment processes and documented im-
provements based on the results of the assessment of
their outcomes. Evidence for this may be seen in the
many papers in ASEE and FIE Annual Conferences,
indeed in the number of sessions at these confer-
ences devoted to discussions of ways to meet the
outcomes assessment requirements of EC; the annual
Best Assessment Processes (BAP) Symposium de-
voted to the topic; numerous papers in several vol-
umes of the Journal of Engineering Education, IEEE
Trans. on Education as well as special issues explor-
ing the topic; etc. In a recent paper, Shaeiwitz and
Briedis, both with considerable experience as pro-
gram evaluators for engineering accreditation evalu-
ations and as team chairs for these evaluations, note,
"it appears that many programs are struggling to
identify valid measures for their program outcomes .
. . This is substantiated by evidence of the relatively
large number of citations [following evaluations] for
shortcomings relative to some aspect of this criteri-
on" [5]. The statistics reported by ABET on the spe-
cific criteria that programs have difficulties with
confirms this.

Shaeiwitz and Briedis go on to argue that a major

reason underlying these problems is that many pro-
grams have thus far focused on indirect assessments
of program outcomes using such techniques as exit

surveys of graduating students and faculty opinions;
and that direct assessments are necessary to provide
objective measures of achievement of the program's
outcomes and must be an essential part of every
program's suite of assessments. Others have also
made a strong case for relying on direct, rather than
indirect, assessments.

Unfortunately, in the experience of many engineer-

ing programs, many direct assessment tools that
programs have attempted to use have been, on the
one hand, very resource intensive in terms of the
amount of faculty effort required to use them; and,
on the other hand, proved to be of limited value in
assessing the extent to which the program outcomes
are achieved by the students and in identifying pos-
sible improvements. For example, one commonly
suggested approach is to use portfolios of student
work [6, 7]. However, especially for large engineer-
ing programs that graduate more than a handful of
students each year, the sheer volume of data collect-
ed via portfolios can be enormous. While e-
portfolios might simplify the task of storing large
volumes of data, since electronic storage space con-
tinues to become cheaper, and software can help
with the organization of the materials, the task of
evaluating all the collected information and arriving
at possible improvements in the program can be
overwhelming. Indeed, much of the literature on the
topic does not even bother to address this question,
stopping instead at the stage of how to collect and
organize the materials included in these portfolios.
But the ultimate purpose of the EC requirement is
not collection of data, nor even assessment, but ra-
ther using the results of the assessment to arrive at
program improvement [8, 9].

Another approach to direct assessment has been

the idea of using targeted questions in examinations
in particular courses in the curriculum, see, for ex-
ample, [10, 11]. The common idea in this approach
is that particular courses in the (core) curriculum are
identified, and particular topics in those courses are
associated with specific program outcomes. The
faculty teaching the course are then required to en-
sure that the examinations (or quizzes etc.) in each
section of such a course that they teach includes
questions specifically targeted to those topics. The
faculty are then required to provide a summary of
the student performance in those questions; this
summary is considered as providing the assessment
data with respect to the particular outcome. While
the data collected and stored using this approach is
more manageable than in the case of portfolios, it

62 COMPUTERS IN EDUCATION JOURNAL

does require conscientious participation of the in-
volved faculty. More importantly, the question of
arriving at program improvements based on evalua-
tion of the assessment data also remains.

Mak and Freza [12] present a method following

this approach. Specific assignments in specific
courses are tagged as the ones that measure particu-
lar outcomes; students are then required to achieve
minimum specified performance in those specific
assignments, else they cannot graduate. This is high-
stakes testing and seems unfair to students who may
have performed well in other assignments in those
and in other courses. Danielson and Rogers [13],
Howard and Musto [14], and Harvey et al. [15]
present somewhat similar approaches. In each of
these, a set of exam problems or other graded work
in individual courses is related to specific program
outcomes and the performance of students in these
problems is assessed and used as an assessment of
the particular outcome. For the student, these ap-
proaches are not high-stakes in the same manner as
that of [12]. Nevertheless, as Helps, Anthony and
Lunt [16] point out, such approaches are very expen-
sive in terms of faculty time and effort. Further, as
noted in Section 1, the performance of a student in
course examinations is not necessarily a good indi-
cator of the knowledge and skills that graduates of
the program are likely to possess. Each of these ap-
proaches, like many of the others, is really an as-
sessment of individual students at certain points in
the program rather than an assessment of the pro-
gram. Moreover, the emphasis in each case seems to
be on assessment for the sake of assessment rather
than for the sake of program improvement.

Before concluding this section, it would be useful

to mention the idea of concept inventories [17, 18,
19] which, while unrelated to outcomes assessment
as in EC, has some similarities with the POCAT
approach. The original concept inventory was creat-
ed by Haloun and Hestenes. The inventory was for
Newtonian Mechanics. It was intended to assess
students conceptual understanding of key principles
of the subject such as force and momentum. The
inventory was a multiple choice test with each ques-
tion containing distractors that were designed based
on common misunderstandings that students have
with respect to that concept. Although a multiple
choice test would seem to be incapable of assessing
deep understanding of the subject, experience with
the inventory showed that a well-designed one can
be remarkably effective. Since the original work, a
number of inventories have been developed to assess

student understanding of a range of subjects from
strength of materials to electromagnetics to fluid
mechanics etc. As we will see, while there are some
similarities between concept inventories and the
POCAT approach, there are also crucial differences.

POCAT Model/Approach

Background: Students in the CSE program at Ohio

State typically take, during their sophomore year,
fairly standard courses on programming and soft-
ware engineering, introduction to systems, and dis-
crete mathematics. In the junior year and early
senior year, they take a team-project course and
complete a number of courses on core computing
topics such as automata theory, concepts of pro-
gramming languages (including language implemen-
tations), computer architecture, databases, operating
systems and algorithms. Each of these courses builds
on the earlier courses in the program; for example,
the architecture course builds on the introduction to
systems courses and heavily uses ideas from the
discrete math course. In some cases, these courses
build each other as well; for example, the program-
ming language course borrows ideas such as formal
grammars from the automata theory course. In the
late junior year and the senior year, students take a
number of elective courses on a range of topics such
as AI, computer graphics, networking, information
security etc. These courses also build on concepts
and technical details that students learn in the begin-
ning courses as well as in the more advanced core
courses. The students also complete, typically in the
final quarter —Ohio State is on the quarter, not se-
mester, system— of the senior year, their capstone
design course.

Let us now turn to the program outcomes. As noted

in Section 1, POCAT is designed to assess student
achievement of Criterion 3 outcomes that fall in the
technical group. These outcomes are:

3.a an ability to apply knowledge of computing,

mathematics including discrete mathematics
as well as probability and statistics, science,
and engineering;

3.b an ability to design and conduct experiments,
as well as to analyze and interpret data;

3.c an ability to design, implement, and evaluate a
software or a software/hardware system, com
ponent, or process to meet desired needs with-
in realistic constraints such as memory,
runtime efficiency, as well as appropriate
constraints related to economic, environmen-

COMPUTERS IN EDUCATION JOURNAL 63

tal, social, political, ethical, health and safety,
manufacturability, and sustainability consider-
ations;

3.e an ability to identify, formulate, and solve en-
gineering problems;

3.k an ability to use the techniques, skills, and
modern engineering tools necessary for prac-
tice as a CSE professional.

Each of these outcomes relates to a number of the

courses listed above. Thus, for example, (3.a) relates
to almost every one of the courses; this is not sur-
prising given the breadth of (3.a). (3.c) is related
most directly to the junior-level project course
whose main component requires the students to de-
sign and implement a number of important system-
level software pieces and integrate them, and the
capstone design course which engages students in an
intense quarter-long design and implementation of a
system that meets specified requirements and con-
straints. It is also related to such courses as the oper-
ating systems course and the course on concepts of
programming languages since these courses address,
in various contexts, questions related to memory
efficiency and runtime questions; and often include
suitable programming projects although of a some-
what smaller scope than in the capstone design
course.

(3.e), like (3.a), is related to most of the courses

including even the discrete mathematics course since
part of solving certain CSE problems consists of
precise characterization, using formal logic notations
introduced in that course, of various aspects of the
problems' requirements as well as the solutions.
Other courses are more directly related to solving
CSE problems of various kinds; for example, the
programming languages course familiarizes students
with functional programming languages which are
better suited for developing programs to deal with
certain kinds of computing tasks than are standard
imperative languages.

One reasonable interpretation, the one we have

adopted in our program, of (3.b) is that the task of
designing test suites to test the functioning of com-
plex software systems and analyzing and interpreting
the results of the test runs to arrive at proper conclu-
sions about the system under test are analogous to
designing and conducting experiments and analyz-
ing/ interpreting the resulting data. Thus, the junior
project course as well as the sophomore software-
engineering sequence both contribute to (3.b). In
addition, several of the other courses which require

the students to suitably test the software they design
and implement also contribute to this outcome.

(3.k) too relates to a number of courses. For exam-

ple, even the the course on automata theory which is
occasionally dismissed as "just theory" contributes
to it since notions such as regular expressions that
are central to that course are among the most power-
ful tools in a CSE professionals' arsenal. In other
courses such as on networking and information secu-
rity, students study other tools such as communica-
tion protocols and ones for ensuring security of on-
line transmissions.

Some of the details below are somewhat specific to

Computer Science and Engineering (CSE). Indeed,
several of the outcomes listed above, in particular
(3.a), (3.c) and (3.k), are slightly specialized ver-
sions of the corresponding EC Criterion 3 outcomes,
specialized to be more directly related to CSE. Nev-
ertheless, the underlying approach is applicable to all
engineering programs.

POCAT Details

The Program OutComes Achievement Test

(POCAT) is designed to test student achievement of
the outcomes (3.a), (3.b), (3.c), (3.e), and (3.k).
POCAT is a test that students are required to take
near the time of their graduation from the CSE pro-
gram. The questions in the test are based on topics
from nine required high-level courses in the program
including the ones mentioned in Section 3.1 as well
as a number of popular elective courses. As men-
tioned earlier, these courses range over key topics
such as automata theory, databases, programming
languages, computer architecture, algorithm analy-
sis, AI, networking, information security etc.

All the questions on the test are multiple-choice

questions with, typically, two or three questions in
each topic area. But they are not the typical ques-
tions one might find in, say, the final exams of these
courses. Instead, they are more conceptual and are
designed to test how well students understand key
concepts from across the curriculum. The distractors
in each question, i.e., the wrong answers, are care-
fully chosen based on the misconceptions that stu-
dents typicallly harbor concerning the particular
topic. Each question is often the result of sometimes
quite extended discussions among faculty involved
with the courses in question. The discussions usually
focus on identifying the common student miscon-
ceptions about a given concept and on the best ways

64 COMPUTERS IN EDUCATION JOURNAL

to capture these misconceptions in suitable distrac-
tors. The questions on the test are also chosen in
such a way that there is at least one —and often
more than one— question directly related to each of
the outcomes in the technical skills group. This is
straightforward because, as explained in Section 3.1,
the nature of most of these outcomes is such that
many courses are related to each one; thus most
questions based on these courses typically corre-
spond to one or more of these outcomes. A sample
of the POCAT test is available on our web site [20].

All students in the program are required to take the

test one to two months prior to graduation from the
program. But the students' performance on the test
do not affect the grades of individual students in any
courses, nor indeed are any records retained on how
individual students performed on the test. When a
group of students takes the POCAT, each student in
the group receives a unique code that appears on that
student's test but only the individual student knows
his or her code. Once the tests have been graded,
summary results, organized by this code, are posted
on electronic bulletin boards so an interested student
can see how well he or she did and how his or her
performance compared with that of others who took
the test; no one else, whether faculty, staff, or other
students, have any way of knowing how a given
student performed on the test. A sample set of re-
sults is available on our web site [21]. Making the
test results anonymous in this manner was a deliber-
ate decision. We did not want students to spend a lot
of time preparing ("cramming") for the test since the
goal was to assess the extent to which they have
acquired and internalized the knowledge and skills
associated with the various outcomes since this is
what they will take away with them as graduates of
the program. The test results are a true measure of
the program's outcomes.

Initially, there was a concern that if individual stu-

dents' performance on the test did not affect them in
any tangible way, they would not take the test seri-
ously. Our experience with the many administrations
of the test have completely eliminated this concern.
Students, released from anxiety about a high-stakes
test, seem to enjoy taking the test and try to do their
best. Following the test --which is typically held on
a Tuesday evening in the middle of each quarter-- it
is not uncommon to see students who had just com-
pleted the test having long and heated discussions
about some of the questions on the test; it is also
possible that the pizza and soft drinks that the stu-
dents are served immediately after the test serve as

good lubricants! The contrast from what one typical-
ly sees following a midterm or final exam in a
course could not be more stark. It is almost as if the
test has the effect of transforming many students
whose main interest in any course is to do just well
enough in the exams so that they receive a satisfac-
tory grade and are able to graduate, into budding
CSE professionals who bring all of their knowledge
and skills to tackle challenging problems.

There is one other feature of the POCAT questions

that is worth remarking on. Each question has, as
one of the choices (typically the last one), an answer
along the lines of "I don't know". The instructions
for the test suggest that the student should pick that
answer if he or she has no idea what the correct an-
swer is. Since their performance on the test will have
no impact on their record, students who do not know
the answer to the question and know that they do not
know pick this answer. This means we do not have
to worry about the student trying to make guesses
and confounding our attempt to pin down miscon-
ceptions that he or she may have. Interestingly, stu-
dents choosing this answer deliberately also
represents their evolution from being students to
becoming CSE professionals. As students, their
main goal tends to be to get the best possible scores
in the tests; hence they make even wild guesses if
there is a possibility that doing so would improve
their scores. As professionals, their goal should be to
solve problems; and the first step in successfully
doing so is recognizing, where appropriate, that they
do not know the answer to some question, so they
can seek suitable assistance.

The faculty members responsible for each question

provide an estimate of the percentage of students
who ought to be able to answer the question correct-
ly as well as the particular outcomes that the ques-
tion is related to. This information is also included in
the summary results. The final aspect of POCAT is
the evaluation of the results and arriving at ideas for
program improvement. The initial discussion of the
results takes place in the program's Undergraduate
Studies Committee. The committee consists of sev-
eral faculty including some who regularly teach the
high-level courses included in POCAT; student rep-
resentatives; and the staff adviser (who also takes
care of administering the test). The committee con-
siders such issues as: a. Are there any questions for
which the percentage of students who got the correct
answer differs substantially from the figure that the
faculty involved with the corresponding course(s)
expected? b. Are there any questions for which par-

COMPUTERS IN EDUCATION JOURNAL 65

ticular incorrect answers, i.e., distractors that repre-
sent particular misconceptions, especially more pop-
ular than other incorrect answers? c. Are there any
longer term trends with respect to questions related
to particular concepts? Etc. The student members
on the committee often provide insight into particu-
lar misconceptions that students might have by not-
ing, for example, that a course taught by a particular
instructor takes a particular approach to an idea or a
topic and that that might lead to certain specific mis-
conceptions with respect, perhaps, to a related con-
cept. The staff adviser might occasionally note that,
in the pizza session following the test, a particular
question seemed to provoke the most intense debate.
And faculty who have taught the particular courses
or related courses bring important insights into ana-
lyzing and understanding the results.

Most commonly, the results of the POCAT do not

offer many surprises. But, occasionally, there might
be a question in which a substantially smaller per-
centage of students than expected get the correct
answer. In other cases, distractors that the faculty
might consider obviously incorrect might be chosen
by a significant number of students even if the per-
centage of students who got the correct answer is in
line with expectations. In yet other cases, a substan-
tially larger percentage of students than expected
might get the correct answer. In the first case, an
appropriate course of action, in the form of suitable
changes in the course in question or possibly in pre-
requisite courses, may need to be identified. But
such changes are not determined in this meeting of
the Undergraduate Committee. Instead, the faculty
involved with the courses in question (not all, some-
times not even any, of whom might be on the com-
mittee) are informed about the anomaly. Those
faculty might then decide to further investigate the
problem by introducing new activities into their
courses; or they might decide that the problem might
be with the precise wording of the POCAT question
and offer a revised version of the question for use in
future POCATs; or this result might provide added
confirmation for what they had already concluded on
the basis of observations in their course and start
work on designing appropriate changes in the
course.

The course of action in the second case in which an

unexpected number of students chose a particular
distractor might be similar. The question in this case
would be, why did a large number of students find
the particular distractor appealing? In this case,
though, the issue often tends to be poor wording of

the question; but there have also been cases where
such a result has helped identify certain misconcep-
tions prevalent among students that the faculty had
not thought about. The third case is also rather inter-
esting. It may suggest one of two possibilities. Either
the distractors had not been sufficiently well de-
signed so that students were able to arrive at the
correct answer by eliminating all or most of the dis-
tractors. Or, in fact, students do have a better under-
standing of the idea or concept in question than
faculty had given them credit for; so the faculty may
decide to revise the course to increase the depth of
the discussion with respect to that concept. Later, we
will present some specific examples.

We conclude this section by comparing the

POCAT-approach with concept inventories [18, 19].
There are some obvious similarities, for example, in
the types of questions used; but there are also some
important differences. For one, concept inventories
are intended to test the conceptual misperceptions of
specific, individual students. Thus, it would not
make sense to make these tests anonymous as is the
POCAT. Second, questions in concept inventories
do not include "I don't know" as a choice because
students would always be expected to make a best
guess. These are typically students entering their
first courses in college, not students about to gradu-
ate and become professionals. Third, security is an
important consideration with concept inventories
because students' performance on the test can have a
significant impact on which courses they are placed
in, how fast they can progress through the curricu-
lum, etc. By contrast, there is no motivation for in-
dividual students to try to "cheat" on POCAT since
their performance does not become part of their
record, indeed is not even known to anyone else.
Perhaps the most important difference is that while
concept inventories are intended to be common to all
programs in a particular discipline, POCAT is very
much tailored to our program. The questions are
designed by the faculty who teach the particular
courses and are intended to help identify problems in
our particular courses as well as ideas for improve-
ment in our particular program. Thus a specific
POCAT test we use would not be appropriate for use
in another program. However, the approach certainly
is usable by any CSE program, indeed by any engi-
neering program. What is required is for the program
faculty to identify key high-level courses and design
suitable multiple-choice questions that probe for
conceptual (mis)understandings that may be com-
mon among students. Next, use the results to fine-
tune the questions until the problems are clear. And,

66 COMPUTERS IN EDUCATION JOURNAL

finally, develop suitable revisions in the course(s) to
address the problems to effect improvements in the
program.

Results

In this section, we consider some recent specific

improvements in our program based on the POCAT
assessments. We start with a somewhat detailed
description of our first improvement and follow that
with much briefer descriptions of the rest. One of the
courses included in the POCAT is CSE 655, a re-
quired late-junior/early-senior-level course on con-
cepts of programming languages. One of the most
common problems that programs, especially large
ones, exhibit has to do with uninitialized variables;
i.e., using a program variable without having as-
signed it a suitable value. There are various possible
ways to address this problem. First, we could design
our programming language in such a way that when-
ever a variable is defined, it is automatically as-
signed some appropriate default value. A second
would be to change the syntax of the language so
that a programmer cannot introduce a new variable
without explicitly specifying an initial value for it. A
third would be to have the compiler analyze any
program it compiles to check that each variable has
been initialized before it is used. A fourth would be
to have the compiler insert, into the compiled code,
additional checks to make sure that each variable
that is used has a value that was actually assigned to
it. The fifth and final approach would be to do noth-
ing and expect the programmer not to make the mis-
take of using a variable without first initializing it; in
this case though, if the program does have an unini-
tialized variable, the program will probably crash
when the compiled code is actually executed be-
cause the system will use whatever random bit pat-
tern happens to be in the memory location assigned
to that variable.

Each of these approaches has advantages and dis-

advantages. For example, the first approach, assign-
ing a default value, does eliminate the problem but it
may be masking a real bug in the program; i.e., the
programmer truly forgot to assign a specific value to
a particular variable and then used that variable,
assuming that she had previously assigned the cor-
rect specific value to the variable. In this case, the
program will run (using the provided default value)
but the results will probably not match what the
programmer expected and debugging this can be a
problem. By contrast, if the program had crashed (as
in the last approach), the programmer might have

reexecuted the program after inserting some "break-
points" (at which points the program will stop before
waiting to be told to continue) and quickly localize
the problem. Of course, if the program doesn't actu-
ally crash because the random bit pattern at the
memory location in question happens to be a legiti-
mate value, it would be as difficult to find the bug as
in the first approach.

What about the third approach where the compiler

analyzes the program to check that each variable has
been initialized before it is used (and issues a warn-
ing if it finds variables that are used before being
initialized)? While this would be ideal, it doesn't
always work. The problem is that because of com-
plex conditional and looping structures in the pro-
gram, the compiler cannot tell exactly which parts of
the program will be executed before which other
parts. It can do an approximate analysis; and arrive
at a conservative evaluation that would flag some
uses of certain variables as questionable because it is
not able to conclusively establish that, in all cases,
during program execution, that the variable in ques-
tion will be initialized before being used. Java uses
this approach. C++ uses the fifth approach (leave it
to the programmer); Resolve-C++, a local dialect of
C++ that is used in our beginning CSE sequence,
uses the first approach.

This topic is discussed in some depth in CSE 655.

Students who have internship or other work experi-
ence often bring up other languages (such as Perl)
that they may have encountered in their work places
and talk about how they seem to handle the problem.
At the same time, at least for some students the es-
sential conceptual nature of the problem and its pos-
sible solutions tend to remain unclear. Here is a
POCAT question designed by faculty who teach the
course to identify problems related to this concept:

One common problem in programs is that of un-
initialized variables, i.e., using a variable without
having initialized it. This is commonly a run-time
error but Java flags this error at compile time.
How does it do this?

1. Java uses a special technology that converts
run-time errors into compile-time errors;

2. Java uses a "conservative" approach, sometimes
flagging situations which are not actually er-
roneous;

3. Java does automatic initialization of all varia-
bles so the problem of uninitialized variables
cannot arise in Java programs;

COMPUTERS IN EDUCATION JOURNAL 67

4. Java is an interpreted language, so this question
is meaningless;

5. I have no idea.

The correct answer is, of course, (2). But many
students, perhaps because of the "buzz" around Java,
seem to pick (1). The third choice is more involved.
It turns out that Java, in fact, does automatic initiali-
zation but not of all variables; that is what makes
this a wrong choice. That means, a student who ac-
tually understands the concept may still pick this
wrong answer. Thus there is a key difference be-
tween this student and one who picks answer (1).
Answer (4) is another interesting distractor. Lan-
guages may be implemented using either compilers
or interpreters (with apologies to readers with back-
ground in Computer Science & Eng.!). Interpreters
don't actually translate the given program; they in-
stead execute it more or less as given. This means
that if they encounter this situation, they can easily
identify it during execution of the program and print
a suitable warning message making the job of the
programmer very easy. Although Java does use in-
terpretation, that part of it is not relevant to this dis-
cussion; hence the correct answer is indeed (2).
However, again a student who understands the con-
cepts well may choose (4) as her answer because she
just does not know (or did not remember) some de-
tails of how Java works. The last answer, "I have no
idea", as discussed earlier, is important. Students
who do not know the answer to the question, and
know that they do not know, will pick this answer.

When the question was tried a couple of years ago,

the faculty in question expected 70% or so of the
students to get the correct answer. In fact, the num-
ber of students who picked the right answer was
substantially less. While some of the students seem
to have chosen an answer (such as (3)) that would
indicate not having knowledge of some Java details,
many others chose answers (such as (1)) that indi-
cated failure to have a sufficiently good grasp of this
important concept. Indeed, someone with a good
understanding of the concept should, even if she had
not heard of Java before, be able to choose (2) as the
most likely answer. Based on this, the faculty re-
vised the discussion in CSE 655 to include a more
detailed discussion of the topic. The performance of
students in recent offerings of POCAT in this (and
similar) questions has been substantially better. In
terms of program outcomes, this question is related
to (3.c), (3.e), and (3.k).

Our second example is related to CSE 680, a jun-
ior/senior-level course on algorithms and analysis of
algorithms. One fairly standard topic in this area is
solving what are known as recurrence relations.
These relations can be used to express the running
time of certain algorithms; in effect the running time
of the algorithm for input of a certain size is related
to the running time for input of a smaller size;
which, in turn is related to the running time for input
of still smaller size; etc. But getting a good feel for
the actual running time of such an algorithm for
large inputs requires us to "solve" the relation to
obtain the asymptotic behavior of the algorithm. In
general, this can be a fairly difficult task but if cer-
tain conditions are satisfied, a result known as the
Master theorem can simplify the task considerably.
This can be important in certain situations such as
when dealing with algorithms designed to search
through very large volumes of data since the differ-
ence in running time between different algorithms
for the task can be very substantial. Hence it is im-
portant to be able to solve the corresponding recur-
rence relations so that one can make an informed
choice among the algorithms in question.

Hence the faculty involved with CSE 680 designed

a POCAT question intended to see if students are
able to solve (reasonably simple) recurrence rela-
tions. The performance of the students who took the
test was unexpectedly poor. In the evaluation discus-
sion analyzing the test results, one explanation that
was offered was that students were, in fact, capable
of using the Master theorem to solve the relation —
the relation in the POCAT question being one that
satisfied the conditions that allow the Master theo-
rem to be applied— but that, because of the complex
nature of those conditions, students could not be
expected to remember them when taking the
POCAT. Indeed, this seemed to be confirmed when
the CSE 680 instructor asked a similar question as
part of his final examination for the course. A large
majority of the students in the course answered the
final exam question correctly.

The faculty could, at this point, have accepted the

explanation above as accurate but they decided to
test it further. In the next offering of POCAT, they
revised the question to include a statement of the
Master theorem. Given this revision, these faculty
felt that students should indeed be able to check that
its conditions were satisfied in the given scenario
and solve the specified recurrence relation. To their

68 COMPUTERS IN EDUCATION JOURNAL

surprise, student performance on the question on this
test was as poor as it had been in the earlier test!
This is indeed a puzzle and one that has not yet been
resolved. Why did the students in the course final
examination do so well when students taking the
POCAT did so poorly even when they were provid-
ed an explanation of the Master theorem? Further
fine-tuning of the question in future offerings of the
POCAT will help address the question and tell us
whether and what changes in the course are needed.

It may be worth noting that, in practice, one would

expect a CSE professional to look up, perhaps on-
line, the details of the theorem rather than necessari-
ly remember them. Thus if the faculty's original
explanation that students taking the POCAT simply
did not remember the theorem had turned out to be
correct, we would have concluded that no change in
the course was called for. But it didn't.

Our final example involves two courses, the dis-

crete math course and CSE 321, the final course in
our sophomore-level software engineering (SE) se-
quence. One important thread in the SE sequence is
to help students see the importance of precise speci-
fications (rather than informal explanations using a
few example test cases) of the behaviors of programs
and to have students work with the specifications for
a number of simple systems. These specifications,
partly in order to be easily machine readable, use a
"plain text" set of notations such as "union", "there
exists", etc., rather than the traditional mathematical
symbols, such as "∪" and "∃", etc. In the discrete
math course, which is taught by the mathematics
department and is taken by students at about the
same time as CSE 321, students learn basic mathe-
matical logic using the traditional mathematical
symbols.

Several quarters ago, faculty involved with CSE

321 proposed a question involving a simple specifi-
cation for inclusion in the POCAT. The faculty ex-
pected most students to be able to answer the
question correctly; their main purpose in asking the
question was to see whether the students had re-
tained the ideas from 321 to the time of their gradua-
tion. As it turned out, when the question was typeset
for POCAT, words such as "union" were replaced,
without knowledge of the 321 faculty, by the corre-
sponding traditional mathematical symbols such as
"∪". When the results became available, the student
performance was much poorer than the 321-faculty
had expected. During the discussion that followed,

one of them noticed the change in the notation and
conjectured that it was that change that was primari-
ly responsible for the poor performance. So, in the
next offering of the POCAT, the question was re-
typeset using the notation used in 321 rather than the
traditional notation and, indeed, students performed
much better!

While this seemed to resolve the matter, some of

the faculty, including those not directly involved
with the SE sequence, were puzzled and concerned.
Surely, our students, by the time they graduate from
the program, should be able to easily see that, for
example, "there exists" and "∃" mean the same
thing? And if they are not able to do so, as the re-
sults of the two POCATs seemed to indicate, didn't
we need to revise some part of the program to ensure
that they do so? Given that feedback, the CSE 321
faculty took the following actions. First, they as-
signed both versions of the question in a final exam-
ination of the course (with half the students getting
each version of the question) to check whether the
students in the course exhibit the same difference in
performance when presented the two versions of the
question. It turned out that indeed they did. Next, the
instructor for the course introduced, in the next of-
fering of the course, a 20-minute explanation/dis-
cussion of the essential equivalence of the two nota-
tions near the end of the quarter. Again the two ver-
sions of the question were asked in the final
examination and this time students did equally well
with both versions of the question. The conclusion
was that, contrary to what faculty expected, students
do not intuitively and on their own see the equiva-
lence of, for example, "there exists" and "∃"; these
are somewhat involved ideas and need to be present-
ed explicitly and clearly. Hence this explanation is
now a permanent part of CSE 321.

In terms of the program outcomes, the 680-based

question is related to (3.a), (3.b), (3.c), and (3.e).
The 321/discrete math-based question is related to
(3.a), (3.e), and (3.k).

Documentation, Sustainability

 There are two distinct components to the documen-
tation of POCAT. The first is the documentation of
the test results. As noted earlier, this is mostly me-
chanical and performed by an automated script. The
input to the script consists of the following infor-
mation: for each student code, the answer choices
(i.e., one of (a), (b), etc.) made by that student for

COMPUTERS IN EDUCATION JOURNAL 69

each question on the test; the correct choice for each
question; the number(s) of the course(s) most direct-
ly related to each question; and the numbers of the
program outcomes related to the question. Given this
information, the script creates the results page such
as the one at [21]. This process could be further
mechanized by maintaining a database of possible
POCAT questions which includes such information
as the correct answer for each question, the related
program outcomes, etc. Another possibility that
would enable essentially complete mechanization
would be to have students take the test on-line. We
discussed this in a meeting of the Undergraduate
Committee. The student representatives on the
committee were opposed to this since they felt that
students taking the test on-line would be unsure that
their anonymity would be preserved. Given the es-
sential importance not just of anonymity but the
students' perception of anonymity in POCAT, we
have abandoned this idea.

 The second component of the documentation is a
summary of the evaluation of the assessment results.
For each question for which the results were unex-
pected or otherwise led to discussions in the Under-
graduate Committee (and beyond), summaries of the
discussion are written up. The summaries are similar
to the examples in Section 3.3 except that, since it is
intended for our faculty who are, of course, quite
familiar with the details of the courses in the pro-
gram, they tend to be much briefer. These summar-
ies are maintained in a single web page (accessible
to faculty in the department) in chronological order.
In effect, over time, the page provides a historical
view of the changes that were made to the program
and the rationale, in terms of the assessment results
that triggered them and the summary evaluations of
the results, behind the changes. Thus, for example, a
new faculty member to the department can read
through this page and get an excellent view of the
evolution of the program and the reasons behind
important changes in the program.

 One of the major difficulties that programs at-
tempting to meet EC requirements concerning out-
comes assessments, program improvements based
on evaluation of the assessment results, and docu-
mentation of all of these, has been the amount of
resources needed to do so. Indeed, as noted in Sec-
tion 2, the resources needed in some cases are so
onerous that programs have had to abandon them
after a year or two. In other programs, one or two
individual faculty have, at enormous personal sacri-
fice, attempted to keep the process going. Perhaps

most importantly, almost every one of these cases
has been an exercise in collecting assessment data
and organizing it and creating tables summarizing
the percentage of students who completed some
course activity satisfactorily, etc. Almost never is
there any evaluation or detailed analysis of the re-
sults, let alone ideas for program improvements that
might be suggested by such analysis.

 By contrast, as the examples in Section 3.3 demon-
strate, developing ideas for program improvements
based on careful analysis of the assessment results
is, in effect, the driving force behind POCAT. As an
added and important bonus, the two documentation
components of our approach described above per-
fectly meet the letter and the spirit of the EC re-
quirements. The summary results pages such as the
ones at [21] document the assessment results. The
evaluation page documents the evaluation of the
assessment results and ties program improvements
to that evaluation. The resources needed to to sustain
the approach over the long term (about four years
now) have been relatively modest. There are two
aspects of the approach that require significant facul-
ty effort and time. The first has to do with designing
suitable questions for POCAT. This task, especially
coming up with suitable distractors in each question
that correspond to common student misunderstand-
ings and difficulties related to the concept being
addressed, can be a challenging task and requires
several iterations. But it is precisely the sort of chal-
lenge that faculty engaged with the course are glad
to take on. This is not the sort of mind-numbing
assessment activity performed simply for the sake of
meeting EC requirements that faculty rightfully re-
sent. This challenge requires faculty to think deeply
about what the central concept in question is, what
are the additional concepts and ideas that might be
related to it, perhaps peripherally, which might con-
fuse students, how best to capture these potential
confusions in a few carefully worded distractors, etc.
The other aspect that requires significant faculty
effort is the evaluation of the results and determining
what changes, if any, are needed in our courses,
based on the evaluation. But the task of determining
what changes are needed in their courses is some-
thing that conscientious faculty engage in routinely
and constantly. Our approach, in effect, makes the
activity more productive by relating it to results of
POCAT and by producing documentation that will
be valuable when the same or another faculty mem-
ber tries to understand why the program evolved in
certain ways.

70 COMPUTERS IN EDUCATION JOURNAL

Conclusion

 The main requirements that we imposed on
POCAT were that it provide a direct assessment of
the technical outcomes, (3.a), (3.b), (3.c), (3.e), and
(3.k); that it assess the program rather than individu-
al students; that the evaluation of the assessment
results help us arrive at changes in our courses that
will help address specific problems, thereby improv-
ing the program; that the assessments results, the
evaluation and the program improvements be easy to
document; and that it be sustainable with modest
resources. Each of these requirements has been fully
satisfied. First, it is clearly a direct assessment since
it is based on student performance on the questions
in the test. Moreover, just the three samples we dis-
cussed in Section 3.3 covered all of the above out-
comes, some more than once. Second, POCAT
clearly assesses the program not individual students
since the performance of an individual student on the
test is not known to anyone (other than the particular
student).

 Third, as the examples in 3.3 showed, evaluation
of the test results helps identify specific problems
that students have with particular concepts and the
resulting discussion among faculty leads to specific
changes in the program to help address the prob-
lems. Fourth, the web pages documenting the
POCAT results and the page summarizing the evalu-
ation of the results and the changes to the program
provide the documentation needed to meet EC re-
quirements and to help faculty track the program's
evolution. And, fifth, the resources needed for ad-
ministering the test and producing the summary
results are modest. Faculty time and effort are in-
deed needed for creating the questions on the tests;
and for evaluating the test results, identifying prob-
lems, and coming up with possible changes in the
courses to address the problems. With respect to the
former, since questions can be freely reused without
concern about the test's security, faculty in each area
need only produce a handful of questions every year.
With respect to the latter, this is a normal activity
that faculty engage in routinely. The only difference
is that POCAT provides them test results that can
serve as a basis (in addition, for example, to perfor-
mance of students in final exams in particular cours-
es) for this activity. Thus POCAT does indeed
satisfy each of our requirements. Moreover, the ap-
proach, although not our actual tests, are very much
usable by other CSE programs as well as by all en-
gineering programs.

 We conclude with an idea for a change that would
make the POCAT approach even more effective.
The EC technical outcomes are extremely broad.
Indeed, it would probably be quite difficult to come
up with a POCAT question that does not relate to
several of them. As a result, the fact that for each
technical outcome, there are one or more questions
on a given POCAT that relate to it is no assurance
that the test deals with most of the key technical
topics that the program faculty consider as im-
portant. A better alternative would be to identify, for
each (especially high-level) core course in the cur-
riculum, its key outcomes; and ensure that the
POCAT contains questions related to several key
outcomes from several of these courses; and that
over a period of a year or two, the set of POCATs
administered include questions related to each key
outcome of each of these courses. That will ensure
that faculty are able to identify weaknesses in all
important components of the program. We are cur-
rently working on implementing this change in our
program.

References

1. J.W. Prados, G.D. Peterson, and L.R.
Lattuca, “Quality assurance of engineering
education through accreditation: The impact
of Engineering Criteria 2000” Journal of
Engineering Education, vol. 94, no. 12,
2005.

2. Engineering Accreditation Criteria, ABET
website at: http://www.abet.org, 2007.

3. J. Pellegrino, “Rethinking and redesigning

curriculum, instruction, and assessment”,
Paper commissioned by the National Cen-
ter on Education and the Economy, 2006.
available at: www.skillscommission.org.

4. J. Bransford, A. Brown, and R. Cocking.
How people learn: Brain, mind, experience,
and school, National Academy Press, 2000.

5. J. Shaeiwitz and D. Briedis, “Direct assess-

ment measures”, in Proc. of ASEE Annual
Conference, ASEE, 2007.

6. G. Rogers, “Got portfolios?”, Technical Re-

port 07-04-CM, ABET Newsletter, 2007.

COMPUTERS IN EDUCATION JOURNAL 71

7. J. Mcgourty, L. Shuman, M. Besterfield-
Sacre, C. Atman, R. Miller, B. Olds, G.
Rogers, and H. Wolfe, “Preparing for
ABET EC 2000: Research-based assessment
methods and processes”, Int. J. of Eng. Ed.,
vol. 18, no. 2, 2002.

8. G. Rogers, “Death by assessment: How

much data are too much”. Technical Report
Spring 2002, ABET Communications Link,
2002.

9. C. Chewar, K. Huggins, and J. Blair,

“Avoiding the pratfalls of program assess-
ment”, SIGCSE Bulletin, vol. 38, no. 4,
2006.

10. D. Ahlgren and J. Palladino, “Developing

assessment tools for ABET EC. in Proc. of
Frontiers in Education, pages T1A-17.
ASEE/IEEE, 2000.

11. R. Felder and R. Brent, “Designing and

teaching courses to satisfy ABET EC”,
Journal of Eng. Education, vol. 92, no. 1,
2003.

12. F. Mak and S. Freza, “Using student learn-

ing outcomes assessment to assure EC 2000
program effectiveness”, In Proc. of the
ASEE Annual Conf. ASEE, 2005.

13. S. Danielson and B. Rogers, “A methodolo-

gy for direct assessment of student attain-
ment of program outcomes”, in Proc. of the
ASEE Annual Conf. ASEE, 2007.

14. W. Howard and J. Musto, “Assessment
workshop: a tool for promoting faculty in-
volvement”, In Proc. of the ASEE Annual
Conf. ASEE, 2006.

15. H. Harvey, M. Krudysz, and A. Walser, “Di-

rect assessment of engineering programs at
the City College of New York”, in Proc. of
Frontiers in Edu., ASEE/IEEE, 2010.

16. C.R. Helps, D. Anthony, and B. Lunt.,

“Outcomes oriented ABET accreditation:
Mechanisms for review and feedback”, in
Proc. of the ASEE Annual Conf. ASEE,
2005.

17. A. Savinainen and P. Scott, “Force concept
inventory: a tool for monitoring student
learning”, Physics Education, vol. 37, no.
1, 2002.

18. I. Halloun and D. Hestenes, “Common sense

concepts about motion”. American Journal
of Physics, vol. 53, no. 10, 1985.

19. D. Hestenes, M. Wells, and G. Swack-

hamer, “Force concept inventory.”, Physics
Teacher, vol. 307, no. 2, 1992.

20. CSEDept., Sample POCAT., http://www.

cse. ohiostate.edu/ugrad/ets.pdf, 2010.

21. CSE Dept., Sample POCAT results, http://
www.cse.ohiostate.edu/ugrad/etsr.html
2010.

Biographical Information

Dr. Neelam Soundarajan is an Associate Professor

in the Computer Science and Engineering Depart-
ment at the Ohio State University. His research in-
terests include Software Engineering, engineering
pedagogy including assessment and evaluation.

