
58 COMPUTERS IN EDUCATION JOURNAL

AN INTEGRATED PROJECT-DRIVEN COURSE IN COMPUTER
PROGRAMMING FOR MECHANICAL ENGINEERING STUDENTS

Debra J. Mascaro, Stephen Mascaro
Mechanical Engineering Department

University of Utah

Abstract

This paper describes the implementation of an
integrated, hands-on, project-based approach to
instructing Mechanical Engineering freshmen in
computer programming at the University of
Utah. It is desired that students completing this
course are proficient in programming both in
MATLAB and Arduino C, both of which are
used in subsequent courses in the Mechanical
Engineering program. The basic idea behind our
approach is to motivate student learning using a
concrete engineering application in the form of
a hands-on team project with an end-of-semester
competition. The lectures, labs, assignments,
and project are all purposefully integrated and
synchronized to demonstrate key engineering
applications of computer programming and to
prepare students for the competition.

This paper describes the structure and content

of the course, including the nature of the
competition, and illustrates how the integration
and synchronization of the course content is
achieved. Quantitative metrics of the outcomes
of the course are provided, including results
from student course evaluations, surveys, and
exams. Results to date indicate an increase in
both programming competency and satisfaction
with the learning experience.

Introduction

We have recently implemented an integrated,
hands-on, project-based approach to instructing
Mechanical Engineering students in computer
programming at the University of Utah. Our
new course serves as an introduction to
computer programming for freshmen in
Mechanical Engineering, preparing students in
particular for a sophomore-level Numerical
Methods course and a junior-level Mechatronics

sequence. It is desired that students completing
this course are proficient in programming both
in MATLAB (which will be extensively used
throughout the Mechanical Engineering
curriculum) and in Arduino C (which will be
used in the Mechatronics sequence).

Teaching computer programming to

mechanical engineering students has historically
been a challenge, since they may not be gifted in
this area and often struggle to see the relevance
of computer programming to engineering while
still freshmen. The basic idea behind our
approach is to motivate student learning using a
concrete engineering application in the form of
a hands-on, microcontroller-based team project
with an end-of-semester competition.

Other engineering programs have also

introduced microcontroller-based instruction
and projects to motivate and engage students in
introductory programming courses. The Handy
Board was an early microcontroller option,
used, for example, by Avanzato at Penn State
Abington College to control Lego-based
autonomous mobile robots [1] and by Azemi et
al. at Penn State to interface with “tankbot” kits
[2]. More recently, a breadboard microcontroller
kit from Machine Science, Inc. was incorporated
into the introductory programming course at
Northeastern University, enabling students to
interface with sensors and other electronic
components [3]. Not surprisingly, Arduino
microcontrollers are also becoming a popular
choice, and have been integrated into
introductory programming courses for
applications ranging from robotics (e.g., robotic
manipulators at West Virginia University [4]) to
sustainability (e.g., solar modules at UC Davis
[5]). While these examples of microcontroller-
based projects are all “hands-on” in the sense
that they interface with the physical world via

COMPUTERS IN EDUCATION JOURNAL 59

sensors, actuators, and other electronics, they
often lack the type of hands-on mechanical
manipulation/construction desired by
Mechanical Engineering students, either
because they are more electronics-based [3,5],
or because the students are provided with pre-
constructed or off-the-shelf robotic or
mechatronic platforms [1,4].

One of the key features of our course is that it

teaches students to program both in MATLAB
and C, and in that order. This brings up two
potential criticisms. First, is it reasonable for
engineering students to learn two languages in
one semester? Second, is it really necessary to
require mechanical engineering students to
program in C? We answer these two questions
as follows.

First, while it is common to spend an entire

semester on either MATLAB [4,5] or C [1].
some other programs are also teaching both
MATLAB and C [2,3,6]. One reason we
believe that this approach works for our
program is that many advanced MATLAB
topics such as matrix algebra, regression tools,
and ODE solvers are covered in our required
sophomore-level Numerical Methods course. In
addition, students who desire to learn advanced
topics in C can opt to take our technical elective
course on object-oriented programming for
interactive systems.

Second, in an ideal world, students could

perhaps program their Arduinos in MATLAB as
well, and we could do away with the C
programming in this course. While there is, in
fact, a MATLAB toolbox for Arduino, the
MATLAB code in this case is not actually
compiled to run on the Arduino, but rather the
MATLAB code runs on a PC and communicates
via the serial port with the Arduino, which is
running its own general-purpose program [4,5].
This limits what one can do with the Arduino,
and does not lend itself to projects where the
Arduino must operate untethered from the PC,
which is the case in our junior-level
Mechatronics projects, and also many of the
students’ Senior Design projects. Therefore, for

the foreseeable future, as Arduinos are
becoming increasingly ubiquitous in
engineering education, we believe it is
worthwhile to teach both MATLAB and C.

The lectures, labs, assignments, and project in

our course are all integrated to demonstrate key
engineering applications of computer
programming, including general engineering
problem solving, data analysis and fitting,
design optimization, control of mechatronic
systems, data visualization and image analysis,
and graphical user interfaces and simulation.
Moreover, we have carefully designed the
lectures, labs and assignments to be both
relevant and synchronized to the progression of
the project leading to the end-of-semester
competition. Each week, a new programming
topic is introduced in lecture, that same topic is
applied in lab towards a facet of the project, and
the weekly assignment includes one or more
Project Programming Problems (PPPs). The
code the students write for the PPPs is
ultimately integrated and used in the
competition. Unique to our approach is that both
MATLAB and C (including their interaction via
serial communication) are integral to the
project. In addition, each team constructs (from
a kit) its own mechatronic apparatus for the
competition, which is anticipated to increase
buy-in to the programming assignments. The
construction activities are distributed throughout
the semester in a just-in-time manner, such that
the project programming assignment for a given
week relies on the piece of the apparatus that
was just constructed.

In this paper, we will describe the nature of the

project and final competition. We will present
the structure and content of the course,
illustrating the integration and synchronization
of lectures, labs, and assignments. We will
assess the outcomes of the course by presenting
results from student course evaluations and
surveys, and a comparison of exam
performance.

60 COMPUTERS IN EDUCATION JOURNAL

Project and Competition

The specific project we designed required the
students to control a mechatronic device to hit
targets with ping pong balls. Each student was
given an all-in-one Arduino compatible
microcontroller (DFRobot RoMeo V2,
www.dfrobot.com), which they keep at the end
of the semester. Each team of two students was
given a kit of assorted Makeblock parts
(Makeblock is an open source construction
platform, www.makeblock.cc), which is
returned at the end of the semester. The
Makeblock platform was chosen because of the
variety of mechatronics parts available (motors,
servos, beams, links, etc.), ease of integration
with other custom components, and
reconfigurable yet robust quality that gives it
more of an engineering feel compared with
Lego kits. The teams assembled identical
mechatronic devices (Figure 1) that used DC
motors and homemade linear encoders to
position the cannon, servomotors and fourbar
linkages to change the launch angle, and

homemade solenoids to launch the ping pong
balls. Each team also built a reloading
mechanism with an additional servomotor that
would dispense additional ping pong balls onto
their launcher, enabling them to take a total of
six shots.

For the competition, the teams were provided

with an image file with six embedded target
locations (Figure 2) corresponding to actual
locations of targets on the competition playing
field (Figure 3). The teams were required to
compose a MATLAB program that would load
the image file, compute the centroids of the
targets (red squares), and transmit the
coordinates to the Arduino RoMeo
microcontroller using serial communication.
They were then required to compose a program
in Arduino C that received the target
coordinates, computed the launcher positioning
necessary to hit the targets, and controlled their
launcher device to execute the necessary shots.

Figure 1. Mechatronic Ping Pong Launcher.

http://www.dfrobot.com/
http://www.makeblock.cc/

COMPUTERS IN EDUCATION JOURNAL 61

Figure 2. Target Image and Alignment.

Figure 3. Competition Playing Field.

Teams were awarded 1 point for correctly
acquiring each target centroid in MATLAB, and
3 points for each direct hit (ball landed directly
in the hole on the fly), for a total of 24 possible
points. In the event of a tie, the team whose
launcher finished the quickest was given the
advantage. In order to succeed, students needed
to complete a series of Project Programming
Problems (PPPs) spanning the semester,
including calibration of the physics/kinematics

of the device, image analysis in MATLAB to
locate targets, serial communication of target
locations from MATLAB to Arduino, targeting
in Arduino C using trajectory physics and
fourbar linkage kinematics, and control of the
servomotor, solenoid, and DC motor/encoder.

Unlike our junior-level mechatronics

competition, we intentionally took all of the
mechanical design out of the picture, requiring

62 COMPUTERS IN EDUCATION JOURNAL

each team to assemble exactly the same device,
with a few very minor exceptions. Therefore, by
design, the students who fared the best in the
end-of-semester competition were those who
did the best job of calibrating and programming
their device. While the PPPs generally guided
the students to solve each problem in a
particular way, the rules were flexible enough to
allow the students to take initiative and think of
ways to alter their programming to improve
their shooting accuracy and speed. While the
teams were given a set of targets to practice on
during the semester, the target locations and
images they were provided on competition day
were all new, which required their algorithms
and calibrations to be robust.

All of the teams were generally able to get the

6 points for correctly acquiring the targets in
MATLAB. Most of the teams were able to get
points for hitting at least one or more of the
targets. A few of the teams hit all six targets at
one point or another during practice, but only
one team was able to do it on the competition
day. The tie-breaker rule did come into play in
determining second and third place winners.
Students whose teams placed in the top 10%
were given the option of skipping the final
exam, but only if their semester grades were
above the class average. In our experience, this
is very strong motivation for students to do well
in the competition.

One final important point to note is that unlike

other mechatronics competitions we have done
in the past, we intentionally formed teams of
two students (rather than three or four), which
really forced all the students to have a hand in
the programming of their device. This required
us to purchase kits of Makeblock parts for 70
teams, which was a significant up-front
investment (~$300/team), but one that we feel is
well justified.

Course Structure and Content

The schedule of the course is outlined in Table

1. There are two 80 minute lectures per week
and one 3 hour lab per week, with 20-24

students in each lab section. The weekly lab
exercises are carefully synchronized with the
lecture topics. There is one weekly homework
assignment, which students begin in lab and
then turn in the following week. There are 13
labs, but only 10 assignments. Labs 0, 6b, and
11 do not have corresponding assignments
because they occur at the beginning, midterm,
and end of semester.

Lecture Content

In the first 15 lectures (7.5 weeks), the topics
cover the basics of MATLAB programming,
assuming the students have had no prior
programming experience. Our philosophy is
that MATLAB is a preferable language to start
the students on, since the syntax is more
forgiving, and there are more built-in functions,
allowing students to quickly begin to solve
engineering problems and easily visualize their
results. All the basic concepts and structures of
programming are taught, and then tested on the
midterm. The image processing we teach them
in MATLAB is very basic (using nested loops
and conditionals to search for pixels meeting
certain conditions). The first 20 to 30 minutes of
each lecture is typically a presentation of
programming theory, and then the remaining
time is spent doing programming examples.
Often the last 15 to 20 minutes of lecture is
devoted to discussing a particular feature of the
Arduino RoMeo microcontrollers in order to
prepare students for the weekly lab exercise.
The textbook used for the MATLAB instruction
is MATLAB for Engineers by Holly Moore [7].

Lectures 17-22 (3 weeks) are a compact

introduction to C programming, operating on
the premise that students are already familiar
with the core programming concepts of
functions, conditionals, and loops, such that
now they only need to be taught the differences
in syntax. Examples are done using both Dev-
C++ (a freeware version of C) and Arduino C,
which have only minor differences. We use
Dev-C++ (in addition to Arduino C) because it
allows students to write programs and run them
instantly without connecting to the Arduino

COMPUTERS IN EDUCATION JOURNAL 63

Table 1. Course Schedule.

Lecture Lecture Topics Lab Lab Topics Due

1 Intro to MATLAB
Intro to Arduino 0 Intro to MATLAB

Intro to Arduino
2 MATLAB Problem Solving

3 MATLAB: Built-in Functions
Arduino: Servomotors 1 MATLAB: Operations & Functions

Linkage Assembly and Servos
4 MATLAB: Arrays

5 MATLAB: Arrays
Arduino: Inputs and Outputs 2

MATLAB: Arrays
Arduino Inputs and Outputs, Binary
Messages

HW1
6 MATLAB: Plotting

7 MATLAB: Plotting
Example: Solenoid Physics 3 MATLAB: Plotting

Solenoid Fabrication HW2
8 MATLAB: User-Defined Functions

9 MATLAB: User-Defined Functions
Arduino: Motor Terminals 4 MATLAB: Functions

Solenoid Testing HW3
10 MATLAB: Input/Output

11 MATLAB: Conditionals
Example: Linkage Kinematics 5 MATLAB: Conditionals

Linkage Calibration HW4
12 MATLAB: Loops

13 MATLAB: Loops
6 MATLAB: Loops

Linear Stage Assembly and Testing HW5
14 MATLAB: Image Processing
15 MATLAB: Image Processing

6b Reloader Assembly and Testing HW6
16 MIDTERM EXAM
17 Intro to C Programming

7 MATLAB: Image Processing
Microswitches and IR Sensors 18 C: Data Types & Operations

19 C: Loops & Conditionals
8 C: Loops & Conditionals

Encoders, Position Tracking HW7
20 C: Loops & Conditionals
21 C: Functions & Scope

9 C: Functions
Coordinated Launcher Control HW8

22 C: Structures
23 C/MATLAB: Serial I/O

10 C and MATLAB: Serial Input/Output
Transmitting Targets Coordinates HW9

24 MATLAB: Data Types &
Structures

25 MATLAB: GUIs
11 Project Demos and

Competition Qualification HW10
26 MATLAB: GUIs
27 User-Friendly Programs

 28 COMPETITION
29 Review for FINAL EXAM

64 COMPUTERS IN EDUCATION JOURNAL

RoMeo microcontrollers, and is also easier for
using on exams, which the students take in the
computer lab. The textbook used for the C
instruction is an online interactive book by
zyBooks titled Programming in C
(www.zybooks.zyante.com).

In the final few lectures, the students are

taught how to communicate back and forth
between MATLAB and Arduino C using the
serial port, and how to compose a simple
Graphical User Interface (GUI) in MATLAB
using the MATLAB GUIDE interface. The
students are not required to use GUIs nor are
they examined on them, but some opt to use
them for their final projects. Many of the
students immediately pick up on the benefits of
GUIs and opt to construct a simple GUI that
loads the image file, runs their script to identify
the target coordinates, and then communicates
with the Arduino RoMeo.

Lab Exercises and Assignments

In the first half of each lab, the students are
guided through textbook programming exercises
corresponding to the lecture topic that week. In
the second half of each lab, the students
complete a project exercise that guides them to
incrementally assemble their ping pong launcher
and control it with their Arduino RoMeo
microcontrollers.

In Labs 0-6, since the students do not yet know

how to program in C, the students are given
canned Arduino sketches in which they typically
only have to change values of variables or enter
prescribed lines of code in order to run their
experiments. The exercises during these 8
weeks are focused primarily on assembling their
launcher apparatus and testing/calibrating the
actuators and linkages. The students collect data
using the canned Arduino sketches, and then use
MATLAB to make plots and analyze/calibrate
their data. By the end of Lab 6b, the entire
mechatronic assembly is complete and ready to
be controlled in a coordinated fashion. In Labs
7-11, the students are actively programming in

both MATLAB and C, while
coordinating/testing the control of their
launchers.

Each homework assignment typically consists

of three or four short textbook programming
problems, followed by one or two Project
Programming Problems (PPPs) that are
specifically tailored to the mechatronic portion
of that week’s lab. The students generally begin
their PPPs as part of the lab exercises and then
finish them on their own time. All the problems
on HW1-HW6 are required to be completed
individually by each student. For HW7-HW10,
the students are allowed to engage in “pair
programming” with their project partner for the
PPPs and turn in one set of code per team, since
the code they develop during these final four
assignments will be directly used for the
competition. For the PPPs, the students are
generally given all of the physics equations they
will need. For some of the more difficult PPPs,
the students are also given a suggested
pseudocode to follow.

 Lab 0

Objectives: Get acquainted with the MATLAB
and Arduino IDEs (interactive development
environments). Each student is given their own
Arduino RoMeo (Figure 4) to keep. Students
form teams of two for the project.
PPP: None

Lab 1

Programming Objective: Practice using
MATLAB operations and built-in functions.
Project Objective: Assemble the cannon portion
of the ping pong launcher (Figure 4), consisting
of a fourbar linkage and servomotor comprised
of Makeblock parts.
PPP 1: Using built-in MATLAB functions and
array operations, compose a MATLAB script
that finds the optimal angle necessary to aim the
cannon to hit a target.

http://www.zybooks.zyante.com/

COMPUTERS IN EDUCATION JOURNAL 65

Figure 4. Arduino RoMeo (Lab 0) and Cannon Assembly (Lab 1).

Lab 2

Programming Objective: Practice using
MATLAB arrays.
Project Objective: Get acquainted with Arduino
RoMeo analog inputs and outputs. Students use
their RoMeos to transmit binary messages to

each other by turning on LEDs and reading
phototransistors (Figure 5).
PPP 2.1: Compose a MATLAB script to
decode an array of binary messages.
PPP 2.2: Using the meshgrid() command,
compose a MATLAB script to find the landing
position of the ball when both launch angle and
initial velocity are varied.

Figure 5. Binary transmission between RoMeos using LEDs and photosensors (Lab 2).

Lab 3

Programming Objective: Practice making plots
in MATLAB.
Project Objective: Build the solenoid for
shooting the ping pong balls. Students wind the
solenoids using a motor controlled by an
Arduino RoMeo (Figure 6).

PPP 3.1: Compose a MATLAB script to
compute and plot solenoid parameters (e.g.,
allowable number of coils, resulting outer
diameter, estimated force) as a function of wire
gauge.
PPP 3.2: Compose a MATLAB script to
compute and plot the velocity of the ping pong
ball for a range of masses of the solenoid core,
assuming a fixed kinetic energy.

66 COMPUTERS IN EDUCATION JOURNAL

Figure 6. Winding a solenoid (Lab 3) and attaching to cannon trough (Lab 4).

Lab 4

Programming Objective: Creating and working
with user-defined functions in MATLAB.
Project Objective: Solenoid testing/calibration.
Students attach the solenoid to their cannons.
They control their servomotor and solenoid
using the Arduino RoMeo to launch ping pong
balls. They measure and record the launch angle
and distance travelled.
PPP 4.1: Create a MATLAB function file that
reads the data from an Excel file and outputs
arrays of launch angles and distances.
PPP 4.2: Create a MATLAB function file that
computes the sum-of-squared errors between
theoretical and experimental distance travelled.
Use this function in conjunction with the
fminbnd() function to find the initial velocity
(Figure 7) that minimizes the error.

Lab 5

Programming Objective: Practice using logic
and conditionals in MATLAB.
Project Objective: Cannon calibration. Students
control their servomotor to position their fourbar
linkages at different angles. They measure and
record the launch angle vs. motor angle.
PPP 5.1: Create a MATLAB function file that
uses fourbar linkage kinematics to compute the
launch angle given the motor angle, given a pair
of offset angles (Figure 7).
PPP 5.2: Create a MATLAB function file that
computes the sum-of-squared errors between
theoretical and experimental launch angles. Use
this function in conjunction with the
fminsearch() function to find the offsets that
minimize the error.
PPP 5.3: Create a MATLAB script and function
files to classify a fourbar linkage and calculate
its range of motion.

Figure 7. Calibration of trajectory physics (Lab 4) and linkage kinematics (Lab 5).

COMPUTERS IN EDUCATION JOURNAL 67

Lab 6

Programming Objective: Practice using loops in
MATLAB.
Project Objective: Assemble and test linear
motion stage (Figure 8). Students assemble the
linear motion stage that their cannon assembly
sits on, consisting of a DC motor and belt-drive
mechanism comprised of Makeblock parts.
Students drive the motor back and forth with
their Arduino RoMeos to make sure it works.
PPP: Students are assigned textbook problems
only, leaving time to study for midterm.

Lab 6b

Programming Objective: None (study for
midterm).
Project Objective: Assemble and test reloading
mechanism consisting of Makeblock servomotor
and parts (Figure 8).
PPP: None (study for midterm).

Figure 8. Linear Motion Stage (Lab 6) and Reloader Mechanism (Lab 6b).

Lab 7

Programming Objective: Practice working with
images in MATLAB.
Project Objective: Attach sensors for linear
stage, including limit switches and IR

LED/photosensor for linear encoder (Figure 9).
PPP 7: Create a MATLAB script and function
files to load a practice “satellite” image and
find/compute the coordinates of the centroids of
all six targets (Figure 2).

Figure 9. Sensors for Linear Motion Stage (Lab 7).

68 COMPUTERS IN EDUCATION JOURNAL

Lab 8

Programming Objective: Practice working with
loops and conditionals in C.
Project Objective: Implement a linear encoder
to measure displacement of linear stage. The
linear encoder is simply a strip with a set of
black and white stripes (1 stripe/cm) placed
underneath the moving IR LED/photosensor
pair (Figure 3).
PPP 8.1: Write a program using Dev-C++ to
compute the launch angle required to hit a target
at specified distance (use trajectory physics, and
initial velocity calibrated from Lab 4).
PPP 8.2: Compose a sketch in Arduino C to
command the linear stage to move left/right and
keep track of the position by counting encoder
stripes.

Lab 9

Programming Objective: Practice working with
functions and structures in C.
Project Objective: Command the servomotors to
control the launch angle and reloader.
PPP 9.1: Write a program in Dev-C++ to
compute an array of servoangles required to hit
six targets, given an array of target distances
(use linkage kinematics and calibration from
Lab 5).
PPP 9.2: Compose a sketch in Arduino C to
control the launcher and reloader. By pushing
buttons on the RoMeo, students can move the
launcher left/right/up/down and shoot/reload.

Lab 10

Programming Objective: Practice serial
input/output in MATLAB and Arduino C.
Project Objective: Implement serial
communication between MATLAB and
Arduino C.
PPP 10.1: Write a MATLAB script and
Arduino C sketch to transmit/receive the target
coordinates.
PPP 10.2: Compose a sketch in Arduino C for
the final competition. The setup function should
receive the target coordinates from the serial
port, and use trajectory physics and linkage

kinematics to compute the required launch
angles/servoangles to hit the targets. The loop
function should move/aim/shoot/reload six
times and return the launcher to the home
position.

Lab 11

Programming Objective: Final debugging.
Students can opt to make a MATLAB GUI
(Figure 11) for their project, but this is not
required.
Project Objective: Demonstrate a working set of
code to qualify for the competition.
PPP: None. Prepare for the competition.

Figure 10. Complete Apparatus with Linear
Encoder (Labs 8-11).

Figure 11. MATLAB GUI for acquiring and
transmitting target coordinates.

COMPUTERS IN EDUCATION JOURNAL 69

Results

We have completed two offerings of our new
course with 144 students enrolled in Spring
2014 and 28 students enrolled in Fall 2014. The
Fall 2014 offering was our first ever Fall
semester offering of our introductory
programming course, and 40% of the students
were repeating the course. In future years, we
anticipate that the class sizes will equalize at
least somewhat between fall and spring. At the
time of writing, we have 133 students enrolled
in the course in Spring 2015.

Prior to Spring 2010, our students took a

programming course covering MATLAB and C
from the Computer Science Department. In
Spring 2010, the Mechanical Engineering
Department integrated programming instruction
(primarily in MATLAB) into a second-semester
freshman design course [8,9]. Half of the
lectures in this course were devoted to
engineering physics and design topics, including
electricity and magnetism, electronic circuits,
sensors, actuators, microcontrollers,
mechanisms, and manufacturing. The students
worked in teams of four to design, build, and
program an autonomous robot that could
complete specified tasks in an end-of-semester
competition. The project utilized Arduino
microcontrollers, but students were given very
little formal instruction in C programming, and
the Arduino code required for the project was
basically provided to the students. Weekly labs
were divided between MATLAB (1 hour) and

project-related topics (2 hours). Students
completed both programming assignments and
design project assignments, which built on
design methodology, communication, and
teamwork skills introduced in the first-semester
design course. Course evaluation data for this
prior version of the course are shown in Table 2
(shaded columns). The student comments
indicated that the course was overloaded with
content and that the workload was too high for
the number of credits. In addition, feedback
from students and instructors in our junior-year
Mechatronics sequence indicated that this
version of the course did not develop
programming skills sufficient for the
Mechatronics project.

Our new programming course discussed in this

paper was designed to address the above
concerns. By focusing on programming while
retaining a hands-on project, we have improved
student response to the course evaluation
statements “Learned a great deal” and “Overall
effective course” as shown in Table 2 (unshaded
columns). We feel that the Spring 2014
numbers, which are just below the best ratings
(Spring 2012) of the previous version of the
course, were impacted by the fact that the
project and assignments were in development
throughout the semester. We are very pleased
with the Fall 2014 numbers, which on the one
hand may have been positively impacted by the
much smaller class size, but on the other hand
may have been negatively impacted by the large
percentage of students repeating the course.

Table 2. Comparison of Student Course Evaluations.

Statement

Spring
2010

71
responses

Spring
2011

77
responses

Spring
2012

93
responses

Spring
2013

85
responses

Spring
2014

71
responses

Fall
2014

14
responses

Learned great deal 4.65 4.44 4.94 4.48 4.91 5.14
Overall effective course 4.49 4.34 4.83 4.31 4.82 5.29

(6 = strongly agree, 5 = agree, 4 = mildly agree, 3 = mildly disagree, 2 = disagree, 1 = strongly disagree)

70 COMPUTERS IN EDUCATION JOURNAL

At the end of both the Spring 2014 and Fall
2014 semesters, we administered an internal
survey to assess student perceptions of the
course and programming in general. Average
student responses to several statements are
shown in Table 3. Statements 1 (“I liked having
a project in this class”) and 3 (“I am a better
programming because of the project”) received
the highest average ratings, and affirm our
decision to keep a project in the course.
Students agreed that learning two different
programming languages helped make them
better programmers (statement 4). Statement 5
(“Learning MATLAB first made it easier to
learn C”) received the lowest average rating of
any of the statements. It is unclear whether
students thought that it would have been better
to learn C first, or if their responses merely
indicated that they found C to be difficult and
did not think it helped to learn MATLAB first.
The high average rating for statement 7 (“I am
convinced that engineers need to know how to
program”) affirms our strategy to utilize
engineering-relevant problems with a hands-on
application. Although we do not have the

corresponding quantitative data for the pure
programming class our students took prior to
Fall 2010, comments from the student course
evaluations consistently indicated that
programming was not perceived to be relevant
to engineering.

In the internal survey, students were also

asked, “How do you think Mechanical
Engineering students should learn to program?”
85% of the Spring 2014 students and 80% of the
Fall 2014 students chose the response “In a class
like ME EN 1010 with ME applications,
microcontrollers, and a mechanical project.”
The other answer choice was “In a pure
programming course taught by the CS
department.”

In addition to the course evaluation and survey

data, we have also been able to assess the
effectiveness of our new course by comparing
student performance on exams. This is slightly
complicated by the fact that we revised the
exam structure when we revised the course. In
the previous version of the course, there were no

Table 3. Student Survey Results.

Statement
Spring 2014
116 responses

Fall 2014
20 responses

 1. I liked having a project in this class 4.40 4.20
 2. I enjoyed the competition aspect of the project 3.88 4.00
 3. I am a better programmer because of the project 4.35 4.25
 4. Learning two different languages (MATLAB and C)
 made me a better programmer 3.90 4.15

 5. Learning MATLAB first made it easier to learn C 3.43 3.50
 6. The lectures and labs were well synchronized 3.58 3.90
 7. I am convinced that engineers need to know how to
 program 4.07 4.15

 8. The Arduinos and Makeblocks were key to my
 appreciation of the engineering applications of
 programming

3.85 3.95

 9. I enjoy programming 3.63 3.95
 10. I would be interested in taking another programming
 class as an elective 3.46 3.50

(5 = strongly agree, 4 = agree, 3 = neither agree nor disagree, 2 = disagree, 1 = strongly disagree)

COMPUTERS IN EDUCATION JOURNAL 71

midterm exams and the final exam covered both
the design/engineering physics content and
MATLAB. In Table 4, we report exam averages
and standard deviations for the MATLAB
portion of these final exams for Spring 2010-
Spring 2013. In our revised course, we have one
midterm exam, which covers basic MATLAB
programming through loops, and a final exam,
which covers both MATLAB (midterm topics
plus image processing, but not serial
communication or GUIs) and C. Table 4 also
shows midterm and final exam data for the
Spring 2014 and Fall 2014 offerings of the
revised course. With the exception of the Fall
2014 final exam, the exam averages are higher
for the revised course, which is to be expected
given that the programming instruction nearly
doubled and all lab/homework/project
assignments were focused on programming.

In a couple of years when the students who
have taken our programming course are enrolled
in our junior-level Mechatronics sequence, we
plan to administer additional surveys to assess
how well the students feel at that time about
their programming preparation and retention.
We can also compare the performance of the
students who have taken our programming
course vs. transfer students who have taken
programming courses elsewhere, though there
are many factors that can cause disparity in
performance between those two groups.

Conclusions

In conclusion, we have developed an
integrated project-driven programming course
for teaching Mechanical Engineering students
MATLAB and C. The lectures, labs,
assignments, and project are all purposefully
integrated and synchronized to prepare students
for the final competition, while demonstrating
key engineering applications of computer
programming, which include both real-time
interactive control of a mechatronic device, and
offline analysis/calibration/optimization of the
engineering physics of said device. Results to
date indicate an increase in both programming
competency and student satisfaction with the
learning experience.

The unique mechatronic project used in this

course would not have been nearly as
manageable or practical without the recent
emergence of affordable all-in-one
microcontrollers such as the Arduino RoMeo,
and companies such as Makeblock, whose
variety and compatibility of mechatronic parts is
perfectly suited for our application. A challenge
for this course in the future will be to decide
whether or not we keep doing the exact same
project year after year. Ideally, we would like to
make incremental changes to the project on a
yearly basis that would require only minor
modifications to the lab handouts and project
programming problems, but would be sufficient
to discourage students from reusing code from
prior years.

Table 4. Comparison of Exam Scores.

Semester

Number
of

Students
MATLAB Final MATLAB Midterm

MATLAB
and C Final

Average Std Dev Average Std Dev Average Std Dev
Spring 2010 87 72.6 13.8

 Spring 2011 99 65.9 22.0
 Spring 2012 118 77.0 17.0
 Spring 2013 131 54.3 24.1
 Spring 2014 141/120

82.9 11.8 81.3 17.1

Fall 2014 26/23

87.3 16.0 73.7 21.4

72 COMPUTERS IN EDUCATION JOURNAL

One of the key features of this course is that it
teaches students to program in both MATLAB
and C, and in that order. We feel that this is
suitable for our program since our introductory
programming course is followed by a
sophomore-level Numerical Methods course
that covers advanced MATLAB topics, and our
students also have the option of taking a
technical elective in engineering applications of
object-oriented programming. Due to the nature
of the projects in our junior-level Mechatronics
sequence and our Senior Design sequence, we
feel that it is essential for our students to learn C
programming so as not to limit what they can do
with the Arduino microcontroller. In the future,
once students who have taken our new course
reach Mechatronics and Senior Design, we will
be better able to assess the effectiveness of the
Arduino C instruction.

Bibliography

1. Avanzato, R., “Collaborative Mobile

Robot Design in an Introductory
Programming Course for Engineers,”
Proc. of the 1998 ASEE Annual
Conference and Exposition.

2. Azemi , A. and Pauley, L., “Teaching

the Introductory Computer Programming
Course for Engineers Using Matlab and
Some Exposure to C,” Proc. of the 2006
ASEE Annual Conference and
Exposition.

3. Jaeger, B. K., Freeman, S. F. and

Whalen, R., “Programming is Invisible –
or Is It? How to Bring a First-year
Programming Course to Life,” Proc. of
the 2012 ASEE Annual Conference and
Exposition.

4. Hamrick, T. R. and Hensel, R. A. M.,

“Putting the Fun in Programming
Fundamentals—Robots Make Programs
Tangible,” Proc. of the 2013 ASEE
Annual Conference and Exposition.

5. Hsu, S. W., Amirtharajah, R. and
Knoesen, A., “Lab and Team Project
Development for Engineering Problem
Solving using MATLAB, with Emphasis
on Solar Power and Engineering for
Sustainability,” Proc. of the 2013 ASEE
Annual Conference and Exposition.

6. Holden, M., “The Ubiquitous

Microcontroller in Mechanical
Engineering,” Proc. of the 2009 ASEE
Annual Conference and Exposition.

7. Moore, H., MATLAB for Engineers, 4rd

Edition, Pearson, 2014.

8. Roemer, R., Mascaro, D. J. and

Bamberg, S. J .M., “A SPIRAL Learning
Curriculum in Mechanical Engineering,”
Proc. of the 2010 ASEE Annual
Conference and Exposition.

9. Mascaro, D. J., Bamberg, S. J .M. and

Roemer, R., “SPIRAL Design-Oriented
Laboratories in the First-Year
Mechanical Engineering Curriculum,”
Proc. of the 2011 ASEE Annual
Conference and Exposition.

Biographical Information

Debra J. Mascaro is the Director of
Undergraduate Studies in Mechanical
Engineering at the University of Utah. She holds
a B.A. in Physics from Gustavus Adolphus
College in St. Peter, MN, and a Ph.D. in
Materials Science and Engineering from the
Massachusetts Institute of Technology. She
primarily teaches freshman design and
programming courses.

Stephen Mascaro received the B.A. in Physics

from Houghton College, the B.S. in Mechanical
Engineering from Clarkson University, and the
M.S. and Ph.D. in Mechanical Engineering from
the Massachusetts Institute of Technology. He is
currently Associate Professor in the Department
of Mechanical Engineering at the University of
Utah, and Director of the Biorobotics Lab.

