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Abstract 
 

 We have studied the errors involved in 
computer simulations by investigating the 
results of a two dimensional Brownian 
dynamics simulation of ideal linear polymers. 
The auto-correlation function of the mean-
square radius of gyration is calculated using the 
random access capabilities of the C language. 
This function is used to determine the spacing 
needed between sampling to insure that the 
samples are statistically independent. The mean-
square radius of gyration and its error are 
computed for different numbers of samples. 
This type of project is suitable for junior/senior 
majors in engineering, mathematics or science. 
 

Introduction 
 

Computer simulation is a standard tool [1] for 
studying molecular systems. Properties of these 
systems are determined by averaging over a set 
of generated configurations. However, 
computation of the average value of a property 
is not sufficient. An error estimate must be 
provided so that the accuracy of this average 
value can be assessed. Also it has been known 
from the earliest work in simulation that “it 
takes some time for a simulation model to 
'warm up' “ [2]. Average values should only be 
computed after this equilibration period. The 
approach to equilibrium is observed by studying 
the time variation of the property of interest. In 
dynamic simulations the elementary time step, 
Δt, is the time step used to integrate the 
Newtonian differential equations of motion.  
Often, data for a subsequent analysis are saved 
at intervals of iΔt, where i is an integer.  

 
Recently in this journal [3], Waldron and 

Bishop have reported on their Brownian 

dynamics simulations of ideal two dimensional 
linear polymers. In that article they focused on 
properties such as the mean-square radius of 
gyration, <S2>, which measures the size of a 
polymer. They presented a time series for the 
square radius of gyration of a 284 unit linear 
polymer. There were two distinct time behaviors 
in their data. At first the square radius of 
gyration displayed transient effects as the 
polymer relaxed from an initial square 
configuration to a more typical random 
situation. Then the square radius of gyration 
displayed fluctuating values around an overall 
average. They found that this particular property 
needed about 250,000 time steps to ensure that 
subsequent configurations were in the 
equilibrium state.  

 
After obtaining an additional 1000 equilibrium 

configurations, the mean-square value of the 
radius of gyration was computed by 

    
                                         1000 

<S2>  =     1      Σ    Sj
2                                                  

                                 1000   j = 1   (1) 
 

where Sj
2 represents the square radius of 

gyration for the configuration at time j(iΔt). The 
error in <S2> was computed by employing the 
usual [4] sample variance of the mean, σ2 . 

 
                                  1000 

σ2  =       1          Σ   [ Sj
2  -  <S2> ] 2                          

                1000 * 999   j = 1 
      (2) 

 
However, Equation 2 only applies if the data 

are uncorrelated and that is often not true in 
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computer simulations. In an attempt to avoid the 
correlation effects between adjacent samples 
Waldron and Bishop [3] saved data every i = 
25,000 steps in their calculations of the mean-
square radius of gyration for chains with 64, 
128, 195 and 284 units. In this article their study 
is extended to examine the impact of the sample 
size on the various averages and standard 
deviations of the mean. Moreover, the effects of 
sample correlation are investigated by 
computing the time auto-correlation function of 
the data. 

 
  Data will be uncorrelated if the time auto-
correlation function becomes essentially zero 
within the sampling spacing. The time auto-
correlation function of any time-dependent 
property A(t) is defined [1] as <A(t)A(0)>.  
Here A(0) means that the quantity A is sampled 
at the time origin and A(t) means that it is 
sampled after a delay time t. However, one 
usually calculates the normalized auto-
correlation function, ψ(t), given by  

 

ψ(t)  =    <A(t)A(0)> - <A(t)>2                                      
                             <A2(t) > - <A(t)>2         (3) 

 
Equation 3 is normalized since as t → 0, 

<A(t)A(0)> → <A2(0) > and the ratio will 
become equal to one. This means that before a 
delay happens, A(0) is already completely 
correlated with itself. However, as t → ∞, 
<A(t)A(0)> → <A(∞) > <A(0) > since the 
values become uncorrelated for long delay 
times. The average value of A becomes 
independent of time as long as the same number 
of samples are used. Then the numerator 
becomes zero. Thus, ψ(t) decays from a 
maximum value of one at t = 0 to a value of 
zero at long times. It can also become negative, 
indicating anti-correlation. Often  ψ(t) has an 
exponential form, ψ(t) = exp(- t / τ ), where τ is 
a constant.  
 

Equation 3 can be recast into three discrete 
terms suitable for programming on a computer. 

The first term in the numerator becomes  
 
                                                             NORIG 

<A(t)A(0)>  =   <A(j)A(0)>  =     1       ΣA(j+k)A(k)      
                                                NORIG  k=1       
                     (4) 
 

Here, NORIG is the number of time origins the 
data is averaged over. This value is typically 
about 2000. The other two terms are determined 
as standard averages given by Equation 1. 
 

Method 
 

The C program developed by Waldron and 
Bishop [3] to perform their simulations was 
employed to generate the different data samples, 
.i.e. the values of S2 used as input to an auto-
correlation function program.  The auto-
correlation function program was also written in 
C. It uses the random access capabilities of the 
C language.  The data, of type double, are 
placed into a random access file with the fwrite 
command: 

 
   fwrite(&s2,sizeof(double),1,dumpFile)       (5)                   
                                    
Here &s2 is the address of an S2 data item, the 

sizeof operator returns the number of bytes in an 
item of type double for the computer hardware 
in use, 1 is the number of items being stored in 
the data file with this write operation and 
dumpFile is a pointer to the data file which will 
contain the item. Similarly, data items are 
fetched from a random access file by employing 
the fread command: 
                            
   fread(&s2,sizeof(double),1,dumpFile)         (6)     

 
Evaluation of Eq. 4 requires two different 

positionings of the file pointer in order to fetch 
the needed data with a fread command.. The C 
language provides the fseek command to move 
a file pointer to different locations: 

 
fseek(dumpFile, j * sizeof(double), SEEK_SET)          

(7) 
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Here, the dumpFile pointer is moved forward j 
times the number of bytes in a double, starting 
from the beginning of the file. The macro 
SEEK_SET indicates this starting address. Thus, 
the file pointer is moved by the byte count. The 
two separately fetched data items are then 
multiplied and their product added to a running 
sum. 
 

Results 
 

   Figure 1 presents the auto-correlation function 
for the radius of gyration of a 284 unit chain. 
The data were sampled every 2,500 time steps 
after discarding the first 250,000 time steps.  
NORIG was set at 1800 for the averaging. It is 
clear from this figure that the radius of gyration 
auto-correlation function needs about 150 steps 
(in these units) to decay to zero; e.g. a total of 
375,000 Δt steps. The study of Waldron and 
Bishop [3] employed a spacing of 25,000 steps 
which is too small for the sample data to be 
fully uncorrelated. 

Figure 1: The auto-correlation function.                                   

The auto-correlation function is of exponential 
form because its natural logarithm is linear in 
the number of steps as shown in Figure 2.  The 
dotted line is the linear fit to this function, ln(ψ)  
= – 0.019077 * step – 0.024912. 

 
Figure 2: The natural logarithm of the function. 

 
We have repeated Waldron and Bishops 

simulations for 64, 128, 195 and 284 unit chains 
but used a spacing of 375,000 steps and varied 
the number of data samples generated from 100 
to 400 to 1600. Table I presents the simulation 
results for all the systems studied. The number 
in parenthesis denotes one standard deviation in 
the last displayed digits. The 95% confidence 
interval is about twice this value.  

 
The first column contains the original findings 

of Waldron and Bishop [3] using 1000 samples 
with a spacing of 25,000 whereas data in the 
other   three   columns  employed  a  spacing   of 

 
 

 
 

Table I: The Simulation Data. 
 

   N   <S2>   1000                      <S2>    100    <S2>    400    <S2>   1600 
  64  10.92(22)   9.91(56)  10.30(28)  10.56(16) 
128  23.58(45)  24.54(1.46)  22.81(72)  22.62(35) 
195  31.80(61)  30.04(1.63)  32.72(1.11)  32.85(53) 
284  47.64(97)  46.07(2.93)  47.61(1.53)  47.41(76) 
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375,000. It is clear from this data that Waldron 
and Bishops 1000 samples at a spacing of 
25,000 give statistically the same results, within 
the 95% confidence interval, as our runs with 
1600 samples and a spacing of 375,000. Hence, 
the correlation effects are not statistically 
significant. Note also that the standard deviation 
of the mean decreases approximately as the 
square root of the number of samples; e.g. when 
N = 284 the error decreases from 1.53 for 400 
samples to 0.76 for 1600 samples. This finding 
is expected for independent samples. 
 

Conclusion 
 

Brownian dynamics has been used to generate 
two dimensional linear polymer configurations 
and to study the errors entailed in computing the 
mean-square radius of gyration. Correlation 
effects have been examined by computing the 
auto-correlation function. It is found that there 
needs to be a large spacing in data sampling in 
order for the data to be completely statistically 
independent. However, 1000 samples are 
sufficient to accurately determine the mean-
square radius of gyration. These types of 
simulations provide interesting projects in 
which students can get experience in 
computational science. This will be very useful 
in their future careers. 

 
Appendix:  The  Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many Ph.D.’s in 
engineering and science. At Manhattan College, 
students can elect to take an independent study 
course for 3 credits during the academic year. In 
addition, the College provides grant support to 
the students for 10 weeks of work during the 
summer. I have personally recruited the students 
from my junior level course in Systems 
Programming. Previously published articles in 

this journal by Manhattan College student co-
authors are a very effective recruitment tool. 
The students have also presented their results at 
a variety of undergraduate research conferences 
including the Hudson River Undergraduate 
Mathematics Conference and the Spuyten 
Duyvil Undergraduate Mathematics Conference.  
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