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Abstract 

 
Self-avoiding walks are a more realistic model 

of polymers than random walks. This paper 
explores the properties of such walks by 
employing Monte Carlo computer simulations. 
The ability to construct such models and to 
develop a computer simulation are important 
skills for engineering and science students to 
acquire. 

 
Introduction 

 
In a previous publication in this journal, Zajac 

and Bishop [1] used a Monte Carlo (MC) 
growth method to simulate three dimensional 
ideal linear N “bead” polymers. They computed 
a variety of properties such as the mean-square 
radius of gyration, <S2>, its components along 
the principal orthogonal axes [2], λ1, λ2, and λ3, 
the mean-square end-to-end distance, <R2>,  
and the mean asphericity, <A>. They found 
excellent agreement with theoretical values. In 
this work, their MC growth method on a simple 
cubic lattice is extended to examine self-
avoiding walk linear polymers.  A wide variety 
of properties are computed and compared to 
theoretical predictions. 

 
Method 

 
The self-avoiding walk growth algorithm 

utilizes portions of the ideal linear polymer 
growth algorithm described in Zajac and Bishop 
[1], with major modifications to account for the 
self-avoidance condition. The first polymer bead 
is placed at the origin (0, 0, 0) of a simple cubic 
lattice. The second bead is randomly placed in 
any of the six possible lattice site locations. 

 Then a new random number is used to select 
the possible location where the third bead could 

be placed. However, before allowing that bead 
to be put at the new location, a test is made to 
ensure that another bead is not already 
occupying that lattice site. This procedure grows 
a non-intersecting chain and is continued until N 
beads have been successfully placed. Each bead 
is placed one unit apart from the previously 
placed bead. If at any time in the process the 
chain intersects itself, it is erased and a new 
chain is started. After each polymer is 
completely constructed, a number of properties 
are calculated for that configuration, as was 
done in Zajac and Bishop [1]. The process is 
continued until M independent samples have 
been created.  

 
It becomes increasingly difficult to grow 

chains using this direct static sampling Monte 
Carlo method [3]. Indeed, the probability of 
obtaining a chain with N beads decreases 
exponentially: 

 
                    Prob = C e – λN .           (1) 
 
Here, C is the normalization coefficient and λ 

is the attrition constant. This has a theoretical 
value [3] of 0.248 for a simple cubic lattice. 
Figure 1 illustrates how the number of accepted 
chains decreases as a function of N. Fitting the 
four MC data points gives C = 2.1799 X 107 
and λ = 0.24174, which is in excellent 
agreement with the theoretical prediction. 

 
Figure 2 presents a typical configuration of a 

35-bead chain. The points mark the lattice sites 
and the lines mark the lattice edges.  
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Figure 1: The number of accepted chains vs. N. 
The circles indicate the MC results and the solid line the exponential fit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: A 35-bead chain. 
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Accurate values of the ratios of powers of the 
end-to-end distances were not obtained for the 
self-avoiding walk polymers because of both the 
smaller number of samples generated, M, as N 
was increased and the limit on the value of N 
which can be examined with a MC growth 
algorithm. Since the self-avoiding walk 
polymers are more stretched out than the 
random walk ones, the magnitudes of the 
powers of the end-to-end distance are very large 
and the ratios are influenced by rounding and 
other similar numerical errors. 

 
Results 

 
The simulations were performed using the 

Linux C++ compiler. All the data for the runs 
when N = 20, 25, 30, and 35 are in Tables IA 
and IB. Since the polymer generation process 
provides M independent samples, the mean and 
standard deviation of the mean of general 
properties can be computed from the usual 
simple equations [4], but more care is needed in 
computing the errors of ratios [1]. In these 
tables the number in parenthesis denotes one 
standard deviation in the last displayed digit; for 
example <λ1> = 4.56(1) means that             
<λ1> = 4.56 ± 0.01.  
 
 

The <S2> and <R2> data in Table IA were fit 
by a weighted nonlinear least-squares program 
[4] to determine the exponent in their scaling 
laws [5]. It was found that 2ν had the value of 
1.18 ± 0.01 for <S2> and 1.19 ± 0.01 for <R2>.  
These results are consistent with the theoretical 
value [6] of 1.176 and are larger than the known 
exponent [5] for random walk polymers, 1.00. 
The self-avoidance condition causes the chains 
to be expanded and therefore the exponent is 
expected to be larger. The computer results 
displayed in the tables are for finite N whereas 
the theoretical values are for infinite N.  The 
data have been extrapolated in 1/NΔ to 0 (e.g. N 
→∞) via the method reported in Zajac and 
Bishop [1], but now the correction to scaling 
exponent, Δ , has a value of 0.47 [7] instead of 
the random walk value of 1.00. The final 
extrapolated values are presented in Table II 
along with known results. All of the simulation 
results reported in Table II are within two 
standard deviations of the mean, or in the 95% 
confidence interval, compared to literature 
values. 
 
 
 
 

 
 

Table IA: General Properties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Property 20 25 30 35 
M    172880     51961    15413   4612 

<λ1> 4.56(1) 6.01(1) 7.48(3) 9.07(7) 

<λ2> 0.939(1) 1.24(1) 1.56(1) 1.88(1) 

<λ3> 0.309(1) 0.409(1) 0.513(2) 0.627(4) 

<S2> 5.81(1) 7.66(1) 9.55(3) 11.57(7) 

<R2> 36.42(6) 48.26(14) 60.16(32) 72.87(71) 
<A> 0.446(1) 0.445(1) 0.441(2) 0.441(3) 
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Table IB: Ratio Properties. 

 
 
 
 
 
 
 
 
 

Table II: Comparison of Extrapolated Simulations and Literature Results. 
 
 
 
 
 
 
 
 
 
 

(a) reference 8 (b) reference 9 (c) reference 10. 

   The results for shape factors, <λ1>/<S2>, 
<λ2>/<S2>, and <λ3>/<S2>, 0.775(6), 0.164(5), 
and 0.058(5), respectively are different than 
those for random walk polymers [1], 0.764(1), 
0.172(1), and 0.064(1). This indicates that the 
self-avoiding chains are less spherical than 
random chains. In observing the shape factors in 
Table II, it is apparent that <λ1>/<S2> has a 
larger value than the <λ1>/<S2> value for a 
random chain [1]. Thus, the self-avoiding chain 
extends out further in one direction than a 
regular random chain. A self-avoiding chain has 
a more prolate (cigar-like) shape than a regular 
random chain. This occurs because a self-
avoiding chain is unable to fold in on itself. It is 
important to note that a perfectly spherical chain 
would have shape factor values of 1/3, 1/3, and 
1/3. 

 
Conclusion 

 
We have investigated three dimensional self-

avoiding linear polymers on a lattice using a 

Monte Carlo growth method. Many different 
properties have been computed. There is fine 
agreement with theoretical results and other 
simulations. Modeling projects such as the one 
described here provide a clear demonstration of 
some aspects of polymers and thus strongly 
enhance student understanding and intuition. 

 
Appendix: The Manhattan College 
Undergraduate Research Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer. I have personally recruited 
the students from my junior level course in 
Systems Programming. Previously published 
articles in this journal by Manhattan College 

Property 20 25 30 35 
<λ1>/<S2> 0.785(1) 0.785(1) 0.783(1) 0.783(2) 

<λ2>/<S2> 0.162(1) 0.161(1) 0.163(1) 0.162(1) 

<λ3>/<S2> 0.053(1) 0.053(1) 0.054(1) 0.054(1) 

<S2>/<R2> 0.160(1) 0.159(1) 0.159(1) 0.159(1) 

Property Extrapolated Literature 
<λ1>/<S2> 0.775(6) 0.785[a] 

<λ2>/<S2> 0.164(5) 0.162[a] 

<λ3>/<S2> 0.058(5) 0.053[a] 
<A> 0.425(9) 0.429(2)[b] 

<S2>/<R2> 0.156(5) 0.1603(8)[c] 



 

54  COMPUTERS IN EDUCATION JOURNAL 

student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 

 
Acknowledgements 

 
We wish to thank the Manhattan College 

School of Science for providing computer time 
on the Hermes parallel computer. We also wish 
to thank Professor Paula Whitlock for many 
useful conversations about Monte Carlo 
calculations. Gregory Zajac was supported by a 
Manhattan College Summer Research Grant. 

 
References 

 
1. G. Zajac and M. Bishop, “Monte Carlo 

Studies of Ideal Three Dimensional 
Linear Polymers“, Comp. Educ. J.,  
5(4),  107 (2014). 

 
2. J. Rudnick and G. Gaspari, “The 

Asphericity of Random Walks”, J. Phys. 
A, 19, L191 (1986). 

 
3. A.D. Sokal, in Monte Carlo and 

Molecular Dynamics Simulations in 
Polymer Science, ed. K. Binder, (Oxford 
University Press, New York, 1995). 

 
4. P.R. Bevington, Data Reduction and 

Error Analysis for the Physical Sciences, 
(McGraw-Hill, New York, 1969). 

 
5. P.G. de Gennes, Scaling Concepts in 

Polymer Physics, (Cornell University 
Press, Ithaca, 1979). 

 
6. J.C. Le Guillou and J. Zinn-Justin, 

“Critical Exponents for the n-Vector 
Model in Three Dimensions from Field 
Theory”, Phys. Rev. Lett., 39, 95 (1977). 

 
 
 

7. J.C. Le Guillou and J. Zinn-Justin, 
“Critical Exponents from Field Theory”,  

 Phys. Rev. B,  21, 3976 (1980). 
 
8. J. Mazur, C. Guttman and F. McCrackin, 

“Monte Carlo Studies of Self-Interacting 
Polymer Chains with Excluded Volume. 
II. Shape of a Chain”, Macromolecules, 
6, 872 (1973). 

 
9. M. Bishop, J.H.R. Clarke, A. Rey and 

J.J. Freire, “The Shape of Linear and 
Star Polymers with and without 
Excluded Volume”, J. Chem. Phys., 94, 
4009 (1991). 

 
10. N. Madras and A.D. Sokal, “The pivot 

algorithm: A highly efficient Monte 
Carlo method for the self-avoiding 
walk”, J. Stat. Phys., 50, 109 (1988). 

 
Biographical  Information 

 
Gregory Zajac is currently a student in 

mathematics with a minor in computer science 
at Manhattan College. 

 
   Marvin Bishop is a Professor in the 

Departments of Computer Science and 
Mathematics at Manhattan College. He received 
his Ph.D. from Columbia University, his M.S. 
from New York University and his B.S. from the 
City College of New York.  His research 
interests include simulation/modeling and 
parallel processing. 


