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Abstract 
 
In teaching undergraduate automatic controls, 

the laboratory experience is an important and 
irreplaceable component.  Historically, good 
platforms for a controls laboratory have been 
expensive, because the equipment has typically 
been very specialized for educational purposes.  
Moreover, the equipment often is not physically 
robust in the face of student manhandling, 
creating major difficulties and costs in 
maintaining such a lab.  The advent of 
inexpensive open-source controller hardware is 
revolutionizing this situation because it is now 
possible to have good controls-hardware 
capability at relatively low cost. The Arduino 
Mega 2560, in particular, is supported by 
Matlab, Simulink and LabView, and thus 
provides a great deal of flexibility in developing 
laboratory procedures for students to study 
controls. 

 
The Arduino is an open-source electronics 

prototyping platform based on flexible, easy-to-
use hardware and software. The “motor shield” 
is an add-on (daughterboard) to the Arduino that 
further enables control of dc motors.  This paper 
explains a method and hardware to connect an 
Arduino to a separately-powered dc-motor unit. 
Matlab and Simulink provide full support of the 
Arduino board for feedback-controller design. 
The Arduino board is powered by, and 
communicates with Simulink, through a 
standard USB connection. 
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Introduction 
 

Educational hardware for electronics 
laboratories is generally very expensive, in part 
because the customer base, mostly schools and 
universities, is not large.  Due to the relatively 
low number of total units produced, such 
hardware is almost never as refined or bug-free 
as a full-up commercial product, and in our 
experience independent third-party support is 
often not available.  Using the Arduino board as 
a laboratory platform avoids all these problems. 

 
The Arduino is a widely used, open-source 

platform for hobbyists and tinkerers, available at 
low-cost from multiple suppliers.  In fact, the 
availability and low cost are such that many 
students could acquire their own boards, if 
necessary.  The Arduino is designed to be user-
friendly, and requires only basic electronics and 
programming knowledge to use.  Engineering 
students in their second or third year should be 
capable of quickly learning how to use the 
Arduino, and how to interface it with other 
hardware components with relative ease. This is 
particularly true when the Arduino is 
programmed with the third-party support now 
available from The Mathworks (Matlab & 
Simulink) and National Instruments (LabView).  
For example, with Simulink the low-level 
Arduino programming details are “under the 
hood,” transparent to the user, who does all the 
design work using Simulink’s graphical 
programming. 

 
The Arduino already has been used 

successfully in classroom and laboratory settings 
to teach various topics [1, 3], including 
photovoltaic cells [2] and C-programming [8], 
demonstrating the versatility and robustness of 
this platform.  This article describes how the 
Arduino board is being used successfully at 
Rochester Institute of Technology, in the 
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Electrical Engineering program (RIT-EE) to 
implement dc-motor control in laboratories 
related to control signals, feedback loops, and 
transfer functions.   

 
Hardware 

 
The Arduino Mega 2560 was selected as the 

Arduino board of choice, as it is among the more 
powerful of the Arduino models yet still 
maintains a reasonable $50 price tag, and is one 
of the boards that have been fully supported in 
Matlab, Simulink, and LabView for about two 
years.  This board has 54 Digital I/O pins, 15 of 
which can double as pulsewidth modulation 
(PWM) pins, 16 analog inputs, and serial-
communication capabilities via USB cable. 

 
Arduino board input/output ports are capable 

of operating only in the positive voltage range.  
All signals produced by the board or any of its 
standard shields (daughterboards) are positive 
and input voltages below 0V are clipped and 
interpreted as 0V.  Additionally, the analog 
inputs are not capable of reading voltages above 
a reference voltage (nominally +5V, but this can 
be set lower).  Voltages above the reference 
level are similarly clipped.  These limitations are 
addressed by the hardware-interface circuit 
discussed below. 

 
The Arduino Motor-Shield is an inexpensive 

$25 add-on that plugs in to the Arduino.  It 
contains various outputs for servos as well as 
two PWM driven analog outputs.  This shield is 
capable of deriving its power solely from the 
Arduino motherboard, and thus does not require 
a separate supply (except for high-power 
applications). 

 
The Arduino Mega/Motor-Shield combination 

can be powered entirely through the USB cable.  
In that case, the voltage output of the PWM 
signals have a maximum of 4 V.  When powered 
by a separate, independent power supply, the 
Arduino voltage-range increases to 
approximately 0.5 volts below the supply 
voltage.  This paper assumes Arduino is 
powered by USB only. 

A wide variety of controls experiments can be 
designed around an independently-powered dc-
motor unit. There are many such units available 
commercially, with the common feature of built-
in electronics to power the dc-motor. Thus, very 
little power is required from the external control-
hardware, in this case the Arduino/Motor Shield. 

 
In discussing the dc-motor module, we assume 

it is a platform that includes a power amplifier 
for the control input, and an output voltage that 
is proportional to the motor velocity (i.e., a 
tachometer).  In this paper, both of these signals 
are assumed to be in the range of -5V to +5V.  
These two signals are sufficient to design 
velocity-control experiments.  If a dc-motor unit 
also has an output signal that is proportional to 
motor-shaft position, then position-control 
experiments can be designed for the unit, too. 

 
The motor module that is used at RIT-EE is the 

MS15 DC Motor Control Module, marketed by 
LJ Create.  In this paper, we refer to this module 
as the LJE motor board. 

 
Due to input/output mismatch between the 

Arduino and a typical motor module, a custom 
signal-conditioner shown in Figure 1 was 
designed and implemented (the full schematic is 
given in Appendix A, Figure A.1). The Arduino 
is indeed capable of driving an attached motor in 
either direction, but it can only accomplish this 
by switching a pulsewidth modulated (PWM) 
control signal between two different output pins 
when the control signal changes sign.  The 
custom signal-conditioner described here uses 
just one of these PWM signals (the positive one) 
to output a voltage between -5V and +5V. 

 
The signal-conditioner converts the PWM 

signal produced by the motor shield from square 
wave to a -5V to +5V DC signal.  The 
conditioner uses a lowpass filter and a tunable 
voltage divider as inputs to a differential 
amplifier.  Thus, a PWM signal at 50% duty 
cycle is the ‘zero point,’ and the conditioner 
outputs a voltage of zero.  Duty cycles above 
50% produce positive voltages, and those below 
50% produce negative voltages. 
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Figure 1. Low-cost custom signal-conditioner to 
interface Arduino and motor unit. 

 
The signal-conditioner also contains a voltage-

averaging circuit.  This averaging circuit is 
needed because the tachometer (motor velocity) 
output voltage is between -5V and +5V, but the 
Arduino analog-to-digital converter (ADC) is 
capable of converting only voltages between 0V 
and +5V.  The signal conditioner circuit shifts 
and scales the tachometer signal so it is between 
0V and +5V.  In effect, it averages the 
tachometer signal with a constant +5V, resulting 
in a voltage that is in the required range for the 
Arduino’s ADC. 

 
 

 
 

Figure 2. Block diagram of system  
components and interconnections. 

 
The PWM drive signal produced by the 

Arduino is filtered and applied to a differential 
amplifier.  The filter, shown in Figure 3, is first-

order lowpass with a time constant of 22.5 ms, 
tailored to the fundamental frequency of the 
Arduino PWM signal.  The PWM signal 
produced by the Arduino has a frequency of 490 
Hz, and thus has a period of about 2.0 ms.  
Because the time constant of the lowpass filter is 
much longer than the period of the PWM signal, 
it effectively smooths the square-wave PWM 
signal.  The filtered signal is buffered to reduce 
effects due to loading by the rest of the circuit. 

 

 
Figure 3. Lowpass filter with buffer. 

 
The difference amplifier in Figure 4 subtracts 

the voltage applied to R2 from the filtered PWM 
signal applied to R3, and amplifies their 
difference by its gain (for the Arduino, the gain 
is around 3.8).  The result is that the Arduino 
PWM signal, which typically has a range of 
about +1V to +4V, is smoothed and translated 
into the range -5V to +5V, so it is ready to be 
applied to the motor module input (i.e., the 
armature voltage). 
 

 
 
Figure 4.  Difference amp / voltage subtractor. 

 
The other input (R2) to the difference amplifier 

is fed by the buffered voltage-divider of Figure 
5.  The fact that this divider has a tunable 
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potentiometer allows the signal-conditioner to 
service any PWM signal whose voltage is 
between 0V and 5V.  As such, the conditioner 
should also be compatible with non-Arduino 
PWM signal sources.  It has served well with 
Arduino boards in actual laboratory use, even 
though there is some inherent variation in PWM 
signals from board to board.  Figure 6 shows the 
input/output signals for three different duty 
cycles. 

 

 
Figure 5.  Voltage divider with buffer. 

 
In the three plots of Figure 6, the pulsewidth 

modulation (PWM) input is lowpass-filtered and 
level-shifted to produce the output. These plots 
demonstrate the dependence of signal-
conditioner output on the PWM duty cycle, and 
the fact that the output range includes negative 
voltages.  As PWM duty cycle increases, so does 
the output voltage, and when PWM duty cycle is 
below 50%, the output is negative. 

 

 
 

Figure 6a.  25% duty cycle: output is 
approximately  -2.5 volts. 

 
 

Fig. 6b.  50% duty cycle: output is 
approximately zero volts. 

 

 
 

Fig. 6c.  75% duty cycle: output is 
approximately +2.5 volts. 

 
Figure 6. PWM of various duty cycles, and 

resulting signal-conditioner output. 
 

Simulink  Control 
 

To achieve closed-loop control, a controller 
design is created in Simulink and downloaded to 
the Arduino, to be executed.  The example 
controller, shown in Appendix A Figure A.2, 
uses a feedback loop and a second-order PID 
transfer-function to generate the PWM output of 
the Arduino.  Input and output signals require 
conversion between floating-point and integer 
values.  The ADC data are unsigned integers 
from 0 to 1023 (10-bit ADC), which must be 
converted to floating-point values between -5V 
and +5V.  Similarly, the controller output must 
be converted from a floating-point value, 

PWM signal 

output 

PWM signal 

PWM signal 

output 

output 
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between -5V and +5V, to an unsigned integer 
between 0 and 255. 

 
The controller design in Simulink can be done 

either in the continuous-time domain, or in the 
discrete-time domain.  If the design is in 
continuous-time, as it is in Figure A.2, the 
required conversion to discrete-time (for 
implementation in the Arduino) is not obvious to 
students during the download process.  That 
makes continuous-to-discrete conversion an 
optional lesson in the curriculum of the controls 
course for which the laboratory is being done. 

 
The hardware closed-loop test results of Figure 

7 show that steady-state tachometer output 
voltage (labeled “output”) almost exactly 
matches the square-wave reference input 
(labeled “command”), as it should under PID 
control.   

 

 
 

Figure 7.  Hardware closed-loop test results. 
 
The difference between the theoretical and the 

measured armature voltages, is due to a slight 
mismodeling of the dc motor, as well as 
significant nonlinearities in the motor unit drive 
mechanisms. Despite that, the integrating nature 
of the controller is able to compensate so that the 
measured tachometer output closely matches the 
command input, in steady-state.  That is, the 
closed-loop system has dc gain that is very close 
to unity.  

 

Related  Products 
 

Several other products exist that provide 
similar functions, however none of them 
completely suited our needs, due either to 
functional limitations, or to high price.  Here are 
some examples of other commercial products 
that can be used in controls education. 

 
The Sparkfun Inventors Kit [6] ($100) is a very 

good product that uses an Arduino board to 
interface a computer to various electronic 
components.  The Arduino UNO can be 
controlled via Matlab/Simulink in the same way 
that the Arduino Mega is supported.  However, 
the kit does not include a tachometer, so closed-
loop velocity-control is not easily implemented.  
Additionally, the included motor is driven 
simply by the on-board PWM without lowpass 
filtering. In effect, the motor itself serves as the 
low pass filter for the PWM signal. 

 
The ScienceWiz Inventions Kit [7] ($20) is a 

fairly simple set of do-it-yourself experiments, 
on a range of topics from motor control to 
radios.  Like the previous one, this kit lacks 
tachometer feedback.  While it does allow the 
dc-motor control to be configured as a generator, 
there is only one motor included, so tachometer 
feedback for velocity control is not possible.  
Connectivity to a computer for data gathering 
purposes is not supported. 

 
The QNET DC Motor Control Trainer [5] from 

Quanser is a full-featured set of software, lab 
procedures, and equipment, including a dc-
motor, that enables students to study controls 
through the NI-Elvis platform and LabView 
software.  Due to the inclusion of written lab 
procedures, prices are difficult to compare but it 
is quite expensive. 

 
Feedback, Inc., markets the Servo 

Fundamentals Trainer [4] which is capable of, 
among other things, acting as a motor speed 
controller.  This is a full-featured product, in 
terms of controls and physics experimentation.  
However, the size and high cost are probably 

output 

theoretical 
armature 

measured 
armature 

  command 
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only justifiable if this system is used to support a 
much wider range of courses than controls alone. 

 
The Feedback, Inc., and Quanser products 

highlight the main appeal of the Arduino 
solution:  its low cost.  Another, less obvious but 
very appealing, aspect is that many students are 
eager to learn more about the Arduino board, 
and their familiarity with it can serve them well 
in later courses and projects. 

 
Conclusion 

 
The Arduino hardware, interface board, and 

Simulink design support described in this paper 
have been used successfully at RIT-EE for the 
past three academic terms, and again in the 
current term.  Student evaluations of their 
experiences with the new hardware have 
generally been much better than those with the 
previous generation of more expensive, specialty 
hardware.  The old hardware was less reliable.  It 
was also much less accessible, being hidden 
inside a desktop computer (plugged into a PCI 
bus), and with two 50-pin ribbon cables for the 
rather balky interconnections to the dc motor 
unit. 

 
Serious efforts have been made to “robustify” 

the use of this hardware in the lab, so that 
students are much less likely to accidentally burn 
out circuitry.  For example, the only power 
connection for the Arduino board is the USB 
connection, itself.  These efforts have paid off in 
terms of a better experience for the students, as 
well as significant reductions in the work and 
expense required to maintain the lab equipment. 

 
Problems can arise in the lab when students 

make a wrong connection from the power supply 
to the interface board.  That can damage the 
interface board.  When that has happened, the 
interface boards have been easily repaired by a 
chip replacement (cost $0.45).  No Arduino 
boards have failed, and none have been 
damaged.  We believe this is because it is 
powered from the USB connection, so students 
don’t have much opportunity to connect 

improper voltages to it.  The Simulink interface 
to Arduino has worked flawlessly, so far. 

 
Over the past 18 months, around 200 students, 

usually working in teams of two, have used this 
new hardware in lab.  Students have had, in 
general, fewer technical problems with the 
Arduino hardware than they had with the 
previously-used specialty hardware.  We 
attribute this largely to the robustness of the 
Arduino platform, as well as to the fact that this 
hardware implementation is much more obvious 
to students than the one previously used, which 
had a PCI plug-in board buried inside a desktop 
computer, and a very awkward electrical 
interface (two 50-pin ribbon cables).  Another 
factor may be their ability to run the lab 
experiments from their personal laptop 
computers, if they have installed the student 
version of Matlab.  Many of them have done 
that. 

 
Feedback about the lab from students, 

including official course evaluations, has been 
almost uniformly positive, which we attribute 
largely to the fact that many students consider 
the Arduino to be something like state-of-the-art, 
want to know more about it, and feel that this lab 
gives them good exposure to it.  Another major 
factor in student satisfaction is that on occasions 
when technical problems do arise, they are fairly 
easy to understand and to fix.  Several students 
have gone on to use the Arduino in other 
projects, such as Senior Capstone projects. 
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Appendix  A.  The  Arduino-to-Motor 

Interface  Board 
 

Figure A.1 shows the circuit diagram of the 
interface board that goes between the Arduino 
board and the dc motor.  The interface board is 
pictured in Figure 1 of the main text. 

 
Figure A.2 shows a PID controller that was 

designed for the particular LJE motor board used 
in the lab, which has a dominant mechanical 
time-constant of about 0.3 seconds.  The PID 
controller transfer function is 

 

𝐻(𝑠) =
2.5(𝑠 + 5)(𝑠 + 60)

𝑠 (𝑠 + 150)
 

 
The controller is automatically converted by 

Simulink to discrete-time at a sample rate of 100 
Hz when it is downloaded to the Arduino board.  
This controller was used in the hardware closed-
loop testing reported in Figure 7 of the main 
text. 

 

http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
https://www.sparkfun.com/products/12001
https://www.sparkfun.com/products/12001
http://sciencewiz.com/products/science_Books_Kits_Inventions.php
http://sciencewiz.com/products/science_Books_Kits_Inventions.php
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Figure A.1. Schematic of the Arduino-to-dc motor interface board (signal-conditioner). 

 
 
 

 
 

Figure A.2.  Example of a PID dc-motor controller for Arduino, as a Simulink model. 
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Appendix  B.  A  Pure-Integral   
Controller  to  Implement  in  Arduino 

 
This appendix is based on one of the labs 

performed by students in the controls class for 
which this lab platform was developed.  This lab 
procedure allows students to investigate pure 
integral control.  

 
 
First, students implement Figure B.1 using a 

transfer-function model of the dc motor 
(simulation model) that they have determined in 
an earlier lab.  This Simulink diagram enables 
students to simulate, i.e., to predict, the behavior 

of the full closed-loop system, which is a dc 
motor together with the pure integral controller.  
The 0.8-volt offset at the input is intended to get 
the motor out of its deadzone before the onset of 
the step-change, which is programmed to occur 
about three seconds into the experiment, well 
beyond the settling time of the motor. 

 
After the simulation is run, the Simulink 

diagram of Figure B.2 is downloaded to the 
Arduino target hardware, which runs the same 
closed-loop, except now with the actual dc-
motor unit in the loop, instead of the transfer-
function model. 

 
 

 
 

Figure B.1.  Simulink diagram for simulating closed-loop behavior with pure integral control. 
 
 

 
 

Figure B.2.  Simulink diagram for putting hardware-in-the-loop, with pure  
integral control running on the Arduino. 

 
 

Interface Board, 
& DC Motor Unit 
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