

62 COMPUTERS IN EDUCATION JOURNAL

OPEN-SOURCE HARDWARE IN CONTROLS EDUCATION

M. A. Hopkins and A. M. Kibbe
Electrical and Microelectronic Engineering Department

Rochester Institute of Technology

Abstract

In teaching undergraduate automatic controls,

the laboratory experience is an important and
irreplaceable component. Historically, good
platforms for a controls laboratory have been
expensive, because the equipment has typically
been very specialized for educational purposes.
Moreover, the equipment often is not physically
robust in the face of student manhandling,
creating major difficulties and costs in
maintaining such a lab. The advent of
inexpensive open-source controller hardware is
revolutionizing this situation because it is now
possible to have good controls-hardware
capability at relatively low cost. The Arduino
Mega 2560, in particular, is supported by
Matlab, Simulink and LabView, and thus
provides a great deal of flexibility in developing
laboratory procedures for students to study
controls.

The Arduino is an open-source electronics

prototyping platform based on flexible, easy-to-
use hardware and software. The “motor shield”
is an add-on (daughterboard) to the Arduino that
further enables control of dc motors. This paper
explains a method and hardware to connect an
Arduino to a separately-powered dc-motor unit.
Matlab and Simulink provide full support of the
Arduino board for feedback-controller design.
The Arduino board is powered by, and
communicates with Simulink, through a
standard USB connection.

Keywords — computers in education, controls

education, controls laboratory, laboratory
hardware, Arduino board, dc motor, motor
control, motor control hardware.

Introduction

Educational hardware for electronics
laboratories is generally very expensive, in part
because the customer base, mostly schools and
universities, is not large. Due to the relatively
low number of total units produced, such
hardware is almost never as refined or bug-free
as a full-up commercial product, and in our
experience independent third-party support is
often not available. Using the Arduino board as
a laboratory platform avoids all these problems.

The Arduino is a widely used, open-source

platform for hobbyists and tinkerers, available at
low-cost from multiple suppliers. In fact, the
availability and low cost are such that many
students could acquire their own boards, if
necessary. The Arduino is designed to be user-
friendly, and requires only basic electronics and
programming knowledge to use. Engineering
students in their second or third year should be
capable of quickly learning how to use the
Arduino, and how to interface it with other
hardware components with relative ease. This is
particularly true when the Arduino is
programmed with the third-party support now
available from The Mathworks (Matlab &
Simulink) and National Instruments (LabView).
For example, with Simulink the low-level
Arduino programming details are “under the
hood,” transparent to the user, who does all the
design work using Simulink’s graphical
programming.

The Arduino already has been used

successfully in classroom and laboratory settings
to teach various topics [1, 3], including
photovoltaic cells [2] and C-programming [8],
demonstrating the versatility and robustness of
this platform. This article describes how the
Arduino board is being used successfully at
Rochester Institute of Technology, in the

COMPUTERS IN EDUCATION JOURNAL 63

Electrical Engineering program (RIT-EE) to
implement dc-motor control in laboratories
related to control signals, feedback loops, and
transfer functions.

Hardware

The Arduino Mega 2560 was selected as the

Arduino board of choice, as it is among the more
powerful of the Arduino models yet still
maintains a reasonable $50 price tag, and is one
of the boards that have been fully supported in
Matlab, Simulink, and LabView for about two
years. This board has 54 Digital I/O pins, 15 of
which can double as pulsewidth modulation
(PWM) pins, 16 analog inputs, and serial-
communication capabilities via USB cable.

Arduino board input/output ports are capable

of operating only in the positive voltage range.
All signals produced by the board or any of its
standard shields (daughterboards) are positive
and input voltages below 0V are clipped and
interpreted as 0V. Additionally, the analog
inputs are not capable of reading voltages above
a reference voltage (nominally +5V, but this can
be set lower). Voltages above the reference
level are similarly clipped. These limitations are
addressed by the hardware-interface circuit
discussed below.

The Arduino Motor-Shield is an inexpensive

$25 add-on that plugs in to the Arduino. It
contains various outputs for servos as well as
two PWM driven analog outputs. This shield is
capable of deriving its power solely from the
Arduino motherboard, and thus does not require
a separate supply (except for high-power
applications).

The Arduino Mega/Motor-Shield combination

can be powered entirely through the USB cable.
In that case, the voltage output of the PWM
signals have a maximum of 4 V. When powered
by a separate, independent power supply, the
Arduino voltage-range increases to
approximately 0.5 volts below the supply
voltage. This paper assumes Arduino is
powered by USB only.

A wide variety of controls experiments can be
designed around an independently-powered dc-
motor unit. There are many such units available
commercially, with the common feature of built-
in electronics to power the dc-motor. Thus, very
little power is required from the external control-
hardware, in this case the Arduino/Motor Shield.

In discussing the dc-motor module, we assume

it is a platform that includes a power amplifier
for the control input, and an output voltage that
is proportional to the motor velocity (i.e., a
tachometer). In this paper, both of these signals
are assumed to be in the range of -5V to +5V.
These two signals are sufficient to design
velocity-control experiments. If a dc-motor unit
also has an output signal that is proportional to
motor-shaft position, then position-control
experiments can be designed for the unit, too.

The motor module that is used at RIT-EE is the

MS15 DC Motor Control Module, marketed by
LJ Create. In this paper, we refer to this module
as the LJE motor board.

Due to input/output mismatch between the

Arduino and a typical motor module, a custom
signal-conditioner shown in Figure 1 was
designed and implemented (the full schematic is
given in Appendix A, Figure A.1). The Arduino
is indeed capable of driving an attached motor in
either direction, but it can only accomplish this
by switching a pulsewidth modulated (PWM)
control signal between two different output pins
when the control signal changes sign. The
custom signal-conditioner described here uses
just one of these PWM signals (the positive one)
to output a voltage between -5V and +5V.

The signal-conditioner converts the PWM

signal produced by the motor shield from square
wave to a -5V to +5V DC signal. The
conditioner uses a lowpass filter and a tunable
voltage divider as inputs to a differential
amplifier. Thus, a PWM signal at 50% duty
cycle is the ‘zero point,’ and the conditioner
outputs a voltage of zero. Duty cycles above
50% produce positive voltages, and those below
50% produce negative voltages.

64 COMPUTERS IN EDUCATION JOURNAL

Figure 1. Low-cost custom signal-conditioner to
interface Arduino and motor unit.

The signal-conditioner also contains a voltage-

averaging circuit. This averaging circuit is
needed because the tachometer (motor velocity)
output voltage is between -5V and +5V, but the
Arduino analog-to-digital converter (ADC) is
capable of converting only voltages between 0V
and +5V. The signal conditioner circuit shifts
and scales the tachometer signal so it is between
0V and +5V. In effect, it averages the
tachometer signal with a constant +5V, resulting
in a voltage that is in the required range for the
Arduino’s ADC.

Figure 2. Block diagram of system
components and interconnections.

The PWM drive signal produced by the

Arduino is filtered and applied to a differential
amplifier. The filter, shown in Figure 3, is first-

order lowpass with a time constant of 22.5 ms,
tailored to the fundamental frequency of the
Arduino PWM signal. The PWM signal
produced by the Arduino has a frequency of 490
Hz, and thus has a period of about 2.0 ms.
Because the time constant of the lowpass filter is
much longer than the period of the PWM signal,
it effectively smooths the square-wave PWM
signal. The filtered signal is buffered to reduce
effects due to loading by the rest of the circuit.

Figure 3. Lowpass filter with buffer.

The difference amplifier in Figure 4 subtracts

the voltage applied to R2 from the filtered PWM
signal applied to R3, and amplifies their
difference by its gain (for the Arduino, the gain
is around 3.8). The result is that the Arduino
PWM signal, which typically has a range of
about +1V to +4V, is smoothed and translated
into the range -5V to +5V, so it is ready to be
applied to the motor module input (i.e., the
armature voltage).

Figure 4. Difference amp / voltage subtractor.

The other input (R2) to the difference amplifier

is fed by the buffered voltage-divider of Figure
5. The fact that this divider has a tunable

COMPUTERS IN EDUCATION JOURNAL 65

potentiometer allows the signal-conditioner to
service any PWM signal whose voltage is
between 0V and 5V. As such, the conditioner
should also be compatible with non-Arduino
PWM signal sources. It has served well with
Arduino boards in actual laboratory use, even
though there is some inherent variation in PWM
signals from board to board. Figure 6 shows the
input/output signals for three different duty
cycles.

Figure 5. Voltage divider with buffer.

In the three plots of Figure 6, the pulsewidth

modulation (PWM) input is lowpass-filtered and
level-shifted to produce the output. These plots
demonstrate the dependence of signal-
conditioner output on the PWM duty cycle, and
the fact that the output range includes negative
voltages. As PWM duty cycle increases, so does
the output voltage, and when PWM duty cycle is
below 50%, the output is negative.

Figure 6a. 25% duty cycle: output is
approximately -2.5 volts.

Fig. 6b. 50% duty cycle: output is
approximately zero volts.

Fig. 6c. 75% duty cycle: output is
approximately +2.5 volts.

Figure 6. PWM of various duty cycles, and

resulting signal-conditioner output.

Simulink Control

To achieve closed-loop control, a controller
design is created in Simulink and downloaded to
the Arduino, to be executed. The example
controller, shown in Appendix A Figure A.2,
uses a feedback loop and a second-order PID
transfer-function to generate the PWM output of
the Arduino. Input and output signals require
conversion between floating-point and integer
values. The ADC data are unsigned integers
from 0 to 1023 (10-bit ADC), which must be
converted to floating-point values between -5V
and +5V. Similarly, the controller output must
be converted from a floating-point value,

PWM signal

output

PWM signal

PWM signal

output

output

66 COMPUTERS IN EDUCATION JOURNAL

between -5V and +5V, to an unsigned integer
between 0 and 255.

The controller design in Simulink can be done

either in the continuous-time domain, or in the
discrete-time domain. If the design is in
continuous-time, as it is in Figure A.2, the
required conversion to discrete-time (for
implementation in the Arduino) is not obvious to
students during the download process. That
makes continuous-to-discrete conversion an
optional lesson in the curriculum of the controls
course for which the laboratory is being done.

The hardware closed-loop test results of Figure

7 show that steady-state tachometer output
voltage (labeled “output”) almost exactly
matches the square-wave reference input
(labeled “command”), as it should under PID
control.

Figure 7. Hardware closed-loop test results.

The difference between the theoretical and the

measured armature voltages, is due to a slight
mismodeling of the dc motor, as well as
significant nonlinearities in the motor unit drive
mechanisms. Despite that, the integrating nature
of the controller is able to compensate so that the
measured tachometer output closely matches the
command input, in steady-state. That is, the
closed-loop system has dc gain that is very close
to unity.

Related Products

Several other products exist that provide
similar functions, however none of them
completely suited our needs, due either to
functional limitations, or to high price. Here are
some examples of other commercial products
that can be used in controls education.

The Sparkfun Inventors Kit [6] ($100) is a very

good product that uses an Arduino board to
interface a computer to various electronic
components. The Arduino UNO can be
controlled via Matlab/Simulink in the same way
that the Arduino Mega is supported. However,
the kit does not include a tachometer, so closed-
loop velocity-control is not easily implemented.
Additionally, the included motor is driven
simply by the on-board PWM without lowpass
filtering. In effect, the motor itself serves as the
low pass filter for the PWM signal.

The ScienceWiz Inventions Kit [7] ($20) is a

fairly simple set of do-it-yourself experiments,
on a range of topics from motor control to
radios. Like the previous one, this kit lacks
tachometer feedback. While it does allow the
dc-motor control to be configured as a generator,
there is only one motor included, so tachometer
feedback for velocity control is not possible.
Connectivity to a computer for data gathering
purposes is not supported.

The QNET DC Motor Control Trainer [5] from

Quanser is a full-featured set of software, lab
procedures, and equipment, including a dc-
motor, that enables students to study controls
through the NI-Elvis platform and LabView
software. Due to the inclusion of written lab
procedures, prices are difficult to compare but it
is quite expensive.

Feedback, Inc., markets the Servo

Fundamentals Trainer [4] which is capable of,
among other things, acting as a motor speed
controller. This is a full-featured product, in
terms of controls and physics experimentation.
However, the size and high cost are probably

output

theoretical
armature

measured
armature

 command

COMPUTERS IN EDUCATION JOURNAL 67

only justifiable if this system is used to support a
much wider range of courses than controls alone.

The Feedback, Inc., and Quanser products

highlight the main appeal of the Arduino
solution: its low cost. Another, less obvious but
very appealing, aspect is that many students are
eager to learn more about the Arduino board,
and their familiarity with it can serve them well
in later courses and projects.

Conclusion

The Arduino hardware, interface board, and

Simulink design support described in this paper
have been used successfully at RIT-EE for the
past three academic terms, and again in the
current term. Student evaluations of their
experiences with the new hardware have
generally been much better than those with the
previous generation of more expensive, specialty
hardware. The old hardware was less reliable. It
was also much less accessible, being hidden
inside a desktop computer (plugged into a PCI
bus), and with two 50-pin ribbon cables for the
rather balky interconnections to the dc motor
unit.

Serious efforts have been made to “robustify”

the use of this hardware in the lab, so that
students are much less likely to accidentally burn
out circuitry. For example, the only power
connection for the Arduino board is the USB
connection, itself. These efforts have paid off in
terms of a better experience for the students, as
well as significant reductions in the work and
expense required to maintain the lab equipment.

Problems can arise in the lab when students

make a wrong connection from the power supply
to the interface board. That can damage the
interface board. When that has happened, the
interface boards have been easily repaired by a
chip replacement (cost $0.45). No Arduino
boards have failed, and none have been
damaged. We believe this is because it is
powered from the USB connection, so students
don’t have much opportunity to connect

improper voltages to it. The Simulink interface
to Arduino has worked flawlessly, so far.

Over the past 18 months, around 200 students,

usually working in teams of two, have used this
new hardware in lab. Students have had, in
general, fewer technical problems with the
Arduino hardware than they had with the
previously-used specialty hardware. We
attribute this largely to the robustness of the
Arduino platform, as well as to the fact that this
hardware implementation is much more obvious
to students than the one previously used, which
had a PCI plug-in board buried inside a desktop
computer, and a very awkward electrical
interface (two 50-pin ribbon cables). Another
factor may be their ability to run the lab
experiments from their personal laptop
computers, if they have installed the student
version of Matlab. Many of them have done
that.

Feedback about the lab from students,

including official course evaluations, has been
almost uniformly positive, which we attribute
largely to the fact that many students consider
the Arduino to be something like state-of-the-art,
want to know more about it, and feel that this lab
gives them good exposure to it. Another major
factor in student satisfaction is that on occasions
when technical problems do arise, they are fairly
easy to understand and to fix. Several students
have gone on to use the Arduino in other
projects, such as Senior Capstone projects.

References

1. D. Wilcher, “Physical Computing and
DC Motor Control” in Learn Electronics
with Arduino Apress, 2012, Ch 4. pp.
69-87

2. K Zachariadou et.al., "A low-cost

computer-controlled Arduino-based
educational laboratory system for
teaching the fundamentals of
photovoltaic cells", Eur. J. Phys. 2012
33 1599

68 COMPUTERS IN EDUCATION JOURNAL

3. B. M. Hoffer, “Satisfying STEM
education using the Arduino
microporcessor in C programming”, MS
Thesis, East Tennessee State University,
Publication Number: AAT 1520533,
2012.

4. Feedback Inc., Servo Fundamentals

Trainer [online]: http://www.feedback-
instruments.com/products/education/ter
ms_and_conditions/servo_fundamentals
_trainer

5. Quanser QNET DC Motor Control

Trainer [online]: http://www.quanser.
com/products/qnet_dcmct

6. Sparkfun Inventor's Kit [online]:

https://www.sparkfun.com/products/120
01

7. ScienceWiz Inventions Kit [online]:

http://sciencewiz.com/products/science_
Books_Kits_Inventions.php

8. J. Sarik and I. Kymissis, “Lab Kits

Using the Arduino Prototyping
Platform”, 40th ASEE/IEEE Frontiers in
Education Conference, October 2010,
Washington DC, pp.T3C1-T3C5.

Biographical Information

Mark Hopkins has been teaching electrical
engineering at RIT in the controls area for over
25 years and has extensive related experience in
the aerospace industry.

Alexander Michael Kibbe is an Electrical

Engineering graduate of the Rochester Institute
of Technology, Bachelors degree.

Appendix A. The Arduino-to-Motor

Interface Board

Figure A.1 shows the circuit diagram of the
interface board that goes between the Arduino
board and the dc motor. The interface board is
pictured in Figure 1 of the main text.

Figure A.2 shows a PID controller that was

designed for the particular LJE motor board used
in the lab, which has a dominant mechanical
time-constant of about 0.3 seconds. The PID
controller transfer function is

𝐻(𝑠) =
2.5(𝑠 + 5)(𝑠 + 60)

𝑠 (𝑠 + 150)

The controller is automatically converted by

Simulink to discrete-time at a sample rate of 100
Hz when it is downloaded to the Arduino board.
This controller was used in the hardware closed-
loop testing reported in Figure 7 of the main
text.

http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
http://www.feedback-instruments.com/products/education/terms_and_conditions/servo_fundamentals_trainer
https://www.sparkfun.com/products/12001
https://www.sparkfun.com/products/12001
http://sciencewiz.com/products/science_Books_Kits_Inventions.php
http://sciencewiz.com/products/science_Books_Kits_Inventions.php

COMPUTERS IN EDUCATION JOURNAL 69

Figure A.1. Schematic of the Arduino-to-dc motor interface board (signal-conditioner).

Figure A.2. Example of a PID dc-motor controller for Arduino, as a Simulink model.

70 COMPUTERS IN EDUCATION JOURNAL

Appendix B. A Pure-Integral
Controller to Implement in Arduino

This appendix is based on one of the labs

performed by students in the controls class for
which this lab platform was developed. This lab
procedure allows students to investigate pure
integral control.

First, students implement Figure B.1 using a

transfer-function model of the dc motor
(simulation model) that they have determined in
an earlier lab. This Simulink diagram enables
students to simulate, i.e., to predict, the behavior

of the full closed-loop system, which is a dc
motor together with the pure integral controller.
The 0.8-volt offset at the input is intended to get
the motor out of its deadzone before the onset of
the step-change, which is programmed to occur
about three seconds into the experiment, well
beyond the settling time of the motor.

After the simulation is run, the Simulink

diagram of Figure B.2 is downloaded to the
Arduino target hardware, which runs the same
closed-loop, except now with the actual dc-
motor unit in the loop, instead of the transfer-
function model.

Figure B.1. Simulink diagram for simulating closed-loop behavior with pure integral control.

Figure B.2. Simulink diagram for putting hardware-in-the-loop, with pure
integral control running on the Arduino.

Interface Board,
& DC Motor Unit

	Hardware
	Simulink Control
	Related Products
	Biographical Information
	Appendix A. The Arduino-to-Motor Interface Board
	/
	Appendix B. A Pure-Integral
	Controller to Implement in Arduino

