
A PROGRAMMING TOOL FOR ENHANCING THE
TEACHING OF IMAGE PROCESSING

Alejandro Simon and Malek Adjouadi

Center for Advanced Technology and Education
Department of Electrical and Computer Engineering

Florida International University
10555 W. Flagler Street

Miami, FL 33174
Alejandro.Simon@4XLab.NET Adjouadi@fiu.edu

Abstract

A desktop computational platform that

facilitates the teaching of digital image
processing remains a needed tool for both
engineers and computer scientists, especially
when real-world applications are abound in
pattern recognition, computer vision, geographic
information systems, and biomedical imaging,
to name a few. In line with the educational
reform suggested by the National Science
Education Standards [1], this type of teaching
platform allows for the bridging of research to
teaching through practical implementation of
imaging algorithms [2]. The teaching through
the proposed desktop computational platform
has proven effective both in increasing the
quality of project implementation and in
research throughput of students in an academic
setting. Different tools exist which currently
allow students to manipulate images, but a fine
balance must still exist between ease of
developing image processing algorithms and the
portability of the resulting code in user friendly
computer platforms to allow for broader access.
The teaching tool is as proposed which allows
students to be exposed to developing and
writing the code to their own algorithms through
an effective graphical user interface. The
program is expandable, and new algorithms can
be added with ease. Once compiled, the
program can be demonstrated as a stand alone
tool, with no additional software being required.
This software has been implemented
successfully in a digital image processing course
at Florida International University. The speed of
completion of the assignments has increased, as

well as the satisfaction of the students with their
code. The training of the students using this
GUI interface required one lecture session of
two hours through an interactive presentation.

Index Terms – C++, digital image processing,

education, image processing software.

Introduction

This study presents an open source image
processing software which can be used as a
teaching tool in an undergraduate or graduate
level image processing course. The motivation
to write this software platform was due to the
scarcity of applications which could be used in a
classroom setting that support easy coding of
various image processing algorithms.

The designed software helps students perform

their homework or laboratory projects in an
image processing course by giving them the
tools they need to quickly develop image
processing routines. This is done by providing
students with a framework in which images are
represented as data structures which are simple
to modify. This software is being used
successfully in a graduate level image
processing class.

With the aim to extend the use of the proposed

software platform, a thorough description is
provided of the program structure to include
both the methods and techniques inherent to this
structure and the means to integrate within it
new software developments that will
dynamically enhance the applications capability

Computers in Education Journal 85

http://www.nap.edu/readingroom/books/nses/html/
http://www.nap.edu/readingroom/books/nses/html/

of this platform, stressing the nature of its open
source characteristic.

Broadening the Scope of

Image Applications

The scope of image processing programs can

be viewed in a continuum of programming
skills. One end of the spectrum represents those
programs that require minimal or no
programming skills, and are often used as
procedures or subroutines which do not
necessitate any additional manipulations or
enhancements. The other end of the spectrum
represents programs which require sharp skills
where the user may be called to program each
step of the image transformation process.
Currently, several image processing programs
exist, each filling a space in this continuum.

Several image processing tools that currently

exist demonstrate different application
principles of digital image processing [3],[4],
and [5]. Such tools allow students to see
interactive demos of chosen transforms or
applications. The importance of a small
portable solution to teaching image processing
has been shown by [6]. Similar approaches to
the solution proposed in this study have been
developed by [7],[8] where a collection of basic
transforms as well as a GUI were integrated.
Some tools have demonstrated the utility of
providing a solution in which the GUI and the
image processing algorithms are equally
important, such as [9]. Other tools choose to
tackle the problem of offering real-time image
processing; such an approach is described
by[10].

Furthermore, several image processing

software platforms have been developed with an
educational focus, using Matlab, essentially. An
illustrative example of such tools is presented
by [11]. Such an environment provides facilities
for rapid prototyping and development, but the
resulting code depends for execution on the
Matlab environment being installed. Similar
digital image processing tools exist for
Mathematica [12].

This particular program as proposed and
designed advances the state of the art by
implementing a stand-alone image processing
platform that can be demonstrated with a default
set of functionality, or expanded with additional
new image applications. The program processes
the most popular formats of bitmap files and can
be expanded by the user to support all image
formats. The image transformation code is easy
to write due to a framework of functions created
to handle the conversion between image file and
two-dimensional arrays.

Program Description

The developed software platform has several

outstanding features which facilitate its use. It
presents an easy to use Graphical User Interface
(GUI), as well as offers a practical framework
for image processing. The overall result is a
program that allows students a complete
understanding of the different steps necessary
for developing an image processing algorithm.
Students can concentrate on developing the
image processing programs without dealing
with the complexities of the file format of the
image processed. The program handles the
various aspects of file loading, saving, and
displaying. This is implemented as a Multiple
Document Interface (MDI) application,
allowing for several files to be opened
simultaneously and different image processing
algorithms applied to them. An illustration of
the different runtime image processing tools
displayed in windows platform is as shown in
Figure 1. All actions of the program can be
scripted in batch files and executed from within
the program. Specially named batch files can be
executed upon program startup or opening a
new image processing window. Each image
processing window includes an undo/redo
feature which is only limited by the amount of
free space on disk. Multiple instances of the
program can be run simultaneously. In case the
image transformation code developed by the
student executes an illegal operation and crashes
the program, the next time the program is
executed, the temporary files left on disk are

86 Computers in Education Journal

Figure 1: Program snapshot showing multiple
windows opened. An easy to use interface
provides access to the transforms. The Image
Transform List window contains the list of
transforms supported by the DLL module. The
power of the Fourier spectrum of a circle is
shown in the topmost window. The active
window is collecting the parameters needed for
a transform.

detected and the user is prompted to delete
them.

The program is controlled by a familiar

interface. This interface includes a menu
system, an icon bar for quick access to common
functions, as well as a toolbar. The toolbar lists
all available image algorithms which have been
programmed by the student. The author of the
image processing algorithms is displayed in the
credits for the program; this feature is useful in
live demos in establishing authorship and the
time of program creation, in order to monitor
continued enhancements by the same or
different author. An example of this feature is
shown in Figure 2.

The image processing shell supports various

threading models for the student developed
image algorithms. Students can use the single
threading model during the first assignments,

free to move at any time to a multi threaded
model, which supports simultaneous execution
of several algorithms. Single threaded student
code executes slightly faster resulting in an
unresponsive program while the algorithm
executes. Multithreaded code executes slightly
slower, however it results in a program which is
able to demonstrate several algorithms at once.
The image processing shell adapts automatically
to the threading model employed in the image
processing code.

Figure 2: Upon program startup, the DLL is
queried for the author name, which is displayed
in the About Box. This mechanism ensures a
compiled DLL is personalized with the author
information.

Methods and Techniques Used

 Background

Images are composed of a collection of pixels,
which can be represented as a combination of
the three primary colors: red, green and blue.
Each primary color is allocated 8 bits to
represent all the color graduations between
black and its maximum intensity. Thus, one
pixel stored in RGB format with 8 bits per color
will take 24 bits, or 3 bytes to represent.

Each uncompressed image storage file format

takes a different approach to storing the pixels
in the image. One approach is to store the RGB

Computers in Education Journal 87

value for each pixel consecutively, with some
filler bytes to pad the length of each row to a
multiple of 4 bytes. Bitmap files employ the
padding to a multiple of 4 bytes, which may
allow for faster access to pixels in 32bit memory
architectures. The RGB approach results in a
rather large file where there are no limitations to
the number of different colors to display.
Another approach is to create a table, or palette
of all the colors used. Instead of storing the
RGB value of each pixel, the table code for the
matching RGB value is stored. The palette
approach gives smaller files, however only a
select number of colors can be present in the
image.

Bitmap files support different image storage

formats. The 24 bits per pixel format does not
necessitate a palette. Other formats such as 256
colors or 16 colors require a palette. This
proposed software platform supports reading
and writing to any bitmap file. The format of the
file read can change during a transformation.
This is to enable the student to develop
conversion function between formats such as
256 colors and 24 bit color.

Bitmap files are composed of 4 sections, as

illustrated in Figure 3. Some sections are
optional, depending on the file format. The
palette is not present in 24 bit images, while 256
color images use it.

The first section is the header, which contains

information about the file size and the start of
the image data. This section is used to determine
if the file is valid via the signature check. The
presence of a palette is also specified in this
section.

 The information header section contains

details about the image. This section is used to
determine the dimensions of the image, as well
as the image type: 16 colors, 256 colors, or 24
bit color.

The palette section is only present in non 24-

bit images. This section is composed of several
RGB color entries, each 4 bytes long. The first

byte is reserved, and should be 0. There is no
entry for the color code in this table. The
position of the entry determines the code for this
color. The next three bytes contain the RGB
triplet, stored as Blue, Green, and Red.

Figure 3: Details of Bitmap Image file format.
The header and the image information sections
are always present. They indicate the presence
of an optional palette. The image data section
stores 3 bits per pixel if no palette is present.
Otherwise, the color codes are stored. If less
than 8 bit per pixel are used, several pixels are
packed in the same byte.

The image data section contains the data for

the pixels for both the palette modes and the 24
bit per pixel mode. The bottom row is stored
first, in a left to right order. After the row is
complete, padding bytes set at 0 will be added to
bring the row length to a multiple of 4 bytes. In

88 Computers in Education Journal

the palette mode, the image data will contain 1-
byte entries to represent the pixels in each row.
In the 24 bit per pixel mode, each pixel will be
stored as three bytes for the Blue, Green, and
Red components.

Program Structure

The designed program is structured as two
distinct modules with specific functions. The
GUI module is responsible for file handling,
image visualization, executing batch files, and
user interaction. The image transformation
module is where the image processing
algorithms are executed. This module is
responsible for receiving the data representing
the different sections of an image, transforming
them, and returning them to the GUI module for
display.

The GUI module has been developed in Visual

Basic. This language was chosen due to the ease
of development. The GUI is compiled into an
executable (.EXE) file. The image
transformation module has been developed
using the C language. The execution speed of
this module was an important factor in deciding
the language to use. This module, which is
compiled into a dynamic linkage library (.DLL)
file, exposes a collection of functions to the
GUI. These functions are used to determine the
transforms available, and request execution of a
particular transform.

Students need access to the project files to

build the image processing DLL module. This
module communicates with the GUI to make all
its functionality available to the user. It is not
necessary to modify the GUI code unless the
student wishes to add new functionality to it.
Therefore, students can access the project files
that build the GUI module, but it is not
necessary for completing any part of the course
work. This makes previous knowledge of C and
programming techniques, the prerequisites
needed for developing transforms.

Algorithmic Flow of Processing Steps

Loading and transforming an image utilizes all

modules of this program. All the steps can be
performed interactively by selecting options in
the program, or can be scripted in the batch files
supported by the program.

The images are loaded and displayed in the

GUI module. When a transformation is
requested, the GUI queries the DLL for the size
of the returned image. This mechanism was
implemented to support transforms that return
larger images as well as image format
conversion functions.

After the GUI or image processing shell

obtains the size of the data returned, sufficient
memory is allocated. Afterwards, the DLL
transform entry point function is called with a
numerical code representing the transform
requested. The control remains inside the DLL
until the transformation is finished and the
image is returned to the GUI module. The entry
point function sets some variables and executes
the appropriate transform based on the
numerical code received from the GUI. The
transform converts the image into easy to
manipulate arrays, modifies the content in the
arrays, and converts them back to the image
format. When the transform finishes execution,
the image header is updated if there were
changes to the variables stored in it. Afterwards,
control returns to the GUI.

The GUI receives the modified image data and

uses it to create a new image file on disk. This
file is used to provide the undo/redo
functionality. This complete process of image
transformation is illustrated in Figure 4.

Inclusion of New Transform Code

To add new image transformations, students

merely need access to the projects for the DLL.
The GUI source code requires no modification
when inserting new transform code.

Computers in Education Journal 89

Figure 4: Illustrates the programming tools
necessary to compile the projects and how they
interact to transform an image file. Both batch
file and interactive processing are shown.

In this process, the following steps must be
followed:

- The GetDLLInfo function returns the name

of the author for display in the GUI. The
DLL version number is returned as well.
This function must be modified with the
actual name of the author of the functions.
This is only done once.

- The Interrogate function must be modified

to add the transform to the Image Transform
List window in the GUI. The transform will
be added to the list with a user defined
transform code. The list of parameters the
function needs is specified as well. A
category can also be created to group similar
transforms together.

- If the transform returns more data, an entry

needs to be created in the MemoryRequired
function. This step is optional and only
needed if the transform returns an image
which is larger than the original. The worst
case memory requirements are specified
here. This ensures that the memory assigned
to the image will be large enough to
accommodate the added data. If the returned
image has a bigger palette than the original
image, this step needs to be performed as
well.

- The DoTransform function is the entry point

where the image, as well as the numerical
code representing the transform is received.
An entry needs to be added to call the
function that will perform the image
transformation.

- The last step is to declare the function which

will perform the image transformation.

This series of steps will modify the DLL code
to add a new image transform. These steps will
include all the necessary declarations to make
the image transform visible to the shell and
available for calling.

90 Computers in Education Journal

 The Image Transformation Framework

The DoTransform DLL function receives from

the graphic processing shell the BMP headers,
the palette if it exists, and the image data. All
modifications to the BMP data must be
performed in the DLL as the imager shell will
not modify them. This scheme allows for
maximum flexibility of the DLL.

The image processing DLL contains several

functions composing a rapid image
transformation framework. The functions are
already developed and functional, but they can
be modified by the user of the DLL if the need
arises, enhancing the usability of this program
as a platform for image processing. These
functions transform image data into easy to
manipulate arrays. The functions work in pairs,
one converts the image to an array, while
another converts the array data back into an
image.

For 24 bit per pixel images, a pair of functions

called ImageToArrays and ArraysToImage
provides the conversion of the RGB image data
into three arrays: the Red, Green and Blue
planes. The ImageToArrays function correctly
extracts the pixel data for all rows while
skipping the padding bytes added. The
ArraysToImage function reverses the process by
combining the three plane arrays into a properly
formed collection of pixel data. The padding
bytes are also considered here.

For images containing a palette,

ImageToArray and ArrayToImage functions are
provided. They handle the conversion from the
palette format to a bi-dimensional array
containing the RGB combinations for all palette
entries.

The DoTransform DLL function obtains the

width, height, and bit per pixel properties from
the header, and makes it available to the
transforms.

The parameters which have been collected

from the user are also made accessible to the

transforms. The transforms are allowed to return
the title of the action they performed on the
image, as well as a status string, which will be
displayed to the user in a message box.

The functions ExtractString and ExtractValue

are used to easily extract a single parameter
from the string in which the Shell encodes the
parameters collected from the user.

All these functions compose the framework

that allows students to productively code new
transforms. This framework simplifies the
writing of transform code by providing
functions to access the image data.

Nevertheless, the learning experience is not

hindered since all the code needed to extract the
pixel data from an image is available in the DLL
project, and is accessible to students at all times.
The image processing shell involvement from a
transformation point of view is just for opening,
saving, and displaying the files, with no
processing required.

Developing New Image Transforms

With the image processing framework in

place, developing a transformation is now as
simple as modifying an array. The typical steps
in any transform are as follows:

- The transform code must declare several

variables. Since the images are bi-
dimensional, two variables must be declared
for the loops which will iterate through all
image pixels.

- To store the image data, a provided bi-

dimensional array data type must be used.
The quantity of arrays to declare changes if
the transform expects a palette image or a 24
bit per pixel image. For a palette image, one
array is sufficient, while three arrays are
needed for a 24 bit per pixel image.

- The function then checks if the image type is

palette or 24 bit per pixel. This step can be

Computers in Education Journal 91

used to execute a format specific algorithm
or to return with an error message.

- Once this check passes, the appropriate

function to split the image data into the
arrays is called. If the image contains a
palette, it too is converted into an array.

- Now, the data arrays are processed, and the

image transformation is applied to them.

- After the transformation is finished, the

image data is reassembled from the arrays
using the inverse function, and the transform
returns.

This sequence of events is typical for all

transforms; complex transforms simply expand
the image transformation step over a series of
functions.

Setup of the developing Environment.

The developing environment for the image

processing shell is Microsoft Visual Basic 6.0,
which comes as part of Microsoft Visual Studio
6.0. The developing environment for the image
processing DLL is Microsoft Visual C++ 6.0,
which also comes in the Visual Studio package.

The image processing shell needs the Visual

Basic runtime files to execute. They are
automatically installed as part of Visual Basic,
or they can be installed separately.

A full installation of the Visual Studio package

will satisfy all the requirements for compiling
both the Shell and the DLL projects, as well as
executing the Shell. This is a typical setup found
in a computer lab; therefore students should
have no shortage of development computers.

It is worth stating that students need not

modify the image processing shell in order to
develop new image transformations. For this
reason, access to Visual Basic, or the image
processing shell project files is not mandatory.

The minimum requirements for developing
image transforms will entail that Microsoft
Visual C++ 6.0, as well as the project files for
the image processing DLL must be installed.
This will allow compilation and debugging of
the DLL file. Furthermore, to execute the image
processing shell, the Visual Basic 6.0 runtime
files must be installed.

For demonstrating the transforms, the

requirements are even lower, with only three
files needed. Only the image processing shell
executable file and the image processing
transform DLL file are actually needed if the
computer has already installed the Visual Basic
runtime files. These two files are under 300kb in
size. Otherwise, the runtime installer should be
accessible. The three files fit on a 1.44MB
floppy disk, which makes this project
transportable.

Discussion and Results

 Implementation of Program

This program has been used in two semesters

in a graduate level image processing course.
This solution replaced previously existing code
which limited students in relation to the
implementation platform, proprietary
architecture, and debugging capabilities.

By switching to this solution, students were

allowed access to a broader selection of
computers in which to develop and debug their
code. They are also using tools which are more
familiar, accessible, and user-friendly. As a
result, student productivity has increased, just as
their theoretical know how is put to test in this
more practical computer platform.

Note that some of the figures presented in the

text have been captured directly from the screen,
and saved as bitmap files. The presented
program has been used to convert them to black
and white format to comply with publication
requirements.

92 Computers in Education Journal

Conclusion

A fine balance is reached by a program

designed with the intent to improve the research
and educational qualities in the delivery and in
project implementation of an image processing
class. The designed program offers enough built
in functionality to allow students to be
productive, while the computer platform is more
accommodating. The motivation remains that
classroom experience for students should
integrate an environment that supports hands-on
experience, as has been shown from results of
this study and related work such as in [13]

This program has thus been successfully used
to support teaching of an image processing
class. Features have been added as a result of
student feedback and it has grown into a mature
solution. Students have been quite satisfied with
the quality of their finished work. They
appreciate the flexibility offered them to
develop code locally in the laboratory, or at
home. The portability of the compiled solution
with all the required software modules fitting on
a commonly available 1.44MB floppy disk is
valued as well.

In its present form, the developed program

handles only bitmap files. Foreseeable
modifications to the shell could be made to
allow for any file to be loaded and passed as is
to the image processing DLL for modification.
Optional modifications have been also made to
allow transforms to execute in parallel by using
multi-threading technology. All these
modifications can be implemented at the
expense of the relative simplicity of the solution
in its present form.

The source code and compiled demos for the

software described in this paper can be
downloaded from:

http://www.cate.fiu.edu/software/imagestudio

Acknowledgments

The authors gratefully acknowledge the

support from the National Science Foundation
Grants EIA-9906600 and HRD-0317692, and
the Office of Naval Research Grant N00014-99-
1-0952.

References

1. National educational technology standards

(NETS) and performance indicators for
teachers [Web Page]. International Society
for Technology in Education 2000. [Online]
Available: http://cnets.iste.org/teachstand.
html.

2. How people learn: Bridging research and

practice. Edited by S. Donovan, J. Bransford
and J. Pellegrino, Committee of Learning
Research and Educational Practice,
Commission on Behavioral and Social
Sciences and Education, National Research
Council. Washington DC: National
Academy Press.

3. U. Rajashekar, G.C Panayi, F.P.

Baumgartner and A.C. Bovik, “The SIVA
Demonstration Gallery for signal, image,
and video processing education”, Education,
IEEE Transactions on, vol. 45, no. 5, pp.
323-335, 2002.

4. G.W. Donohoe and P.F. Valdez, “Teaching

digital image processing with Khoros”,
Education, IEEE Transactions on, vol. 39,
no. 2, pp. 137-142, 1996.

5. J. Campbell, F. Murtagh and M. Kokuer,

“DataLab-J: a signal and image processing
laboratory for teaching and research”,
Education, IEEE Transactions on, vol. 44,
no. 4, pp. 329-335, 2001.

6. R.H. Bamberger, “Portable tools for image

processing instruction”, Image Processing,
1994. Proceedings. ICIP-94., IEEE
International Conference, vol. 1, no. 1, pp.
525-529, 1994.

Computers in Education Journal 93

http://www.cate.fiu.edu/software/imagestudio
http://cnets.iste.org/teachstand. html
http://cnets.iste.org/teachstand. html

7. D. Roman, M. Fisher and J. Cubillo,
“Digital image processing-an object-
oriented approach”, Education, IEEE
Transactions on, vol. 41, no. 4, pp. 331-333,
1998.

8. K.R. Burger, “Teaching two-dimensional

array concepts in Java with image
processing examples”, Technical Symposium
on Computer Science Education archive
Proceedings of the 34th SIGCSE technical
symposium on Computer science education,
vol. 35, no. 1, pp. 205-209, 2003.

9. T. Parveen, “PphotoSuite: a windows based

digital image processing program”, The
Journal of Computing in Small Colleges
archive, vol. 19, no. 3, pp. 147-156, 2004.

10. J.A. Robinson, “A software system for

laboratory experiments in image
processing”, Education, IEEE Transactions
on, vol. 43, no. 4, pp. 455-459, 2000.

11. S.L. Eddins and M.T. Orchard, “Using

MATLAB and C in an image processing lab
course”, Image Processing, 1994.
Proceedings. ICIP-94., IEEE International
Conference, vol. 1, no. 1, pp. 515-519, 1994.

12. Digital Image Processing Package for

Mathematica. Wolfram Research. [Online].
Available: http://www.wolfram.com/product
s/ applications/digitalimage/

13. K. Bowyer, G. Stockman and L. Stark,

“Themes for improved teaching of image
computation”, Education, IEEE
Transactions on, vol. 43, no. 2, pp. 221-223,
1996.

Biographical Information

Alejandro Simon received his Bachelor and
M.S. degree in Computer Engineering from
Florida International University. He has been a
research associate in the Center for Advanced
Technology and Education and has contributed
in the areas of Digital Logic, Distributed
Computing, and Image Processing. He has
developed an educational interface for the
development of image processing algorithms
and has helped in the setting of a distributed
cluster that led to research work in .NET Web
Services.
Email address: Alejandro.Simon@4XLab.NET

Malek Adjouadi is a joint faculty member
with the department of Electrical and Computer
Engineering and Biomedical Engineering at
Florida International University. He is also the
founding and current director of the Center for
Advanced Technology and Education (NSF-
CATE) funded by the National Science
Foundation since 1993. He received his BS
degree in EE from Oklahoma State University
and his MS and Ph.D. degrees also in EE from
the University of Florida. Malek's earlier work
on computer vision to help blind persons led to
his testimony to the US Senate Committee of
Veterans Affairs on the subject of technology to
help disabled persons. Malek is also co-leading
with Dr. Prasanna Jayakar the joint neuro-
engineering program between FIU and Miami
Children's Hospital in researching methods for
understanding key brain dysfunctions such as
epilepsy. His research interests are in vision-
based guidance systems, machine vision
applications, biomedical imaging and
diagnostics, and man-machine interfaces to help
people with disabilities (visual and motor).
 Phone: (305) 348 – 3019, fax: (305) 348 – 3707
 Email address: adjouadi@fiu.edu

94 Computers in Education Journal

