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Abstract 

 
Piping system topics are included in the 

undergraduate curriculums of many engineering 
disciplines.  Generally, specific “procedures” 
are introduced to solve different categories of 
series, parallel, and network piping problems.  
This paper investigates a unified approach to the 
solution of all piping system problems.  In the 
unified approach, solutions are formulated as a 
nonlinear algebraic equation or a system of 
nonlinear algebraic equations, and a 
computational software system (Mathcad in this 
paper) is used for the arithmetic.  Examples of, 
and pedagogical experiences with, series, 
parallel, and network piping system solutions 
using the unified solution methodology are 
presented and discussed.  The unified approach 
permits the student to concentrate on problem 
formulation and results (the engineering aspects 
of the problems) rather than on the arithmetic.  
Anecdotal evidence indicates that the students 
readily assimilate the unified approach and that 
the students’ capabilities to solve piping system 
problems are enhanced when compared to the 
traditional approaches. 

 
Introduction 

 
Many of the “procedures” for solving 

engineering problems are techniques to solve a 
non-linear algebraic equation or a system of 
non-linear algebraic equations.  However, recent 
computational software systems, such a 
Mathcad, have made possible “direct” solutions 
of such non-linear problems in which the 
solution procedure is transparent to the user.  
Piping systems are an excellent example of such 
problems.  The purposes of this paper are 
twofold: (1) to explore the use of computational  

software systems for piping system problem 
solutions and (2) to investigate the pedagogical 
inferences of the use of such software in 
undergraduate engineering education involving 
piping system topics. 

 
Background 

 
Most undergraduate courses in fluid 

mechanics address the flow of viscous fluids in 
pipes and develop techniques suitable for the 
solution of simple piping system problems.  
Piping systems are characterized as series, 
parallel, or network [1].  Generally, piping 
systems with components in series are examined 
first, and solutions are classed as Category I 
(find the increase in head of a pump), Category 
II (find the flow rate in a system), and Category 
III (find the appropriate pipe diameter, if it 
exists, for a given situation).  Most first courses 
in fluid mechanics do not contain extensive 
coverage of parallel systems or networks.  In a 
first course, or in a follow-on fluid mechanics or 
thermal systems course, if solution techniques 
for parallel systems and fluid networks are 
covered, the solution “procedures” are 
associated with, but are considered distinct 
from, series systems.  The advent of 
computational software systems (for example 
Mathcad, Mathematica, Matlab, and EES) 
permits a much more unified solution approach 
to all types of piping system problems.  From a 
pedagogical standpoint, the unified approach 
permits the student to focus more on the 
engineering aspects than the arithmetic aspects, 
and from an applications standpoint, the unified 
approach provides the student with a useful 
addition to the student’s engineering skill set.   
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No matter what the characterization (series, 
parallel, or network) of a piping system, the 
same fundamental principles are used in the 
unified solution formulation.  The fundamental 
principles are delineated as follows: (1) 
conservation of mass, (2) conservation of 
energy, and (3) uniqueness of pressure at a 
point.  The conventional solution “procedures” 
developed for any characterization of piping 
problem satisfy these principles either by 
formally invoking them as part of the problem 
formulation or by using them in a specified 
iterative sequence—the “procedure.”  Solutions 
for all series, parallel, and network piping 
problems can be formulated as a solution to a 
non-linear algebraic equation or to a system of 
nonlinear algebraic equations.  The 
aforementioned computational software systems 
contain robust options for the solutions to 
systems of nonlinear algebraic equations.  The 
computational system then becomes the 
arithmetic engine for the solution, and the 
student can concentrate on problem formulation 
and results (engineering aspects of the 
problems) rather than on the arithmetic.  The 
results are enhanced mastery of piping system 
problems, exposure to more realistic problems, 
and a graduate better equipped to handle 
meaningful piping problems.  The congruence 
of the problem formulations for all problems is 
evident to the student. 

 
The unified approach to piping systems uses 

the energy equation (Hodge and Taylor, 1999), 
cast between two stations in a pipe with a 
flowing fluid as a fundamental building block.  
Consider, as in Figure 1, the flow of an 
incompressible fluid through a segment of a 
pipe with an active device (pump or turbine) and 
major and minor losses.  For this pipe segment 
with a pump, the energy equation, where is 
the increase in head of the pump, becomes 
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with f the friction factor and K and C·fT the 
minor losses [3].  Conservation of mass appears 
as 

  BA QQQ ==                (2) 
 
In Equation (1), expressions for the friction 

factor and fully-rough friction factor are needed.  
In introductory fluid mechanics courses, the 
Moody diagram [2] is often used to present the 
functional dependence of friction factor, f, on 
the Reynolds number, µρVDD =Re , and the 
relative roughness, Dε .  However, the Moody 
diagram is unhandy for computer-based 
solutions, and a closed-form expression is 
desired.  In the laminar regime, the usual 
expression [2] is 
 
 

 
 
 
 
 
 
 
 

 
Figure 1.  Pipe
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value of the friction factor for a given relative 
roughness.  From the Haaland equation, the 
fully-rough friction factor becomes 
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With the aforementioned as the basis for 

piping system problem solution formulation, 
some examples of the unified approach will be 
examined and discussed. 

 
Examples 

 
Examples for series, parallel, and network 

piping systems will be explored in this section 
using the unified solution approach built around 
Equations (1) and (2) and the computational 
software system, Mathcad.  Although Mathcad 
is the computational software system used in 
this paper, other computational software 
systems possess the same capability and could 
be used equally well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Example 1 Schematic. 

Series Examples 
 

Example 1 Problem Statement: 
 

Water is to be pumped at the rate of 50 gpm 
from  a  lake to a storage tank.   The free surface 
of the tank is 30 ft above the free surface of the 
lake.  The pipe is 115 ft long, is constructed of 
schedule 80 pipe, and contains two 45-degree 
elbows and three 90-degree elbows.  Find the 
increase in head of the pump and the power the 
pump delivered to the fluid. 

 
Solution: 
 
A schematic of the system is presented in 

Figure 2.  The energy equation for the system 
becomes 
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The minor losses are the entrance, the elbows, 

and the exit.    Since  A and B are located at free  
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surfaces (reservoirs) open to the atmosphere, PA 
= PB and VA = VB = 0.  The energy equation 
thus reduces to the form 
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The determination of the pump increase in 

head for a specified flow rate is a Category I 
series piping problem solution and can be 
solved directly.  However, in this paper the 
generalized approach will be used.  The 
Mathcad worksheet for the solution is provided 
in Figure 3.  Most of the worksheet contains the 
specification of the system geometry, losses, 
and fluid properties.  The definition of Reynolds 
number and functions for the friction factor and 
fully-rough friction factor are provided.  The 
friction factor definition is piece-wise 
continuous with different expressions for the 
laminar and turbulent regimes.  Transition is 
specified to occur at a Reynolds number of 
2300.  In Mathcad, the Given statement initiates 
a Solve block, and the Find statement specifies 
the unknown variable (or variables).  In this 
example, the unknown is the increase in head of  
the pump, .  The solution is sW

lbm
lbfftWs
⋅

= 009.62 .  This problem is a 

straightforward example typical of those 
encountered in a first course in fluid mechanics.  
Consider a more complex version of this 
problem. 
 

 
Example 2 Problem Statement: 
 

If a pump imparts 2 hp to the fluid in the 
system of Example 1, what is the flow rate? 

 
Solution: 
 

This is more complex problem than Example 
1.  The reduced energy equation is essentially 
the same as Equation (7b) for Example 1.  That 
portion of the Mathcad solution that differs from 
the solution of Example 1 (Figure 3) is given in 
Figure 4.  The only difference is in the Solve 
block structure where two equations and two 
unknowns are specified.  The additional 
equation is the definition of the power delivered 
to the fluid.  While Example 1 is simple and 
could be solved directly, Example 2 requires 
iteration.  The flow rate that results in 2 hp 
being delivered to the fluid is 76.559 gal/min 
with a required pump increase in head of 
103.346 ft-lbf/lbm.  As confirmation of the 
accuracy of the solution, the power delivered to 
the fluid is computed from the solution results 
and is 2 hp as specified.  This would be a 
challenging problem to work “by hand,” but the 
unified approach is logical and straightforward.  
As in Example 1, the  engineering aspect of the 
problem is in the formulation as a nonlinear 
system of two equations, but the solution via 
Mathcad is the same as for the simpler example 
and is transparent to the user. 

 
Parallel Example 

 
Example 3 Problem Statement: 
 

A parallel piping system, schematically 
illustrated in Figure 5, is to be analyzed.  Table 
1 presents characteristics of the two pipes in the 
parallel system. 
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ORIGIN 1≡  Set origin for counters to 1 from the default value of 0. 
Input the pipe geometry: 
      Diameter in inches           Length in feet            Roughness in feet: 

           
D

1.5

1.5
⎛
⎜
⎝

⎞
⎠

in⋅:=
               

L
15

100
⎛
⎜
⎝

⎞
⎠

ft⋅:=
              

ε
0.00015

0.00015
⎛
⎜
⎝

⎞
⎠

ft⋅:=  

Input the system boundary (initial and end) conditions, the loss coefficients, and the fluid properties: 
          Pressures in psi              Elevations in feet: 

 

Pa

Pb

⎛
⎜
⎝

⎞

⎠

0

0
⎛
⎜
⎝

⎞
⎠

lbf

in2
⋅:=

       

Za

Zb

⎛
⎜
⎝

⎞

⎠

0

30
⎛
⎜
⎝

⎞
⎠

ft⋅:=
  

 

              K factor                    Equivalent length  Number of pipes 

   
K

0.78

1
⎛
⎜
⎝

⎞
⎠

:=
        

C
32

90
⎛
⎜
⎝

⎞
⎠

:=
        

 N length D( ):=

       Density in lbm/ft3          Viscosity in lbm/ft-s 
ρ 62.4

lb

ft3
⋅:=

  
µ 0.000658

lb
ft sec⋅
⋅:=  

Input the flow rate in cfs: Q 50
gal
min
⋅:=  

Define constants and adjust units for consistency:   g 32.174
ft

sec2
⋅:=

 
gc 32.174

ft lb⋅

lbf sec2
⋅

⋅:=  

Define the functions for Reynolds number, fully-rough friction factor, and friction factor: 

Re q d,( )
4 ρ⋅ q⋅
π d⋅ µ⋅
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otherwise

:=  

Ws 100 ft⋅
lbf
lb
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(Initial guess of pump increase in head.) 

Given 
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g
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ρ g⋅
gc⋅ Zb+ Za−

1

N

i

8

π
2

Q2

g Di( )4⋅
⋅ f Q Di, εi,( )

Li

Di
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⎞

⎠
⋅∑

=

+  

Ws Find Ws( )  := Ws 62.009ft
lbf
lb

⋅=  

Power input to fluid: Power Q ρ⋅ Ws⋅:=   Power 0.784hp=  
 

Figure 3.  Mathcad Worksheet for Example 1. 
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Ws 10 ft⋅
lbf
lb

⋅:=
    

Q 50
gal
min
⋅:=

 
(Initial guesses.) 

Given 
2 hp⋅ ρ Q⋅ Ws⋅  
W s

g c
g

⋅
P b P a−

ρ g⋅
g c⋅ Z b+ Z a−

1

N

i

8

π
2

Q2

g Di( )4
⋅

⋅ f Q Di, ε i,( ) Li
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Ci f T Di ε i,( )⋅+

...
⎛
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⎝

⎞
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⋅∑
=

+

...

 
Ws

Q

⎛
⎜
⎝

⎞
⎠

Find Ws Q,( ):=
 

Ws 103.346
ft lbf⋅

lb
=

 
Q 76.559

gal
min

=  

Power to fluid: Power Q ρ⋅ Ws⋅:=  Power 2hp=  
 

Figure 4.  Mathcad Solve Block for Example 2. 
 
Table 1.  Pipe Characteristics for Parallel 

System 
 
Pipe     L (ft)    D(in)      K        C           ε(ft) 
 

   1    3000       12         2       50           0.01   
   2    3000         8         1     100       0.0001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Parallel System Schematic 
 
 
 

Oil with physical properties of 64.32 lbm/ft3 
and a viscosity of 0.00193 lbm/ft-sec is the 
fluid, and ZA

 = 100 ft and ZB
 = 80 ft.   If a pump 

with an increase in head of 50 ft-lbf/lbm is 
placed in the system and if the pressure at A is 
to be the same as at B, find the total system flow 
rate and the flow rates in the individual pipes.  

  
Solution: 

 
The formulation of the system of equations for 

the solution invokes the behavior of a parallel 
system—namely, the flow rates add and the 
changes in head across each parallel line must 
be the same (uniqueness of pressure).  
Conservation of mass for this parallel system 
becomes 

 
                               (8) 21 QQQT +=

 
And the head change from A to B for a parallel 

pipe segment can be expressed using the energy 
equation as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Line 1 
A 

Pump 

Line 2 
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For a system composed of two parallel lines, 

three equations, one conservation of mass and 
an energy equation for each line, are required.  
For this system, the increase in head of the 
pump is given, so the unknowns are the flow 
rates, QT, Q1, and Q2. 

 
The Mathcad worksheet for the solution of this 

parallel problem is given in Figure 6.  The 
format is similar to Examples 1 and 2.  Pipe 
parameters, fluid properties, and expressions for 
the Reynolds number and friction factors are 
provided, and the solution is obtained via a 
Solve block.  The three equations discussed 
above are in the Solve block, and the results are 
obtained using the Find statement.  The same 
principles were used in formulating the solution 
to this parallel problem as were used to 
formulate the solutions of the series problems.  
Once the parallel problem was formulated, the 
Solve block and the Find statement were used to 
obtain the solution. 

 
Network Example 
 
Example 4 Problem Statement: 

 
A piping network composed of seven lines and 

two loops is illustrated in Figure 7(a).  
Characteristics of the pipes are provided in 
Table 2, and the fluid is water.  Find the flow 
rate in each line of the piping network. 

 
Table 2.  Pipe Characteristics for Network 

System 
 

Pipe     L (ft)       D(in) K      C            ε(ft) 
 
  1     2000        12  0       0     0.00015 
  2     2000          8  0       0     0.00015 
  3     3000          6  0       0     0.00015 
  4     4000          6  0       0     0.00015 
  5   1000 8  0 0     0.00015 
  6     3000 8  0 0     0.00015 
  7  2000          8  0 0     0.00015 

 

Solution: 
 

Network problems, such as this one, can be 
solved by the Hardy-Cross procedure [2].  
However, the Hardy-Cross procedure, which is 
formulated using the aforementioned principles, 
introduces a loop-correction factor that is used 
in a Newton-Raphson iterative procedure.  An 
alternative to the Hardy-Cross procedure is to 
implement directly the three principles 
delineated in the Background segment of this 
paper. 

 
As illustrated in Figure 7(a), the network is 
composed of six nodes, seven pipes, and two 
loops.  Conservation of mass must be enforced 
at each node, and the energy equation must hold 
for each pipe.  Uniqueness of pressure requires 
that the sum of the changes in pressure (or head) 
around each loop be zero.  For this example, the 
unknowns are the seven flow rates (Q1….Q7).  
The system of equations required for the 
solution to this network must, therefore, contain 
seven equations.  The seven equations are five 
conservation of mass expressions and two 
uniqueness of pressure statements.  
Conservation of mass expressions can be written 
for all six nodes, but only five of the expressions 
will be independent.  Initial guesses on all flow 
rates are needed for the Solve block.  The initial 
guesses do not have to satisfy conservation of 
mass at each node, but the ones used in this 
example do.  The conservation of mass 
statement at each node must have the total 
inflow equal to the total outflow at a node.  
Suitable conservation of mass expressions for 
the assumed initial flow rate directions are as 
follows: 
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The major and minor head losses in a pipe 

segment can be expressed in functional form as 
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ORIGIN 1≡  Set origin for counters to1 from default value of 0. 
Input the pipe geometry and the elevation difference, the loss coefficients, and the physical properties: 

D
12

8
⎛
⎜
⎝

⎞
⎠

in⋅:=
  

L
3000

3000
⎛
⎜
⎝

⎞
⎠

ft⋅:=
  

ε
0.01

0.0001
⎛
⎜
⎝

⎞
⎠

ft⋅:=
  

Za

Zb

⎛
⎜
⎝

⎞

⎠

100

80
⎛
⎜
⎝

⎞
⎠

ft⋅:=  

              K factor           Equivalent length         Number of pipes 

      
K

2

1
⎛
⎜
⎝

⎞
⎠

:=
           

C
50

100
⎛
⎜
⎝

⎞
⎠

:=
          

 N length D( ):=

        Density in lbm/ft3                 Viscosity in lbm/ft-s 

         
ρ 64.35

lb

ft3
⋅:=

              
µ 0.00193

lb
ft sec⋅
⋅:=  

Define constants and adjust units for consistency: g 32.174
ft

sec2
⋅:=

 
gc 32.174

ft lb⋅

lbf sec2
⋅

⋅:=  

Define the functions for Reynolds number and the friction factors: 

Re q D,( )
4 ρ⋅ q⋅
π D⋅ µ⋅

:=
  

fT D ε,( ) 0.3086

log
ε

3.7 D⋅
⎛⎜
⎝

⎞
⎠

1.11⎡
⎢
⎣

⎤
⎥
⎦

2
:=  

f q D, ε,( ) 0.3086

log
6.9

Re q D,( )
ε

3.7 D⋅
⎛⎜
⎝

⎞
⎠

1.11
+

⎡
⎢
⎣

⎤
⎥
⎦

2
Re q D,( ) 2300>if

64
Re q D,( )

otherwise

:=  

Setup Solve Block by defining specified inputs and guessed values: 

QT 5.0
ft3

sec
⋅:=

 
Q1

QT

N
:=

 
Q2

QT

N
:=

 
Ws 50 ft⋅

lbf
lb

⋅:=  

    Given
QT Q1 Q2+  

Ws
gc

g
⋅ Zb Za−

8

π
2

Q1( )2

g D1( )4⋅
⋅ f Q1 D1, ε1,( )

L1

D1
⋅ K1+ C1 fT D1 ε1,( )⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅+  

Ws
gc

g
⋅ Zb Za−

8

π
2

Q2( )2

g D2( )4⋅
⋅ f Q2 D2, ε2,( )

L2

D2
⋅ K2+ C2 fT D2 ε2,( )⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅+  

    

QT

Q1

Q2

⎛
⎜
⎜
⎝

⎞

⎠

Find QT Q1, Q2,( ):=  

QT 7.481ft3 sec-1
=    Q1 4.839ft3 sec-1

= Q2 2.642ft3 sec-1
=

 
 

Figure 6.  Mathcad Worksheet for Parallel System. 
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where QQ  carries the sign convention (a 
positive flow rate yields a positive head loss).  
For loop 2, the sum of the head changes around 
the loop must equal zero or 
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Equations (10) and (12) plus the analogous 

equation for loop 1 constitute the system of 
equations needed to describe the system.  Figure 
8 presents the Mathcad work sheet 
implementing the solution to this network 
problem.  The pipe characteristics are defined 
and the Reynolds number and the friction 
factors expressions are presented.  The minor 
loss coefficients vectors, K and C, are indicated.  
But as with the series and the parallel systems, 
the problem solution is accomplished by the 
Solve block—in this example the Solve block 
contains seven equations.  The solution is 
provided by the Find statement and in given in 
Figure 8 and illustrated in Figure 7c.  The flow 
rate is line 2 was guessed as being clockwise in 
loop 1, but the solution shows the flow rate in 
line 2 to be counterclockwise in loop 1.  The use 
of QQ  in the energy equation expressions 
provides the capability of the system of equation 
to handle flow rates initially guessed to be in the 
wrong direction.  The Solve block in this 
network problem contains seven equations and 
is, thus, more complicated than the Solve block 
of the previous examples, but the same 
principles were used in formulating the 
equations in the Solve block. 

 
Pedagogical  Inferences 

 
The purpose of this paper is to discuss a 

unified method of solving piping problems.  In 
all the examples explored in this paper, the same 
three principles were used in formulating an 
equation or a system of equations for the 
solution.  In most undergraduate courses, the 
treatments of series, parallel, and network 

problems are distinct and emphasize the 
arithmetic sequence required to solve the 
equation or equations formulated as the problem 
solution.  In this paper attention has been 
directed to formulating the solutions to series, 
parallel, and network problems, but the 
arithmetic has been accomplished by using the 
Solve-Find structure of Mathcad.  Other 
computational software systems (Mathematics, 
Matlab,….) offer the same capability, albeit in 
different formats, but with the same results. 

 
Anecdotally, students appreciate the attention to 
problem formulation using the three principles 
built around statements of conservation of mass 
and energy and uniqueness of pressure at a 
point.  The use of Mathcad with its Solve-Find 
structure relieves the student from assimilating 
different numerical techniques (“procedures”) to 
solve a non-linear equation or a system of non-
linear equations.  The net result is that more 
involved and more realistic problems can be 
assigned.  With less time spent on arithmetic, 
more time is available for students to engage is 
higher-level synthesis and understanding.  
Indeed, in informal surveys with students in ME 
4333 Energy Systems Design at  Mississippi 
State University, students readily embrace the 
use of structured solvers, such as Mathcad’s 
Solve-Find structure, for all types of piping 
problems.  Many students on the informal 
surveys will comment on how useful the 
Mathcad worksheets are and will recognize the 
relative ease with which complex problems can 
be solved.  The ME 4333 students become quite 
adept as formulating well-posed systems of 
equations for a variety of mechanical 
engineering problems, not just thermal systems 
or piping problems.  

 
Conclusions 

 
Examples illustrating a unified approach to 

solutions    of   series,    parallel,    and   network  
piping problems have been presented and 
discussed. Pedagogical aspects of using a 
unified  approach for   the   solution   of   piping   
problems were examined.  The unified approach 
offers  advantages  in   providing  students   with 
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(a) Network Schematic 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Initial Flow Rate Guesses 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Solution 
 

Figure 7.  Network Problem Schematic and Solution. 
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ORIGIN 1≡   Reset counter to start at 1 rather the default value of 0. 
Input the pipe geometry 
   

L

2000

2000

3000

4000

1000

3000

2000

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft⋅:=

 

Q

0.8

0.2

1.2

1.2

1.0

1.0

1.0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft3

sec
⋅:=

  

ε

0.00015

0.00015

0.00015

0.00015

0.00015

0.00015

0.00015

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft⋅:=

 

D

12

8

6

6

8

8

8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

in⋅:=  

 
Define constants and unit adjustments: g 32.174

ft

sec2
⋅:=  

Define physical properties: ν 0.000016
ft2

sec
⋅:=  

The usual functions for friction factor must be defined: 
Re q d,( )

4 q⋅
π d⋅ ν⋅

:=
 

fT d ε,( ) 0.3086

log
ε

3.7 d⋅
⎛
⎜
⎝

⎞
⎠

1.11⎡
⎢
⎣

⎤
⎥
⎦

2
:=  

f q d, ε,( )
0.3086

log
6.9

Re q d,( )
ε

3.7 d⋅
⎛
⎜
⎝

⎞
⎠

1.11
+

⎡
⎢
⎣

⎤
⎥
⎦

2
Re q d,( ) 2300>if

64
Re q d,( )

otherwise

q 0>if

1 otherwise

:=  

Define the minor loss coefficients K and the equivalent-lengths C: 
K 0 0 0 0 0 0 0( )T:=   C 0 0 0 0 0 0 0( )T:=

  
Define the loss function for each line using the friction factor major loss expression: 
h Q K, C, L, D,( )

8 Q⋅ Q⋅

π
2

g⋅ D4
⋅

f Q D, ε,( ) L
D
⋅ K+ C fT D ε,( )⋅+⎛⎜

⎝
⎞
⎠

⋅:=  

 
 
 

Figure 8.  Mathcad Worksheet for Pipe Network Solution. 
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     Given

            3
ft3

sec
⋅ Q1 Q4+ Q5+  

Q 1 Q 2+ Q 7 

2
ft3

sec
⋅ Q6 Q7+  

1
ft3

sec
⋅ Q2+ Q3

 
Q 5 Q 6 

 
h Q4 K4, C4, L4, D4,( ) h Q3 K3, C3, L3, D3,( )+ h Q2 K2, C2, L2, D2,( )+ h Q1 K1, C1, L1, D1,( )− 0 

 
h Q5 K5, C5, L5, D5,( ) h Q6 K6, C6, L6, D6,( )+ h Q7 K7, C7, L7, D7,( )− h Q1 K1, C1, L1, D1,( )− 0 

 
     Q Find Q1 Q2, Q3, Q4, Q5, Q6, Q7,( ):=  
 

Q

1.866

0.762−

0.238

0.238

0.896

0.896

1.104

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

ft3

sec
=  

 
Figure 8.  Mathcad Worksheet for Pipe Network Solution (Concluded). 

 
   

 
capability to solve more “real world” problems 
and to engage in higher order activities.  The 
utility of using structured solvers and of 
stressing problem formulation carries over to 
virtually any engineering topic. 
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