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Introduction 
 

The dynamics course at Webb Institute 
includes a brief introduction to mechanical 
vibrations.  Throughout the course we make 
extensive use of Mathcad software, and this 
usage is particularly relevant in the vibrations 
segment.  This paper illustrates two different 
Mathcad approaches to solving vibration 
problems.  In the first method, the general 
solution to the problem is derived by traditional 
methods, and Mathcad is used to apply the 
initial conditions and evaluate the constants in 
that solution.  In the second method, Mathcad’s 
ordinary differential equation solver is used to 
obtain the solution directly from the differential 
equation.  There may be a vigorous 
philosophical debate about whether to allow 
students to use the computer at all in dynamics 
and another debate about which Mathcad-based 
approach is better pedagogy.  In our dynamics 
course students have the option to use 
traditional or computer-based methods on 
homework and on tests.  If they choose 
computer-based methods, they are permitted to 
use either of the Mathcad approaches discussed 
below. 
 

Undamped  Free  Vibration 
 
The problem statement reads: A body with 

mass 25 lbm is suspended from a spring with k = 
160 lbf/ft.  At time zero, it is 0.1 feet below the 
static equilibrium position with a downward 
velocity of 2.0 ft/sec.  Students are required to 
find the position, velocity, and acceleration of 
the body as a function of time.  For purposes of 
this paper, only the position part of the solution 
is presented. 

 
 
 

Method 1: Mathcad Applies the Initial 
Conditions 
 

The differential equation that governs the 
motion  is

ሷݔ   +  ௞
௠ 

 

·  ,ݔ

and the solution is 
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Differentiation of the position equation with 

respect to time yields an equation for velocity.  
Initial conditions are specified for position and 
velocity.  The constants C and Ψ are evaluated 
by substituting the initial conditions into the 
position and velocity equations and solving the 
resulting equations simultaneously.  This may 
be done symbolically or numerically by means 
of Mathcad.  When it is done symbolically, the 
results are: 
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Parts (a) and (b) of Figure 1 below illustrate 
the computer-aided numerical approach.  The 
result is an explicit expression for position as a 
function of time.  Velocity and acceleration may 
be obtained by differentiation of this expression.  
The graph at the bottom of Figure 1(b) shows 
the first second of the motion.  Similar graphs 
for velocity and acceleration are easily obtained.  
In the interest of brevity, they are not included 
here. 
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Method 2: Mathcad Solves the Differential 
Equation 
 

Parts (a) and (b) of Figure 2 show the Mathcad 
worksheet that uses the Odesolve command to 
produce the solution in the form of a graph.  A 
strong cautionary note is in order here.  
Normally Mathcad handles units almost 
effortlessly.  Values may be entered in any 
system of units, and different parameters may be 
entered in different systems of units.  These 
statements do not apply to the Odesolve 
command.  When this command is used, all 
parameters must be pure numbers (no units).  
The user must enter all values in a consistent 
system of units.  The example in Figure 2 is 
done in lbm, ft, sec units.  All variables must be 
expressed in terms of these three units.  This 
means that lbf must not be used.  Note that the 
spring stiffness is entered as 160·32.2.  In the 
problem statement, the stiffness is given in 
lbf/ft.  However this value must be converted to 
lbm/sec2 through multiplication by gc as shown 
in Figure 2(a). 

 
A Mathcad solve block appears at the top of 

Figure 2(b).  Within the solve block we see the 
differential equation itself and the two initial 
condition equations.  Instead of ending with a 
“find” statement, this one ends with 

 
y:=Odesolve(t,tmax). 

 
In this statement t is, of course the independent 

variable, and tmax simply supplies the upper limit 
on the solution domain.  The corresponding 
lower limit is automatically set to zero.  The 
graph is generated by specifying t as the 
independent variable and y(t) as the dependent 
variable. 

 
Comparison of the graph in Figure 1(b) with 

the graph in Figure 2(b) reveals that they are 
precisely the same, as they certainly should be. 

 
 
 
 

 
Damped  Free  Vibration 

 
The problem reads: In the apparatus below, 

the 8.0 kg body is moved 0.20 m to the right of 
equilibrium and released from rest at t = 0.  The 
viscous damping coefficient c = 20 N·s/m, and 
the spring constant k = 32 N/m. 

 
Method 1: Mathcad Applies the Initial 
Conditions 
 

The differen a  erns the 
motion is 

ti l equation that gov

ሷݔ   ൅  ௞
௠

· ݔ ൅  ௖
௠

· ሶݔ ൌ 0, 

and the solution for under-damped motion is 
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where ωd is the damped natural frequency. 

 
The process of obtaining the damped solution 

is fundamentally different from the process of 
obtaining the undamped solution.  Parts (a), (b), 
and (c) of Figure 3 illustrate the use of Mathcad 
to evaluate the constants in the under-damped 
solution.  There are, of course, two other cases 
to be considered: critically-damped and over-
damped motion.  Figure 3 pertains only to the 
under-damped case.  Separate solutions must be 
generated for the other two cases. 

 
Method 2: Mathcad Solves the Differential 
Equation 

 
When Method 2 is used, the transition from 

undamped to damped motion is easy, and the 
three different cases of damped motion are 
handled in one solution.  Moving from 
undamped to damped motion simply involves 
adding the damping term to the differential 
equation as shown in Part (b) of Figure 4.  This 
differential equation pertains to all three cases 
of motion.  Depending on the assigned value of 
the  damping  coefficient c,  the graph in Part (b)  
of Figure 4 will show under-damped, critically-
damped,  or  over-damped  vibration.   This  is a  
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significant advantage of Method 2.  The graph 
at the bottom of Figure 4(b) shows the 
displacement as a function of time. 
 

Damped  Forced  Vibration 
 

Method 2: Mathcad Solves the Differential 
Equation 
 

A periodic forcing function is now added to 
the damped free vibration problem above.  This 
is easily done by adding the forcing function 
term to the differential equation as shown in 
Part (b) of Figure 5.  The graph at the bottom of 
Figure 5(b) shows the displacement as a 
function of time. 

 
Conclusions 

 
Mathcad’s inability to deal with units under 

Odesolve is a significant shortcoming.  While it 
seldom leads to incorrect answers to SI 
problems, great care must be exercised when 
using US units. 

 
Clearly Method 2 does not exercise the 

student’s knowledge of the process of solving 
differential equations.  Depending on one’s 
point of view, this may or may not be an issue in 
a dynamics course.  Both methods do exercise 
the student’s knowledge of dynamics.  Each 
solution culminates with a graph of 
displacement versus time, which is, in the 
author’s view, the essential point. 

 
Method 2 does not provide an explicit 

equation for position as a function of time.  In 
this method, one can easily obtain a precise 
value for position at any particular time.  For 
instance, to find the displacement at t = 0.5sec, 
one simply enters the following statement 
anywhere below the solve block 

 
   y(0.5):= 
 

and the value of the displacement will appear. 
 

The most significant advantage of Method 2 
over Method 1 is the easy transition from 
undamped free vibration to damped free 
vibration to damped forced vibration.  One 
simply adds the appropriate terms to the 
differential equation that governs the motion.  
Furthermore, the three cases of damped 
vibration are handled in one solution. 

 
A significant advantage of either computer-

aided method over traditional paper and pencil 
methods is the ease with which various 
parameters (mass, spring stiffness, initial 
position, and initial velocity) can be varied.  
Observation of the effect of these parameters on 
the resulting motion helps the student develop 
insight into the vibration process.  It is easily 
observed that changing the initial velocity 
affects the amplitude but not the frequency of 
oscillation, while changing the mass affects 
both. 

 
The author finds the Method 2 approach to be 

preferable.  The lecture time available for 
vibrations is very limited, and students can 
absorb the material much more quickly by 
avoiding the details of finding the algebraic 
solutions to the equations of motion. 
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Given: A body with mass 25 lbm is suspended from a spring with k = 160 lbf/ft.  At time 
zero, it is 0.1 ft below the static equilibrium position with a downward velocity of 2.0 ft/s. 
 
Find: The position of the body as a function of time 
 
Sketch:  

 

image "Harmonic Oscillation.jp≡  

Solution: 

mass 25lbm:=  

k 160
lbf
ft

:=  spring stiffness 

V0 2
ft
s

:=  initial velocity 

x0 0.1ft:=  initial position measured from static equilibrium 

Initial estimates of the constants C and Ψ 

C 1ft:=  Ψ 1rad:=  t 0:=

Figure 1(a) 
Undamped Free Vibration 
Method 1 Mathcad Worksheet - Part 1 
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Now a Mathcad slove block to evaluate the constants 
Given 

x0 C sin
k

mass
t Ψ+

⎛
⎜
⎝

⎞
⎟
⎠

⋅  initial condition for position 

V0 t
C sin

k
mass

t Ψ+
⎛
⎜
⎝

⎞
⎟
⎠

⋅
⎛
⎜
⎝

⎞
⎟
⎠

d
d

 initial condition for velocity 

C

Ψ

⎛
⎜
⎝

⎞
⎟
⎠

Find C Ψ, ( ):=  

actual values of constants C 0.172 ft⋅=  Ψ 0.622 rad⋅=

Therefore  

range variable for time t 0s 0.01s, 1s..:=  

x t( ) C sin
k

mass
t Ψ+

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=  equation for position 
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Figure 1(b) 
Undamped Free Vibration 
Method 1 Mathcad Worksheet - Part 2 
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Given: A body with mass 25 lbm is suspended from a spring with k = 160 lbf/ft.  At time zero, it is in 
the static equilibrium position with a downward velocity of 2.0 ft/s. 
 
Find: The position of the body as a function of time 
 
Sketch:  

image "Harmonic Oscillation.jp≡  

Solution: 
 
Odesolve will not deal with units, so all parameters must be unitless.  The units must be totally 
consistent, so lbf/ft in the spring stiffness must be converted to lbm/s2 

tmax 1:=  upper limit on time in seconds 

t0 0:=  starting time in seconds 

spring stiffness in lbm/s2 k 160 32.2⋅:=  

mass 25:=  mass in lbm 

Figure 2(a) 

Undamped Free Vibration 

Method 2 Mathcad Worksheet - Part 1 
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 Given 

y'' t( )
k−

mass
y t( )⋅  the equation of motion 

y t0( ) 0.1 initial condition on position 

y' t0( ) 2 initial condition on velocity 

y Odesolve t tmax, ( ):=  
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Figure 2(b) 

Undamped Free Vibration 

Method 2 Mathcad Worksheet - Part 2 
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Given: In the apparatus below, the 8.0 kg body is moved 0.20 m to the right of equilibrium 
and released from rest at t = 0.  The viscous damping coefficient c = 20 N·s/m, and the 
spring constant k = 32 N/m 
 
Find: The displacement as a function of time. 
 
Sketch:  

Solution: 
image "Damped Free Vibration.jpg≡

c 20.0
N s⋅
m

:=  k 32
N
m

:=  mass 8kg:=  

First, determine if the system is underdamped, critically damped or overdamped. 

ωn
k

mass
2

rad
s

⋅=:=  ζ
c

2 mass⋅ ωn⋅
0.625=:=  

Since ζ is less than 1, we know that the system is underdamped, which means it oscillates.  The 
damped natural frequency is therefore 

ωd ωn 1 ζ
2

−⋅ 1.561
rad

s
⋅=:=  

The expression for position is therefore 

x t( ) C e
ζ− ωn⋅ t⋅

⋅ sin ωd t⋅ ϕ+( )⋅  

Figure 3(a) 
Damped Free Vibration 
Method 1 Mathcad Worksheet - Part 1 
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And the velocity is the derivative of this 

V t( )
t
x t( )d

d
 

The initial conditions are 

V0 0.0
m
s

:=  x0 0.20m:=  

We need a slove block to evaluate the constants C and φ.  Of course this means we need initial 
estimates. 

C 1m:=  ϕ 1rad:= t 0:=

Given 

x0 C e
ζ− ωn⋅ t⋅

⋅ sin ωd t⋅ ϕ+( )⋅  

V0 t
C e

ζ− ωn⋅ t⋅
⋅ sin ωd t⋅ ϕ+( )⋅

⎛
⎝

⎞
⎠

d
d

 

C

ϕ

⎛
⎜
⎝

⎞
⎟
⎠

Find C ϕ, ( ):=  

C 0.256m=  ϕ 0.896 rad⋅=

Therefore 

x t( ) C e
ζ− ωn⋅ t⋅

⋅ sin ωd t⋅ ϕ+( )⋅:=  

t 0s 0.01s, 5s..:=  

Figure 3(b) 
Damped Free Vibration 
Method 1 Mathcad Worksheet - Part 2 
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Now make a graph of x versus time. 
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Figure 3(c) 
Damped Free Vibration 
Method 1 Mathcad Worksheet - Part 3 
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Given: In the apparatus below, the 8.0 kg body is moved 0.20 m to the right of equilibrium 
and released from rest at t = 0.  The viscous damping coefficient c = 20 N·s/m, and the 
spring constant k = 32 N/m 
 
Find: The displacement as a function of time. 
 
Sketch:  

 

Solution: image "Damped Free Vibration.jpg≡

Because Odesolve can not handle units, the parameters below are pure numbers in a 
consistent system of units (SI). 

mass in kg mass 8.0:=  

x0 0.20:=  initial displacement in m 

spring stiffness in kg/s2 k 32:=  

damping coefficient in kg/s c 20:=  

tmax 5:=  upper limit on time in seconds 

t0 0:=  starting time in seconds 

Figure 4(a) 
Damped Free Vibration 
Method 2 Mathcad Worksheet - Part 1 
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Given 

y'' t( )
k−

mass
y t( )⋅

c
mass

y' t( )⋅−  the equation of motion 

y t0( ) 0.2 initial condition on position 

y' t0( ) 0 initial condition on velocity 

y Odesolve t tmax, ( ):=  
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Figure 4(b) 
Damped Free Vibration 
Method 2 Mathcad Worksheet - Part 2 
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Given: In the apparatus below, the 8.0 kg body is moved 0.20 m to the right of equilibrium 
and released from rest at t = 0.  The viscous damping coefficient c = 20 N·s/m, and the 
spring constant k = 32 N/m.  A periodic forcing fuction of the form F0sin(ω·t) is applied. 
 
Find: The displacement as a function of time. 
 
Sketch:   

Solution: 
image "Damped Free Vibration.jpg≡

Because Odesolve can not handle units, the parameters below are pure numbers in a 
consistent system of units (SI). 

mass in kg mass 8.0:=  

x0 0.20:=  initial displacement in m 

spring stiffness in kg/s2 k 32:=  

damping coefficient in kg/s c 20:=  

tmax 10:=  upper limit on time in seconds 

t0 0:=  starting time in seconds 
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Figure 5(a) 
Damped Forced Vibration 
Method 2 Mathcad Worksheet - Part 1 



 magnitude of forcing function in kg·m/s2 F0 10:=  

frequency of forcing function in radian/s ω 6:=  

Given 

y'' t( )
k−

mass
y t( )⋅

c
mass

y' t( )−
F0 sin ω t⋅( )⋅

mass
−  the equation of motion 

y t0( ) 0.2 initial condition on position 

y' t0( ) 0 initial condition on velocity 

y Odesolve t tmax, ( ):=  
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Figure 5(b) 
Damped Forced Vibration 
Method 2 Mathcad Worksheet - Part 2 
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