
72 COMPUTERS IN EDUCATION JOURNAL

LESSONS LEARNED ASSESSING SMALL COMPUTING PROGRAMS

Stephen Dannelly and Marguerite Doman
Department of Computer Science

Winthrop University
Rock Hill, SC

Abstract

Regardless of their size, computing programs

are required to perform outcomes-based
assessment by either their institution’s regional
accrediting body or for specialized program
accreditation, such as ABET/CAC. Small
programs face a unique set of problems
including performing statistical analysis based
on small numbers of students and placing all the
burden of assessment activities onto a small
faculty body. This paper describes some of the
program assessment issues unique to small
programs and suggests simple solutions to
common problems.

Introduction

The need to perform program assessment is a
reality for all computing programs at every US
university and college. In the past, computer
science faculty and administrators focused on
topic coverage in the curriculum and the success
of their graduates. Now all computer science
programs must perform outcome-based program
assessment for program accreditation and/or
university accreditation. In the last decade,
outcome-based program assessment became an
important focus of ABET accreditation reviews.
In the last few years, regional accrediting
agencies have made assessment of all degree
programs a priority when reaccrediting
universities and colleges. There is no question
as to whether or not a computer science program
should perform program assessment. The
question is how best to perform assessment.

Degree program assessment in small

computing programs poses a unique set of
problems. Small numbers of students makes it
difficult to perform statistically significant
analysis of student learning outcomes data. The

complete array of assessment activities
performed by a small faculty body, with no
dedicated assessment staff, adds to a workload
that already includes significant teaching loads
and presents particular challenges in the
management of program assessment. Yet,
accrediting organizations give no special
dispensation to small programs, nor should they.

Now in its 125th year, Winthrop University is

a public comprehensive institution in South
Carolina. Undergraduate fulltime enrollment is
4500, plus 650 part time students. Graduate
enrollment is 1150. Most undergraduates live
on campus or near the campus, which is
dominated by grand oak trees and Neo-Georgian
architecture.

The university offers three varieties of

computing undergraduate degree programs. The
BS in Computer Science (BSCS) has been
accredited by ABET/CAC since 1990 and has
about 75 students in the major. All computing
courses in the Computer Information Systems
(CIFS) option of the BS in Business are taught
by the eight computer science faculty. The
CIFS program is accredited by AACSB
(business program accreditation) and has about
40 students. The BS in Digital Information
Design (DIFD) combines computing
coursework with graphic design and marketing
coursework to focus on web application design.
The DIFD program is not individually
accredited because no accrediting body exists
yet for such cross-discipline programs. DIFD is
only four years old, has 80 majors, and is
growing rapidly. Some computer science
courses are shared among the three programs.
For example, CIFS and BSCS majors take the
same CS1 and CS2 courses. Some web
application programming courses in the DIFD

COMPUTERS IN EDUCATION JOURNAL 73

program can be taken as electives by BSCS
majors.

Each of those three degree programs has its
own assessment program. Assessment of the
three programs is the responsibility of the
computer science faculty. In the case of DIFD,
program assessment is coordinated with the
Design (art) and Marketing departments.
Managing assessment of three programs, one for
ABET/CAC and one for AACSB (which use
different vocabularies), and complying with
Southern Association of Colleges and Schools
(SACS) requirements for all three, has resulted
in a computer science faculty that is constantly
immersed in program assessment.

Because of the necessity and desire to focus
on teaching and research and not be consumed
by seemingly constant assessment reporting and
site visits, we have developed processes that
gather, analyze and act on rich assessment
information, yet do not consume vast amounts
of faculty time. Development of those
processes has not always been smooth or easy.

The purpose of this paper is to explain some

of the lessons learned about assessing small
computing programs. Assessment issues that
are common to both large and small programs
are discussed first, followed by issues unique to
small computer science programs. Finally, our
program assessment methodology is outlined.
Our processes are not perfect and not all aspects
are transferable to other small institutions. But
our processes have successfully met the
challenges of several accreditation reviews.

Assessment Issues Common
to both Small and Large Programs

The basics of assessment apply to small

programs as much as large programs. Every
program must have a public list of student
learning outcomes, and in the case of ABET
also a list of program objectives. Every
program should use a variety of types of
metrics. Every accrediting body stresses the

importance of rubrics. But, while large
programs have the resources to develop all these
components from scratch and tailor these to
their specific program, small degree programs
need to borrow much of these assessment
components from other institutions.
Reinventing the wheel takes more time than
small programs have to invest. In short, when
beginning or improving an assessment process
for a small computing program, research what
others have done. When adopting tools and
other materials, inform the source institution.
The institution can then promote the
dissemination of their work. Also, these metrics
are validated to your accreditor as previously
accepted assessment tools.

The number one rule for assessment, for large
or small programs, is KISS. Keeping it simple
can be difficult. Engineers and computer
scientists love to devise complex and elaborate
systems for measuring experiments. But, to
paraphrase assessment guru Gloria Rogers, it is
okay to assess a degree program with “two
sticks and a chain instead of calipers”. Two
sticks separated by about 10 yards of chain that
are placed where a guy in a striped shirt has put
his foot is good enough to determine if highly
paid professional football players have
progressed a ball far enough down a field.
Focus on what assessment is trying to determine
– are we generally getting closer to our goal?
An elaborate methodology composed of
multilayered analysis of detailed measurements
is very likely to be overkill.

Small programs and large programs can lean
heavily on measurements already existing in
their programs. Every professor has course
goals and gives exam questions, lab
assignments, or projects to determine if students
are meeting those learning goals. The general
relationships between course goals and program
outcomes are usually illustrated as a matrix.
Where course goals overlap with program
outcomes there are possible program assessment
measurements [1]. If program outcomes include
communication skills, then the course(s) that

74 COMPUTERS IN EDUCATION JOURNAL

cover communication skills are likely to be
already assessing student’s communication
skills in some way.

We do not have to measure everything about
the program. Determine the essential program
outcomes then find a few (two to four) ways to
easily and fairly accurately assess those
outcomes. Use a variety of measurement types.
Results of projects and exam questions are easy
to gather. Do not use course grades, because the
focus of any course is unlikely to directly align
with the more general program outcomes. Do
not rely heavily on indirect measurements,
because we need to know what students actually
know and can do, not what they think they
know. However, alumni and employer surveys
are valuable. Not every student needs to score
perfectly for overall student performance to
meet expectations. External assessments, such
as ETS’ Major Field Test, provide a good
degree of external validation.

Problems Unique to Small Programs

One of the biggest obstacles to assessment for
large and small programs is sometimes faculty.
Specifically, the “established” faculty members
that believe assessment is yet another fad. They
have not jumped on every bandwagon over the
decades and don’t intend to start jumping now.
In a large program, such a senior member is
likely not teaching many courses and may be
easily side-stepped. But in a small program,
everyone’s help is needed and so everyone must
buy into the need to perform assessment.

Another set of problem faculty members is the
group that misunderstands the purpose of
assessment. A misguided faculty member who
is told to report specific student performance
data to their department chair could believe the
data will be used to assess the faculty member’s
performance in addition to the program’s
learning outcomes. When beginning a formal
assessment program it is essential to clearly
communicate to professors the importance of
the program assessment, how data will be used,
and how data will not be used. Some educators,

such as Rigby and Dark [2], use assessment data
taken from an individual course to improve
instruction in that course. We believe program
assessment should attempt to identify the
strengths and weaknesses of the overall
program, not assess the teaching in individual
courses. When closing the assessment loop, a
program improvement action plan is created for
each program weakness that has been identified.
Of course, those plans always include changes
to one or more specific courses. But the course
changes are made in the context of the
program's objectives and outcomes and the
degree’s curriculum, not one instructor.

A significant problem for small programs is
assessing student performance when there are
small numbers of students. Good statistical
analysis relies on a sufficient sample size (N
value). A large program on a six-year ABET
cycle might only need to gather assessment data
every three years. That is, we will access one
third of our student learning outcomes this year,
then next year a different third of our outcomes,
and so on. So, in the six years, each metric
receives two significant reviews.

But, small programs don’t have the luxury of

waiting. Small programs need to assess every
semester. Some core courses may be offered
only once a year with an enrollment of 10 or
fewer students. If the expected performance
level is “80% of students will score at least 70
out of 100 on this project”, then when two out
of nine students earn a D+, then the whole
group fails to meet performance expectations.
So, one or two poor students at the wrong time
can incorrectly reflect the program's attainment
of outcomes. The solution to small N values is
to gather assessment data every semester, then
aggregate the scores over two or three years. Of
course, if 4 out of 18 students in two years, or 6
of 27 students in three years, are not meeting
expectations, the poor performance is not an
anomaly.

We learned this lesson after just two years of
using the Major Field Test. Only five students
took the exam the year we started using the

COMPUTERS IN EDUCATION JOURNAL 75

exam. For reasons described in the next section,
the program's results were poor - only the 20th
percentile in the three major exam categories.
The next year twelve students took the exam
and the program scored in the 80th percentile.
What had we done to improve the program?
The answer is nothing significant. That second
group of test takers happened to include several
very bright seniors. Eight of the twelve are now
in PhD programs. The next year we dropped to
the middle of the percentile brackets, but the
program had not declined in quality. We now
combine MFT results across multiple years.
Year to year variations in MFT results usually
correlate with variations in our internal data,
thus helping to validate our methods. Using the
MFT for such validation is not unusual [3].

Small programs that offer each core course
once a year can also suffer from putting all their
eggs in one professor’s basket. A course-
embedded metric that comes from one
professor’s course is dependent on that
professor. If that professor is a tough grader, or
simply unsuccessfully tries something new one
semester, then a year’s worth of data for that
metric will suffer. Rubrics are used by large
programs to standardize results across course
sections and professors. Rubrics can be used by
a small program to guide an individual professor
and standardize results from year to year.

In a large institution it makes economic sense

to employ fulltime staff to guide and manage
assessment activities. Simply gathering,
organizing, cleaning, and archiving data can be
very time consuming. Small programs do not
have any such staff. It is up to the faculty
members to not only perform the high level
analysis work, but also the low level work.
Since the bulk of assessment data gathering is
likely to be tied to specific courses, and hence
becomes the responsibilities of the course
instructor, we recommend all course syllabi be
required to contain a short assessment statement
that specifies what data, if any, is collected for
assessment purposes. The main purpose of that

requirement is to remind the faculty member to
perform the assessment.

Lack of dedicated assessment staff also
increases the chances something will slip
through the cracks. Faculty members rightly
focus on their courses and their research, not
assessment. To insure activities not associated
with courses are conducted each year or
semester, we highly recommend an annual
calendar of events and deadlines be created.
And to make sure the tasks get done, put a name
next to each task. Our college’s faculty annual
report includes a section where each faculty
member must report on their program
assessment activities, thus assessment is
incorporated into the annual faculty review
process.

Our Methodology

Our assessment procedures have evolved
slowly over many years. When ABET began
making assessment an important provision
many years ago, our department developed a
very thorough and very formal process for
assessing many aspects of the BS in Computer
Science degree program. To be frank, it was too
big a beast to be sustainable. After that review
cycle, we learned to rely more on activities we
were naturally performing to assess our
students. We soon found that the new collection
of fewer and more straightforward metrics was
pointing in the same direction as the previous
large and cumbersome set of metrics. The
objective of our current assessment process is to
provide good visibility into student
performance, while making assessment
activities routine and minimally invasive to
professors' academic freedom.

Much of the evolution of our assessment

processes has been driven by ABET
accreditation standards. But new SACS
requirements have caused us to recently modify
our approach. For example, SACS now requires
all universities to have College Level
Competencies (SACS requirement 3.5.1 to be

76 COMPUTERS IN EDUCATION JOURNAL

specific) - student learning outcomes for the
general education program. At our university,
that has meant that every degree program must
now also assess the university's four
competencies. The university's General
Education program assesses all freshmen and
sophomores, then we assess our juniors and
seniors at a deeper level. With this additional
assessment requirement, the computer science
program decided to tweak our lists of student
learning outcomes to overlap the four university
competencies. That way, as we assess our
outcomes, we can simply report a subset of the
results to the university administration as our
assessment of their four competencies.

As with all degree programs everywhere, our
program objectives and student learning
outcomes are derived from our program's
mission and the university’s mission, with input
from our constituents. Our advisory board is
composed of successful alumni and of
employers who regularly recruit our students.
The BS in Computer Science's list of nine
student learning outcomes includes the usual
themes of communication, leadership, problem
analysis, and theoretical foundations of
computer science. The CIFS program has just
three student learning outcomes because CIFS is
part of the BS in Business degree program that
has its own five outcomes. The CIFS list
overlaps the BSCS list, thus simplifying the
gathering of course-embedded data. The DIFD
degree program has four student learning
outcomes.

Each student learning outcome is measured

three ways. Our chosen collection of metrics is
primarily composed of course-embedded
metrics. Data include grades on specific types
of projects such as grades on the design of a
compiler, grade averages of programming
assignments in Data Structures, and grades on
different types of presentations and reports.
Other course-embedded metrics include a non-
graded assessment of teamwork skills
performed by the instructor of the senior
projects course. As much as possible, we
selected metrics that leaned toward the upper

end of Bloom's taxonomy; i.e., more synthesis
and evaluation, and less knowledge and
comprehension.

Choices of metrics abound [4]. Some
programs integrate course surveys [5], while
others use student focus groups [6]. A recent
trend in program assessment is the use of
portfolios. Clemson University even requires
all undergraduates to submit items to an
electronic portfolio that is used to assess the
university's core competencies [7]. However,
we do not use portfolios. While portfolios
would be an improvement to our assessment
methodology, that addition would simply not
have a positive return on the investment of
designing the process, integrating the
technology, and regularly assessing the
portfolios.

Our non-course-embedded metrics are few in
number, but not lesser in significance. We use
the ETS Major Field Test for Computer Science
as part of the BS in computer science degree
program assessment. For a small program, a
small supply of exam booklets lasts a few years.
So, that exam is a manageable item on the
budget. When we began using the MFT our
problem was how to get students to take the test.
Carrots, such as a few bonus points in the senior
projects course, were not sufficient to entice
enough students to take a two hour exam.
Additionally, the top performing students did
not need the extra credit, so results were skewed
downward. A stick ended up working better
than carrots. We added a graduation
requirement that every student must complete an
assessment exam in their final semester.
Encouraging students to do their best and take
the exam seriously has never been a problem for
us. Before the exam begins, the proctor
explains that the exam is used in the
accreditation process for their degree and the
students' performance will be compared to
students at other universities. Students are
competitive and want their institution to do well.

Our assessment for all three computing

degrees is performed on an annual cycle.

COMPUTERS IN EDUCATION JOURNAL 77

Course data is collected each semester. Non
course data, such as the MFT exam, is gathered
each spring semester. Data is summarized in
early summer. By October of each year the
faculty meet to discuss the prior year's results.
Action plans to address weaknesses are then
begun, to be reviewed the next October.
Subsets of this information are submitted to the
university, for SACS purposes, each February.

The first task on the annual schedule is for the
department chair to remind all instructors of
what assessment data needs to come from what
courses. In mid-August, when syllabi are being
written, the department chair emails a single
page summary of assessment needs. The list of
metrics is organized by course. So, the Data
Structure professor knows at the end of the
semester he will report two items: average of all
programming assignments (and there must be at
least seven programs assigned), and the grade of
a project that involves designing a solution to a
complex open-ended problem.

Course embedded data are emailed to the
department chair at the end of each semester as
Excel files. Faculty only report data for the
majors in question; CS majors for the CS
assessment, CIFS majors for the CIFS
assessment, etc. So the math majors in CS2 are
deleted before the faculty sends in the data. The
files are archived by academic year and named
according to the course. The department chair
processes the data in early summer. He
determines if performance met expectations.
For example, did 70% of CS majors in Data
Structure score 70 or higher on the project?
These results are entered into a grid. We do this
processing manually. While several universities
have developed very good semi-automated data
processing systems and such systems are
necessary when processing 400 students, using
such a system to process 15 grades in a data
structures course or 10 peer evaluations in a
senior capstone course does not merit that
investment for us.

Near the beginning of October, the department
meets to discuss the prior year’s results. We do
not have a departmental curriculum or
departmental assessment committee. In a
department of 10 faculty members, the entire 10
would simply rehash whatever results any
subgroup derived. So, all 10 look at the results
and identify any areas of weakness.

Program weaknesses are addressed through

the development of Curriculum Improvement
Plans (CIPs). A small group of faculty
interested in the weakness decide on the steps
necessary to address the problem. For example,
if communication results have dipped to "does
not meet expectations" for two straight years,
then the professors that teach courses that
emphasize communication skills determine how
to improve communication instruction. Most
importantly, they write down their plan in a
standardized short format. Such documentation
is critical for degree programs to prove to site
visit teams that the program “closes the loop” on
assessment. It is not sufficient to say, “here are
our goals, here is how we determine if we are
meeting goals, and here is how we are doing.”
A program must also say, “And here is what we
have done to improve.” CIPs are reviewed the
next October to determine their effectiveness.
Supporting documentation, such as pre and post
syllabi, are archived with the CIP.

Conclusions

Outcomes-based program assessment is a
valuable activity. But in a small computing
degree program it is yet another activity that
consumes significant amounts of already scarce
time. Therefore, sticking with the KISS
principle is essential. The best use of time when
assembling the assessment elements, such as
grading rubrics, review guidelines and surveys,
is modifying the elements of other institutions'
assessment programs - it is faster to modify
someone else's wheel than to reinvent it
yourself. Small programs must leverage their
already existing assessments of students'
learning when assessing the program's student

78 COMPUTERS IN EDUCATION JOURNAL

learning outcomes. Faculty buy-in is necessary
to distribute the workload. Simple steps such as
including assessment needs on syllabi and a
calendar of annual deadlines and review
meetings help institutionalize the assessment
process. A well thought-out annual assessment
time-line that relies heavily on existing
measurements of student learning is likely more
than sufficient for accrediting agencies. In
short, simple does not equate to insufficient.

References

1. Jenq-Foung Yao, Yi Liu, Autumn Grubb,
and Gita Williams, "Course assessment
framework that maps professional standard
and ABET accreditation criteria into course
requirements", Journal of Computing in
Small Colleges, December 2007.

2. Steve Rigby and Melissa Dark, "Using

Outcomes-Based Assessment Data to
Improve Assessment and Instruction: A
Case Study", ACM SIGITE Newsletter,
Vol. 3, No. 1, January 2006.

3. Robert Jarman and Sankara N. Sethuraman,

"A Pilot Study for Developing a
Quantitative Model for Outcomes
Assessment in the Computer Science
Program at a Small University", Journal of
Computing in Small Colleges, January
2001.

4. Kathryn E. Sanders and Robert McCartney

“Program Assessment Tools in Computer
Science: A report from the Trenches”,
Proceedings of the 34th SIGCSE technical
symposium on Computer science education
(SIGCSE '03), 2003 .

5. Kwok-Bun Yue, “Effective Course-Based

Learning Outcome Assessment for ABET
Accreditation of Computing Programs”,
Journal of Computing in Small Colleges,
April 2007.

6. Dick Blandford and Deborah Hwang, "Five
Easy But Effective Assessment Methods",
ACM SIGCSE Bulletin, Vol 35 Issue 1,
January 2003.

7. Clemson University, http://www.clemson.

edu/academics/programs/eportfolio/,
(accessed April 2011).

Biographical Information

Dr. Stephen Dannelly has been chair of the
Department of Computer Science at Winthrop
University since joining the university in 2005.
His research and teaching specialize in the area
of software project management.

Marguerite Doman is an Assistant Professor at
Winthrop University. She received her PhD
from the University of North Carolina at
Charlotte in 2009. Before joining academia, she
worked as a systems programmer at IBM in
operating systems development. Her research
interests include computer science education
and networking.

http://www.clemson/

