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Abstract 

 
We have developed a simulation of ideal H-

comb polymers in two dimensions in which the 
polymers are moved by the Pivot algorithm.  
The mean-square radius of gyration, the g ratio, 
and the asphericity have been computed and 
compared to theoretical predictions.  Excellent 
agreement is obtained. The H-comb properties 
are compared to those of single junction 3-arm 
and 5-arm stars.  It is found that the effect of 
two junctions in the polymeric structure 
dominates the influence of the number of arms. 
This kind of project is suitable for students in a 
modeling and simulation course.    

 
Introducation 

 
In two previous articles in this journal, 

Varriale and Bishop [1] and Dunn and Bishop 
[2] have developed ideal models of star 
polymers.  In these models, the monomer 
building blocks are represented by circular 
“beads”.  Polymers were constructed by linking 
individual beads.  Two different algorithms 
were employed for studying these molecules.  In 
the first simulation [1] the polymer was 
“grown” from a central bead on a two 
dimensional square lattice.  If m represents the 
number of beads in each linear branch of a 
polymer containing f branches, the total number 
of monomer beads in a star polymer, N, can be 
calculated using 

 
 N = fm + 1    (1) 

 
In the second study [2] the star polymers were 

initialized in an arbitrary configuration and the 
arms  were  moved  via  the  Pivot algorithm [3].   

 

In both models, a number of different polymer 
properties were computed by averaging over 
randomly generated configuration snapshots.  
The mean-square radius of gyration, <S2>, the g 
ratio and the asphericity were studied and it was 
found that the Pivot simulation model was more 
efficient and accurate than the growth model.   
 

An interesting question is how the number of 
junctions in the polymer will influence these 
properties.  H-combs are the simplest two 
junction polymers.  These molecules have a 
central arm connecting the two junctions, each 
of which has two other arms attached to it.  
Hence, f = 5 in equation 1.  

 
Method 

 
Construction of the H-comb required 

modifications of Dunn and Bishop's [2] 
procedure for star polymers.  The center of the 
first junction bead is assigned as the origin of 
the X-Y coordinate system.  The distance 
between the centers of two connected beads is 
assumed to be a constant of magnitude one.  The 
polymers are initially configured with each of 
the five arms either horizontally or vertically 
directed from the junction beads.  The first three 
arms extend vertically in the positive direction, 
vertically in the negative direction, and 
horizontally in the positive direction from the 
first junction bead, respectively. The third arm 
connects the two junctions.  The last two arms 
extend vertically in the positive and negative 
direction from the second junction bead. Figure 
1 illustrates an initial H-comb when N = 11.  
The graphical capabilities of the Maple 
Software package [4] have been used to draw 
the H-comb from the X,Y coordinate data.   
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Figure 1: A H-Comb Polymer with junctions 
shaded; N = 11.  
 

The beads are moved in continuous space by 
the Pivot algorithm [3].  A random number is 
used to select one of the beads as a "pivot" with 
coordinates (Xp, Yp).  If the first junction bead 
is chosen as the pivot, then one of the first three 
arms is randomly selected to be moved.  
Likewise, if the second junction bead is 
selected, then either the third, fourth, or fifth 
arm will be moved.  In the case in which the 
third arm is chosen, then depending upon which 
junction was selected, either the first and second 
arms, or the fourth and fifth arms are also 
moved as a unit with the third arm.  Once a set 
of beads has been selected to be moved, another 
random number is employed to generate a 
random angle, θ, between 0º and 360º.  All 
selected beads are moved in accordance with the 
standard two dimensional rotation equations [5]. 
In Eqs. 2a and b, X’ and Y’ are the new 
coordinates whereas X and Y are the original 
coordinates before the pivot move.  
 
 
 
 
 

 X’  =  Xp + (X – Xp) cosθ  -   (Y – Yp) sinθ       
                                                                      (2a) 
 
 
  Y’  =  Yp + (X – Xp) sinθ   +  (Y – Yp) cosθ    

                   (2b) 
 

The radius of gyration, the g ratio, and the 
asphericity have been computed according to 
the equations given in Dunn and Bishop [2].  
The H-comb simulation results have the same 
level of statistical accuracy as the star 
simulations because the same total number of 
samples has been used in the averaging.   

 
Results 

 
Table I presents the present H-comb <S2> 

simulation results alongside Dunn and Bishop’s 
findings for linear, 3-arm and 5-arm stars. The 
number in parenthesis denotes one standard 
deviation in the last displayed digit.  Note that a 
star polymer with two branches is equivalent to 
a linear chain.  It is clear from the radius of 
gyration data that polymers with a given number 
of units N become more compact as the number 
of branches increases and that the 3-arm stars 
are more similar in their <S2> values to H-
combs than 5-arm stars.   Thus, the number of 
junctions has a greater influence than the 
number of arms on the properties of these kinds 
of molecules.  This result is not surprising 
because one can visualize the structure of an H-
comb molecule as composed of two 3-arm stars 
with a common arm. 
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Table I Simulation Data for <S2> 
 

N Linear 3-arm star 5-arm star H-comb 
  61 10.14(2)   7.99(1)   5.52(1)   7.43(1) 
121 20.15(2) 15.80(2) 10.73(1) 14.59(2) 
181 30.13(6) 23.52(2) 15.91(1) 21.69(4) 
241 40.18(7) 31.42(4) 21.13(3) 28.85(5) 
301 50.21(9) 39.16(4) 26.35(2) 35.97(8) 

 
 
 
     It is well known [6] that long polymers 
follow the scaling law 
                               

<S2>  =  C (N - 1) P                 (3) 
 
where C is model dependent and P is universal 
and equal to 1.00 for all ideal polymers.  Linear, 
star, and H-comb polymers are expected to have 
the same value of P.  Weighted nonlinear least-
squares fits [7] to the H-comb <S2> data in 
Table I gave P = 0.98 ± 0.01, which is in very 
good agreement with the expected 1.00.    
 

The g ratios have been calculated from the H-
comb and linear polymer radius of gyration data 
in Table I and the error in this quantity has been 
computed from the standard equation [7] 
relating the error in a ratio σA/B to the error in 
the numerator σA and the error in the 
denominator σB,   The resulting simulation g 
ratios are listed in Table II. The number in 
parenthesis denotes one standard deviation in 
the last displayed digit.   
 

Table II Simulation g ratios. 
 
 N 3-arm star 5-arm star H-comb 
    61 0.788(2) 0.544(1) 0.733(2) 
  121 0.784(1) 0.533(1) 0.724(1) 
  181 0.781(2) 0.528(1) 0.720(2) 
  241 0.782(2) 0.526(1) 0.718(2) 
  301 0.780(2) 0.525(1) 0.716(2) 
 
 
 
 
 

 

 
 
One notices that the g ratios for the 3-arm star 

are much closer to the H-comb results than the 
values for a 5-arm star.  However, these 
computed results are for finite N whereas the 
theoretical prediction is for infinite N. To 
determine the value of g as N approaches 
infinity,  one  plots  g  vs.  1/N   so   that    when 
N → ∞, 1/N → 0. The g value for infinite N can 
thus be found by determining the intercept of 
this graph after fitting a weighted least-squares 
linear line in 1/N to the data in the table. The 
extrapolated H-comb g ratio is 0.713 ± 0.002, 
which is in excellent agreement with the 
theoretical value [8] of  0.712. 
 

The simulation results for the asphericity are 
contained in Tables III and IV, respectively.  A 
and <A> are defined in Dunn and Bishop[2] in 
terms of the ellipse which encloses the 
molecule.  These data reveal that the asphericity 
of star polymers decreases as the number of 
arms increases; e.g. the polymers become more 
disk-like in their shape.  However, increasing 
the number of junctions causes the structure to 
be less circular.  As was the case for the g ratio 
we have extrapolated a linear fit in 1/N to 
predict values for a simulation with an infinite 
number   of   beads.   This   extrapolation    gave  
A = 0.426 ± 0.003 and <A> = 0.310 ± 0.001 for 
H-combs, whereas Dunn and Bishop found that 
A = 0.405 ± 0.001 and <A> = 0.321 ± 0.001 for 
3-arm stars, and A = 0.252 ± 0.001 and <A> = 
0.221 ± 0.001 for 5-arm stars.  These values 
again indicate that H-combs are more similar to 
3-arm than 5-arm stars.  
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Table III The ratio of the averages, A. 
 

N 3-arm star 5-arm star H-comb 
61 0.395(2) 0.242(1) 0.395(2) 
121 0.399(2) 0.246(1) 0.410(3) 
181 0.401(1) 0.248(1) 0.415(3) 
241 0.404(2) 0.250(1) 0.419(3) 
301 0.404(2) 0.250(1) 0.420(4) 

 
 

Table IV The average of the ratio, <A>. 
 

N 3-arm star 5-arm star H-comb 
61 0.315(1) 0.216(1) 0.296(1) 
121 0.318(1) 0.218(1) 0.302(1) 
181 0.319(1) 0.220(1) 0.304(1) 
241 0.320(1) 0.220(1) 0.307(1) 
301 0.320(1) 0.220(1) 0.307(1) 

 
 

Conclusion 
 

The Pivot algorithm has been used to simulate 
H-comb polymers in two dimensions.  The 
mean-square radius of gyration and its error 
have been determined for a wide range of N. It 
is found that the data obey the expected power 
law with a power nearly equal to 1.00. The g 
ratio has an extrapolated value which is in 
excellent agreement with the theoretical 
prediction [8] of 0.712.  In addition, the mean 
square radius of gyration, the g ratio, and the 
asphericity all indicate that H-comb polymers 
are much more similar to 3-arm than 5-arm 
stars. These types of simulations provide 
interesting projects in which students obtain 
experience in model development, 
programming, statistics and graphics. Such tools 
will be very useful in their future careers. 
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