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Abstract 

 
Engineering and science students should be 

exposed to Monte Carlo computer models of 
materials. They also must be made aware of 
how these models can be validated. One 
dimensional systems provide ideal testing 
grounds for computer simulations since many 
properties can be analytically determined. The 
exact pair correlation function of a periodic one-
dimensional fluid of hard particles is employed 
to probe how finite particle systems approach 
the thermodynamical limit (infinite number of 
particles). This affords the opportunity for a 
direct comparison of a Monte Carlo simulation 
and an exact result. It is found that over a wide 
range of particle numbers and densities, the 
simulated pair correlation functions reproduce 
the exact predictions. Additional student 
projects are suggested for investigation. 

 
Introduction 

 
In order to more fully understand the 

structural and thermodynamic properties of 
materials, engineering and science students need 
to learn how to develop computer models.  
These computer models must be validated by 
comparing results to known test cases.  Few 
analytical solutions exist for three dimensional 
systems but many problems can be solved 
exactly[1] in one dimension even in cases with a 
finite number of particles, N.  The confinement 
of hard particle systems to one dimension means 
that particles cannot change the identities of 
their initial nearest neighbors; they are restricted 
to an initial permutation of particle indices. This 
key  fact  simplifies  the   computation  of  many  

 

properties because factorization can be 
employed to decompose complicated integrals 
into products of much simpler ones[2].  Thus, 
one dimensional systems provide a convenient 
set of test cases for comparison with computer 
simulations which are, of course, always limited 
to a finite number of particles. 

 
An important property of multi-particle 

systems in any dimension is the pair correlation 
function[3], G(X), which measures the relative 
number of particles at a distance X from the 
center of a reference particle.  The change in the 
shape of the pair correlation function mirrors the 
underlying particle arrangements. It is well-
known[4] that in the gaseous state there is little 
order and that particles are distributed at random 
whereas in the solid state the particles pack into 
long-ranged ordered crystals. Localization 
behavior characteristic of a fluid, the appearance 
of multiple, well-defined peaks in the pair 
correlation function at higher densities, has been 
previously observed in analytic calculations of 
the pair correlation function in one dimension 
by Salsburg, Zwanzig and Kirkwood[5]. 
 

Theory 
 

The pair potential of one dimensional hard 
particles of length, σ separated by the distance 
X is given by 

 
         U(X) =    ∞       X < σ  
                         0       X ≥ σ                           (1) 
 
Using Eq.1, Salsburg, Zwanzig and Kirkwood 

[5] derived the exact expression for G(X), in the 
thermodynamic limit, N → ∞. They showed that 
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            N 
  G(X) = ∑ (X - kσ) k -1 exp [ - (X - kσ) /   

           k=1 
 
(1/ρ – σ)] θ(X - kσ) / [ρ (k - 1)!(1/ρ - σ) k]      (2) 

 
where θ(X - kσ) is the Heavyside step function 
and ρ is the density. The value of the pair 
correlation function at contact, G(σ), obtained 
from Eq.2 is 

 
            G(σ) =  1 / (1 - σρ)                     (3) 
  
Knowledge of G(σ) is important because it is 

directly related to the equation of state[4]; i.e. 
the variation of the compressibility factor, Z, 
with density. The compressibility factor is 
defined as 

 
           Z = Pβ /ρ                 (4) 
 

where β is 1/kBT (kB is Boltzmann's constant 
and T is the absolute temperature), and P is the 
pressure.  In the case of hard particles Z is 
independent of the temperature. Then the 
equation of state[6] is related to G(σ) by 

 
                  Z = 1 + ρB2G(σ)                          (5) 
 

Here, B2 is the second virial coefficient which 
has the value σ for an infinite number of 
particles in one dimension[7]. 
 
  Substituting Eq.3 into Eq.5 yields the well-
known one-dimensional Tonks[8] equation of 
state: 

 
         Z = 1 / (1 - σρ)                                    (6) 
 
To be able to compare computer simulations 

of hard particles with theoretical results, an 
expression of G(X) for finite N is required. 
Early work by Leff and Coopersmith[9] and 
Flicker[10] obtained an equation for G(X) for 
finite N in the special case of particles confined 
to a line with hard walls at 0 and L. Leff and 
Coopersmith  were able to show that wall effects 
disrupted the translational invariance and hence 
the uniformity of both the density and the pair 
correlation function. Flicker demonstrated that 
the Salsburg, Zwanzig and Kirkwood result, 

Eq.2, was recovered from the finite hard wall 
case in the thermodynamic limit. Later, Bishop 
and Berne[11] examined the case of finite N in a 
periodic system, a ring in one dimension. The 
problems of non-uniformity caused by the hard 
walls do not exist in this periodic case. Their 
analysis was performed by considering a single 
permutation of the confined particles. Their 
equation for G(X) is 

 
         N - 2 
 G(X) = ∑ (X - (N1+1)σ)N1 [1 - (X - (N1+1)σ) /  
           N1=0 
 

{N (1/ρ – σ)}]N-N1-2 (N-1)! θ1 θ2 / [ρ N1! (N - N1 - 2)!  
 
 (1/ρ - σ)N1+1 NN1+1]                   

                                                                                           (7) 
 

Here θ1 = θ(X - (N1+1)σ) and  
θ2 = θ(L - X + (N1 + 1 - N)σ). 

 
The thermodynamic limit is independent of the 

boundary conditions employed for the ends of 
the line. This can be seen from Eq.7 which 
reduces to Eq.2 in the thermodynamic limit.  
The finite G(σ) which Eq.7 predicts has an N-
dependence given by 

 
  G(σ) =  (1 – 1/N) / (1 - σρ)                          (8)      
  

Computer  Simulation 
 
The periodic one dimensional hard particle 

system has also been studied with a Monte 
Carlo (MC) computer simulation[12-15] 
method.   In this kind of simulation a random 
walk, which asymptotically converges to the 
exact result after a large number of steps, is 
performed. A variety of interesting questions are 
associated with the MC procedure such as: how 
many steps are needed for convergence, what is 
the statistical error in the result, and how large 
must N be for G(X) to be indistinguishable from 
the thermodynamic limit? 

 
 To model a periodic system the particles are 
started at fixed positions on a ring and this 
permutation of particles is maintained 
throughout the simulation in order to be able to 
compare with theoretical predictions. Particles 
are moved by the standard Metropolis MC 
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method[12] until an equilibrated state is 
achieved. The details of this computation for 
any dimension are given in Bishop, Whitlock 
and Klein[16] but the key ideas for one 
dimensional systems can be summarized as 
follows. The number of particles and the 
number density of the state of the system of 
interest are pre-selected input parameters. These 
determine the circumference, L, of the system 
simulation ring: L = N/ρ.                 
                             

The simulation proceeds by attempting to 
move, in turn, each of the particles in the 
simulation ring. A pass is defined as a sequence 
of steps in which an attempted move is made for 
each of the N particles. To move a particle from 
its original location, Xoriginal, a uniform random 
number, RN, between 0 and 1 is generated and 
used to select a new trial position, 

 
 Xtrial = Xoriginal + (2 * RN - 1) * MAXD    (9) 
 
Here, MAXD is the maximum magnitude of 

an allowed displacement measured from the 
particle’s center of mass. It is the largest 
possible move. A move is rejected whenever a 
particle overlaps another particle. If the 
attempted displacement is too large, the chance 
of an overlap with another particle will be great 
and too many moves will be rejected. However, 
if the displacement is too small, the simulation 
will not adequately converge. At low densities, 
when the particles are far apart, the maximum 
displacement should be large whereas at high 
densities it must be small enough so that a 
particle can never pass through or over one of 
its nearest neighbors since in this case a single 
permutation of particles is being simulated. If 
the new position is not accepted, the test particle 
remains at its current location. The acceptance 
ratio, AR, the number of accepted moves 
divided by the number of total moves, is 
monitored. This ratio, as well as MAXD for 
each density, is listed in Table I. The values of 
the MAXD have been determined with short 
runs. Standard periodic boundary conditions 
[17] are employed. This means that if a particle 
is moved such that X becomes either less than 0 
or larger than L, an identical particle is placed in 
the ring at position modulo L. This procedure 

insures a ring geometry and maintains the 
selected permutation for the one dimensional 
system. 

 
Since the successive positions of the particles 

are not independent, it takes many passes to 
converge from the initial state to an equilibrated 
or converged state. Only converged passes are 
employed in the final calculations. Hence, some 
number of passes must be discarded; we refer to 
these discarded passes as the pre-equilibrium 
stage (PreEq in Table I). Typically, on the order 
of 104 - 105 passes are needed in order to 
achieve convergence. Then an additional fifty 
thousand to a million passes are generated 
(PostEq in Table I) for analysis; the actual cpu 
timings ranged from 4 to 100 minutes. 

 
Even after the converged regime is attained 

there is still serial correlation between each pass 
in the MC process. Here, we have handled this 
problem by two methods. First, we compute 
G(X) only at fixed intervals of 10 to 500 passes 
depending upon the density. This procedure 
allows some of the serial correlation to dissipate 
from the previously calculated value of G(X). 
Secondly, and considerably more effectively, 
statistically independent sets of simulations are 
carried out in parallel. These individual results 
are then averaged together. 

 
The attainment of the converged state is an 

important prerequisite for the reliability of 
computer simulations. In our calculations the 
following order parameter[18], O, was utilized 
to decide when the system had converged. 

 
           N 
    O = ∑  cos(4πXi ρ)  / N                           (10)       
         i = 1  
  

Here, Xi is the position of the i-th particle. The 
order parameter has a value of 1 for a 
completely ordered lattice and randomly 
oscillates about 0 when the system has 
equilibrated in the fluid state. At this point all 
PreEq passes are discarded and the simulation is 
continued for PostEq additional passes. 
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In Figure 2 the convergence of the MC result to 
the exact expression of Eq.2 is shown at a single 
density, ρ = 0.5. Whereas this figure seems to 
show that N = 100 is a large enough system to 
essentially mirror the infinite case, the G(σ) 
values in Table I indicate that systems with N = 
1000 are needed to approximate the infinite 
result. 

The numerical representation of the pair 
correlation function is calculated by computing 
a histogram of the average number of particle 
separations as a function of separation distance 
(see Allen and Tildesley[17]).  This histogram is 
normalized by dividing by the differential 
"volume" occupied by the particles, 2∆X, and 
the actual number density of particles, ρ. 

 
Sample Monte Carlo codes are available from 

many sources; see for example, Gould and 
Tobochnik[4] and Allen and Tildesley[17]. 
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Results 

 
The one dimensional hard particle system has 

been simulated for a variety of reduced densities 
ρ = 0.1 to 0.7 and a range of particle numbers 
(N = 10, 100 and 1000).  Figure 1 presents a 
comparison of G(X) determined by our MC 
simulations with the exact finite N expression of 
Eq.7 when N = 10 and the exact expression of 
Eq.2 when N = ∞.  A range of densities studied 
are illustrated: ρ = 0.1, 0.3, 0.5, and 0.7. We 
find that our MC calculations fluctuate about the 
exact finite N pair correlation function result but 

Figure 2: The variation of the pair correlation 
function, G(X), for different numbers of 
particles and ρ = 0.5; line: thermodynamic limit 
exact result Eq.2, diamonds: N = 10, plus: N = 
100, and circles: N = 1000. 

 that there are significant differences from the 
thermodynamic limit G(X).  The statistical 
errors in G(X), which are of order 10-3, are 
smaller than the plotted symbols. 

 
 Table I contains the details of all of the MC 
runs and comparisons among our MC 
simulations, the finite G(σ) predicted by Eq.8 
and the thermodynamic limit given by Eq.3.    

 
To estimate an empirical error on the 

extrapolated G(σ) value, the first five G(X) 
points for which X is greater than σ are fit[19] 
by a linear least-squares line varying each point 
by 1.96 standard deviations; i.e. the 95% 
confidence interval.  This fitting procedure is 
shown in Figure 3 where a variety of densities 
and number of particles are presented. 
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The error estimates range between 1 X 10 -3 

and 5 X 10 -3. These errors on G(σ) do not 
include any contributions from extrapolation 
which would make the errors larger. The 
extrapolated MC G(σ) values follow the trend of 
the finite N predictions. As expected, these 
values approach the thermodynamic limit as N 
increases.  The  largest  discrepancy  is observed 

Figure 1: The variation of the pair correlation 
function, G(X), for different densities when N = 
10. Dashed line: thermodynamic limit exact 
result Eq.2, solid line: finite N result of Eq.7, 
diamonds: ρ = 0.7, squares: ρ = 0.5, circles: ρ = 
0.3 and triangles: ρ = 0.1. 
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TABLE I   Results for G(σ) 
 

ρ N PreEq PostEq MAXD AR MC Finite    
N 

Infinite 
N 

0.10     10     8000 1000000   2.00 0.90 0.992 1.000  
0.10   100 100000   200000   2.00 0.90 1.090 1.100  
0.10 1000 300000   600000   2.00 0.90 1.110 1.110 1.111 
0.30     10    8000 1000000   1.20 0.80 1.293 1.286  
0.30   100    8000     50000   1.20 0.78 1.426 1.414  
0.30 1000    8000     50000   1.20 0.79 1.428 1.427 1.429 
0.50     10    8000 1000000   0.80 0.71 1.750 1.800  
0.50   100    8000     50000   0.80 0.69 1.981 1.980  
0.50 1000    8000     50000   0.80 0.69 1.993 1.998 2.000 
0.70     10    8000 1000000   0.40 0.67 2.996 3.000  
0.70   100    8000     50000   0.40 0.65 3.272 3.300  
0.70 1000    8000     50000   0.40 0.65 3.314 3.330 3.333 
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1) Investigate the number of pre-equilibrium 
steps needed for convergence at different 
densities by noting how G(X) changes as you 
vary the number of discarded passes. Figure 3: The extrapolation to contact of the 

pair correlation function, G(X), for different 
particle numbers and densities. Solid lines: 
linear fit using the first five points, triangles: ρ = 
0.1 and N = 1000, circles: ρ = 0.3 and N = 10, 
squares: ρ = 0.5 and N = 100, and diamonds: ρ = 
0.7 and N = 1000. 
 
for the N = 10 value. The overall N-dependence 
behavior of the MC G(σ) mimics that predicted 
by the finite results. 
 

Conclusion 
 
We have investigated one dimensional periodic 
hard particle systems by Monte Carlo 
simulations for a variety of particle numbers and 
densities. The MC G(X) values agree with the 
theoretical finite N predictions.  Moreover, the 
higher N value results approach the 
thermodynamic limit and validate the accuracy 
of the computer model. 

 
 

Possible  Projects 
 
Change one of the published MC codes to 

study one dimensional systems.  Start the N 
particles on a one dimensional lattice with N = 
10 and study a variety of densities. 

 

 
2) For the same number of pre-and post-

equilibrium steps calculate G(X) for different 
initial random number seeds. How sensitive is 
G(X) to the different random number 
sequences? 

 
3) Fit a straight line to each G(X) obtained 

from project 1 and/or project 2. How does the 
resultant G(σ) value depend upon these 
parameters? 

 
4) Use the G(σ) values listed in the table to 

compute Z and then plot Z vs. ρ compared to the 
Tonk's equation of state. 
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