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Abstract 

 
Microsoft Excel is a powerful tool that can 

substitute high-level programs to solve complex 
problems. The undergraduate and graduate 
students can use the Microsoft Excel 
spreadsheet and its macro capabilities to solve 
many complex problems without writing codes 
in any high-level programming language. This 
paper describes a method of solving partial 
differential equation for heat diffusion problems 
using the Excel spreadsheet. Temperature 
profile of grains stored for a period of two and a 
half years was used in developing this method. 
A one dimensional heat diffusion equation was 
transformed into finite difference form and used 
the Microsoft Excel to predict the temperature 
distribution of the grain mass in an upright 
storage bin with respect to the variation of the 
outside air temperature.  Certain Excel cells 
were populated with inputs and parameters 
related to the finite difference equations.  Some 
macros were written to fit the iteration 
requirements for the solution.  The solution 
agreed well to the measured grain temperatures.  
The built-in graphics utility of Excel was used 
to produce an instantaneous visual effect to the 
computed result. 
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Introduction 
 
Commercial software or custom programs are 

usually used in studying complex problems.  
Commercial programs are versatile in nature; 
however still they may have limitations to 
certain conditions of problems.  Custom 
program requires adequate programming skills 
of the researchers.  Students who are not 
proficient in writing their own codes, may 

consider Microsoft Excel spreadsheet as an 
alternative to suit the needs of solving 
diversified problems. Ketkar and Reddy[3] used 
Microsoft Excel for numerical solution of an 
unsteady state heat equation.  This paper 
describes the use of Microsoft Excel in solving a 
heat diffusion problem with varying boundary 
conditions 

 
Large grain storage bins are usually 

constructed with concrete materials.  A concrete 
structure is deterrent to insect infestation and 
heat diffusion.  However, heat diffusion into and 
out of bin depends on the temperature 
differentials between either sides of the bin wall.  
Temperature is the most crucial factor limiting 
the distribution and abundance of insects, mites 
and fungi that contaminate and destroy stored 
grains (Yaciuk, et al, [6]).  Seasonal variation of 
outside air temperature changes the temperature 
profile throughout a grain bin.  Grains are 
usually stored at safe moisture content.  
However, a change in grain temperature may 
cause its moisture content change beyond its 
safe level initiating qualitative and quantitative 
damage. 

 
The grains towards the periphery of a bin 

respond more quickly to the outside air 
temperature variation than the grains towards 
the center of the bin.  During summer months 
the temperature around the bin increases.  The 
increase of grain temperature towards the center 
of the bin lags behind the external increase of 
temperature.  Similarly as the external 
temperature drops during the winter months, the 
drops of grain temperatures lag behind the 
external temperature drops. 

 
This paper uses the data used by Bala et al [1] 

on wheat stored for two years and a half in a 
concrete bin of 778.7 m3 capacity with a 
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diameter of 5.5m and a height of 33.5m located 
in Cheney, Kansas.  Thermocouples were placed 
at different locations along the radial direction 
to measure grain temperature for the duration of 
storage.  A horizontal cross-section of the bin is 
shown in Figure 1. Bala et al[1] wrote computer 
programs on both the Finite Element and Finite 
Different Methods to simulate grain 
temperatures.  But nobody used a simple 
spreadsheet calculation method to simulate 
transient problem. 

 

 
 
Figure 1 Horizontal cross-section of the bin 

with three thermocouple locations (Figure not 
drawn to scale) 
 
 

To develop a one dimensional finite difference 
model, the following assumptions were made: 

 
• The heat flow pattern was assumed to be 

symmetric around the vertical axis of the bin 
• There was no heat flow in the vertical 

direction 
• The physical and thermal properties of grain 

was uniform throughout the bin 
• There was no heat generation within the 

grain mass 
 
 
 
 

Finite  Difference  Model  for  Heat  Flow 
 
The following partial differential equation 

describes transient heat transfer in the radial 
direction. 
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where 

      T = temperature, o C 
  t =  storage time, hour 
  r = radial distance from the center of  
             bin, m 
      α = thermal diffusivities of grain, bin  
              wall materials, and air, m2/hour 

 
Analytical solution of this equation is difficult 
due to the fact that the diffusivity of the three 
materials are not equal and that the measured 
boundary condition is not a continuous function 
of time.  The finite difference formulation of 
equation 1, embedding the Crank-Nicholson’s 
implicit technique[2] is shown in equations (2) 
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                                                    (2) 
where  
      ∆r = discrete distance along the radial  
                      direction of the bin, m 
    ∆t = length of time (time step)  
                     between times j and (j+1), h 
       i = node identity, 0 < i < n (Figure 2) 
     Ti = known or estimated temperature 
                     at time j 
  Tj+1 = temperature to be predicted at  
                      time, j+1 
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                                        Figure 2   Discrete nodes along radial direction of the bin. 
 
 
Equation (2) can be rearranged for the known 

and unknown temperatures as shown below 
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Equation (3) is valid for predicting nodal 

temperatures for nodes 1 through (n-2) covering 
only the grains.  At node 0, equation (2) is 
indeterminate because the radius is zero.  Nodes 
(n-1) and n involve the diffusivities of the bin 
materials and of the air.  Individually modified 
equations for these nodes are given below. 

 
Equation for node 0 is  
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Equation for node (n-1) is  

 
 

 
Where α1 = diffusivity for the materials  
                        in between the node (n-1)  
                        and node n 
 α2 = α = diffusivity of grain 
 α3 = diffusivity for materials in 
                        between the node (n-2) and 
     node n 

 
Equation for node n is  
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where  α11 = diffusivity of air 
 α22 = diffusivity of materials in  
                      between node (n-1) and node n 
 α33 = diffusivity of materials in  
                      between node (n-1) and a node in  
                      air away from node n 
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Finite  Difference  Nodes 
 
In this study the radial dimension of the bin 

was discretized into 9 equal sections with 10 
nodes. These nodes, as mentioned in equations 
(3), (4), (5) and (6), are shown in Figure 2. 

 
According to the principle of the finite 

difference method, the temperature at the next 
step time (at time j+1) at node i will be 
estimated based on the current temperatures at 
nodes (i-1), i, and at (i+1). Figure 3 explains this 
scheme. 

 

 
 

Figure 3 Nodal temperatures at two time spaces. 
 
 

Excel  Spreadsheet  Implementation 
 
The finite difference method yields 10 

equations for 10 nodes to find 10 unknown 
temperatures at time t + ∆t. This forms a matrix 
equation of the following format: 

 
                                AT = H 
where  

A =  tri-diagonal constant matrix as 
function of the thermal 
diffusion properties of grain, 
bin wall materials and outside 
air,  

T =    vector    of    unknown    nodal 
temperatures at time, t + ∆t (i.e. 
time, j+1) 

 
 
 
 
 

 
H =   known vector as function of the 

thermal diffusion of grain, bin 
wall materials and outside air 
temperatures and known nodal 
temperatures at time, t (i.e. 
time j)  

 
Matrix A is generated from the constant 

coefficients of nodal temperatures at time j+1 
from equations (3)-(6).  Vector H is computed 
each time from the known values at time j. 
 
Equations  in  the  Spreadsheet 

 
Entries in matrix A and in vector H are 

functions of diffusivities of grain, bin wall 
materials and of air and nodal distances from the 
center.  Physical and thermal properties as 
shown in Table 1 are entered in the spreadsheet.  
Formulas for diffusivities of the three materials 
are entered. Also entered are the nodal distance 
(∆r) and the amount of time step (∆t).   

 
Table 1. Physical and thermal properties of 
wheat and concrete. 

 

 

Properties Wheat* Concrete** 
Density, kg.m-3

Specific heat, kJ.kg-1.oK-1 

Thermal conductivity, W.m-1oK-1

863.0 
1.757 
0.572 

1950.0 
0.653 
1.082 

* Yaciuk et al[6]       **Mohsenin[4] 
 
 

Figure 4 shows matrix A and vector H on a 
Microsoft Excel spreadsheet. The three 
coefficients at time j are shown in three columns 
right before the column for vector H.  The 
spreadsheet multiplies these coefficients with 
corresponding known temperatures at nodes 
including the air temperatures for the surface 
equation to determine the individual entries of 
vector H. 
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                      Figure 4   The constant tri-diagonal matrix and the known vector H derived from  
                                        the thermal diffusion properties of gain, bin wall materials and air. 

 
 
Equation (4) for the node at the center of the 

bin has two coefficients each at time j and time 
j+1.  Therefore, the first row of matrix A has 
two entries b1 and c1.  Likewise vector H has 
two entries fi and gi.  As for examples, the 
following coefficients are extracted from 
equation (4). 
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For each of the intermediate nodes as seen in 

Equation (3), there are three entries, ak, bk and 
ck for matrix A and three entries, ek, fk, and gk 
for vector H.  The Equation (6) for node n has 
two coefficients at time j+1.  Therefore, the last 
row of matrix A has two entries.  However, the 
vector H has three entries because the third one 
comes from the coefficients of ambient air 
temperatures at time j and at time j+1. 

 
 
 

 
Appropriate equations were written for each 

entry in matrix A and for each entry in vector H. 
Matrix A is a tri-diagonal matrix as shown in 
Figure 4.  Solution for the unknown 
temperatures can be found efficiently using the 
method described by Thomas[5]. 

 
The boundary air temperatures were measured 

at an interval of 15 days (360 hours).  Time step, 
∆t, was considered as 1, 12, 24, 36, 72, and 360 
hours.  Any temperature in between two 
measured temperatures was calculated by 
straight-line interpolation method.  Iterative 
computation was done using the macro 
capability of the Excel application. 

 
Results  and  Discussion 

 
The measured and the predicted grain 

temperatures were found to have very good 
agreement during the total storage period of 780 
days.  These are exhibited in Figures 5, 6 and 7 
at distances 2.61, 1.39 and at 0.18m from the 
center of the bin respectively.  Simulated results 
were found to be stable for all time steps of 1, 
12, 24, 36, 72 and 360 hours.  These Figures are 
based on a time step of 360 hours. 
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The time difference between (j+1) and j was 
considered as the time step (∆t).  Prediction at 
time (j+1) was based on the prediction made 
time j. A smaller time step is supposed to yield a 
better prediction.  However, the variation of 
predicted temperatures for ∆t = 360 hours and 
that for ∆t = 1 hour was found to be very 
minimal. At ∆t = 1 hour, however, the bin 
surface temperatures agreed exactly with the 
ambient air temperatures.  This shows the 
degree of accuracy of this simulation. 

 
The use of ∆t = 360 hours as time step requires 

a total of only 53 predictions for the total period 
of storage.  The use of ∆t = 1 hour as time step 
requires 360 intermediate predictions for every 
15 days resulting in a total of 18,720 predictions 
for the same period of storage.  This extra 
fineness (∆t = 1 hour) does not produce any 
appreciable improvement in the simulation 
result except the exact air temperature at the 
surface of the bin.  In other words, the time step 
of ∆t = 360 hours is good enough to obtain the 
desired prediction result.  The variation between 
the predicted and measured temperatures may 
be attributed to other factors, such as, 
assumptions used in this study, possible errors 
in measurement of temperatures, uncounted 
external  temperature  variations   between   two  

 
 

successive measurement at an interval of 15 
days, etc. 
 

Daily variations of outside temperature cause 
changes in the stored grain with some time 
delay effect. The grain temperature cycle lags 
behind the outside air temperature cycle. The 
lag time increases towards the center of the bin.  

 
Figure 5 shows temperature profile of grains 

close to the bin wall.  Here in this Figure the 
grain temperature follows very closely to the 
outside temperature profile throughout the 
storage period.  Also noticed is that the 
predicted temperature agrees better with the 
outside air temperature than the measured 
temperature. 

 
Figure 6 shows temperature profile at a radius 

of 2.61m from the center of the bin while Figure 
7 shows the same near the center of the bin.  

 
The delay of response of grain temperature to 

outside temperature is widely explicit in Figure 
7.  Interestingly, by the time grain attained the 
peak temperature, the air temperature reached to 
its bottom in its cycle.  In other words, the effect 
of high outside air temperature in summer 
caused a rise in the grain temperature at the

 

                               
 

                                Figure 5   Grain temperature responses to the outside air temperature 
                                                           variations at a point close to the bin wall. 
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                                   Figure 6   Grain temperature responses to the outside air temperature  
                                                     variations at 1.39m from the center of the bin wall. 
 

 

                             
 

       Figure 7 Grain temperature responses to the outside air temperature variations near the bin center. 
 

central area of the bin during the following 
winter months. 

 
Figure 8 shows the amount of time the grain 

peak temperatures delayed behind the peak air 
temperatures.  The peak grain temperature at the 
center was 120 days behind the peak outside air  
temperature in the first cycle.  During the 
second cycle of air temperature variation, the 
grain required more time (135 days) to rise to its 
peak temperature compared to the first cycle.  
The  reason  is  attributed  to the fact  that  in the  
 

 
second cycle the air peak rose to about 4 
degrees less than that in the first cycle. 
 

Conclusions 
 
This paper described the development of the 

solution of a finite difference equation and its 
implementation using the Microsoft Excel. The 
predicted results were found to agree pretty well 
with the measured temperatures throughout the 
period of storage.  Finer time steps, as low as 1 
hour,  predicted  grain  temperature  better.  
However,  a  time  steps  as  high  as  360  hours 
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Figure 8   Time lag for grains to reach the peak 
temperatures following the peak outside air 
temperatures. 
 
also produced convergent and stable solution 
and the result is equally acceptable. 
 

This work considered a fixed radial step (∆r = 
0.31m).  A change in the radial step changes the 
number of nodes and hence the number of 
equations.  Thus, for each variation of the radial 
step size, a new matrix A and a new vector H 
are to be formulated in the spreadsheet.  The 
implementation of this approach using the 
spreadsheet may be cumbersome.  Microsoft 
Excel macros can be used instead. This would 
increase the burden on programming and would 
reduce the dependency on the spreadsheet. With 
some innovative efforts, students can easily 
develop macros using the readily available help 
from the Microsoft Excel application.  
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