

 TEACHING ENGINEERING ANALYSIS USING VBA FOR EXCEL

Terrence L. Chambers
Department of Mechanical Engineering

University of Louisiana at Lafayette
PO Box 44170

Lafayette, LA 70504-4170

Abstract

When teaching computer programming to
engineering students there is always some
amount of controversy regarding the language
which should be taught. Traditional choices
were Fortran or C, but more modern choices are
C++, Java, and Visual Basic. This paper
describes an Engineering Analysis class that is
taught primarily using Visual Basic for
Applications (VBA) for Excel. The paper
outlines the reasons for choosing that language,
illustrates how the course is organized, and
describes how well the course has worked in
practice. Certain topics of interest with regard
to VBA for Excel are explored, and sample
programs are included.

Introduction

In many engineering programs a course exists

to teach computer programming to the
engineering student. Sometimes this course is a
standard introductory-level programming course
taught by the Computer Science Department.
However, many schools have decided to teach
this class within the College of Engineering,
since the homework programs in a CS class tend
to have nothing to do with engineering. When
the course is taught within the College of
Engineering, the programming course is often
combined with a Numerical Methods for
Engineers course, since the student can then
learn the numerical methods and programming
skills in parallel.

This paper will describe an Engineering
Analysis course taught at the University of
Louisiana at Lafayette that teaches numerical
methods that are useful to engineers in
conjunction with the VBA for Excel
programming language. First, the reasons for
choosing VBA for Excel will be explored.
Then, the structure of the class will be
described, with particular attention to the order
in which the topics are presented, so that the
students progress at an equal rate in both topics,
numerical methods and computer programming.
A simple VBA for Excel Program is provided to
illustrate the use of that language.

Reasons for Choosing VBA for Excel

The major alternative languages that might

have been chosen for use with this class were
C++ and Java, but a great deal of legacy
engineering code is written in Fortran and C, so
there would be some justification for using one
of these languages as well. Table 1.0 below
compares the above languages plus VBA with
regard to several attributes.

Based on Table 1.0, Fortran and C were

eliminated early because they are not in such
common usage anymore, and because they did
not have as many capabilities as the more
modern languages. The choices therefore, for
this class, came down to C++, Java, and Visual
Basic. C++ was a likely candidate since at this
time most commercial applications are written
in that language. However, it is very hard to

COMPUTERS IN EDUCATION JOURNAL 71

Table 1.0 – Comparison of Programming Languages.

 Fortran C C++ Java Visual
Basic

Programming
style

Procedural Procedural Object-
oriented or
procedural

Object-
oriented
only

Procedural
and object-
oriented

Current
usage

Rare Fairly
common

Very
common

Common Common

Engineering
calculations

Easy Fairly easy Fairly easy Fairly easy Easy

Development
of graphical
user interfaces

Hard Hard Hard Fairly easy Very easy

Used as a
macro
language

No No No No Yes

Web
scripting

No No No Yes Yes

Compiler
Needed

Yes Yes Yes No No

write programs that have a graphical user
interface using that language. As a result, it was
felt that if C++ were selected it would take two
semesters worth of training to get the student
proficient enough to write practical programs
with a modern Windows-based graphical user
interface. Since we did not have two semesters
available for this topic in our curriculum, C++
was eliminated. It is worth noting that Mason
and Cornwell[1] have recently addressed this
problem by creating a C++ programming shell
to simplify the development of C++ graphical
user interfaces. That is another possible
approach.

Java and Visual Basic stack up fairly well one

against the other. One characteristic of Java is
that it is purely object-oriented. Although we
wanted to expose the students to object-oriented
programming, we did not want to force that
rather advanced programming concept upon
them too early. In Java you have to understand
objects before you can create your very first
program. Visual Basic has both procedural and
object-oriented features, but the object-oriented
features that are forced upon the student early

on are “visual,” and therefore very easy to use.
Both Java and Visual Basic can boast of features
that are not available in the other languages,
such as a scripting language (either Javascript or
VBscript) that can be used in web page
development, and the fact that both languages
can be used either with or without a compiler.
We finally chose Visual Basic. The main factor
that caused us to select VB over Java was the
fact that it is used as the macro programming
language for all the Microsoft Office products,
including Excel, as well as many engineering
programs such as the Solidworks CAD program.
It was felt that the leverage that one gains by
learning a language that is used so extensively
as a macro language would be very beneficial to
the student. Naraghi[2] and Thomas et al.[3]
recently reported the use of VBA/Excel in
Freshman Engineering classes. In those cases,
VBA/Excel was chosen for many of the same
reasons cited here.

Once the decision was made to use Visual

Basic, a further choice existed between the
standalone programming environment, such as
that contained in VB 6, VB.Net, and VB 2005,

72 COMPUTERS IN EDUCATION JOURNAL

or the embedded Visual Basic for Applications
(VBA) environment that comes standard in all
Office products. We chose VBA for Excel for
two reasons. First, the standalone language has
been undergoing major revisions lately, with a
big difference existing between the VB 6
version and the VB.Net versions, while the
VBA environment has been quite stable. The
second reason is that the standalone
development environment is not always
available to the student after leaving school,
whereas it is considered very likely that the
graduate will have access to Microsoft Excel,
which contains VBA.

Structure of the Class

The course is organized as a 3 credit hour class

with two hours of lecture and three hours of lab.
Normally, a new numerical method is taught
each week during the lecture periods and the
programming topic for the week is taught during
lab. Steven Chapra has written both a numerical
methods book and a programming text that
work well with this class[4, 5]. After the
programming topic has been introduced during
the lab period, the students write a program to
implement the numerical method that has been
discussed in the lecture periods.

A complete syllabus for the course is shown in

Appendix A. The important feature to notice,
however, is that the course is designed so that
the student can write a very basic program
during the very first lab class, and that the order
of the numerical methods topics have been
arranged so that the programs the student will
write to implement those topics will increase

slowly in complexity. This insures that as each
week’s numerical method assignment is given,
the student will have the programming skills
necessary to complete the assignment.

The first two weeks of the course vary from

the standard format so that the student can get a
slight head start on their programming skills.
The first lab period is used to refresh the
student’s knowledge of Excel, and to introduce
VBA in its two simplest applications, as a
recorded macro, which requires no
programming at all, or as a user-defined Excel
function, neither of which require a graphical
user interface. Figure 1 below shows the user-
defined function which the students write during
the first lab period. The function is called Cube,
and it calculates the value of x3.

Private Function Cube(x as Double) as Double
Cube = x*x*x
End Function

Figure 1. Sample User-Defined Function.

During the second lab period the students are

introduced to the way that VBA is used to create
graphical user interfaces. In this lesson they
learn how to create a basic window (called a
form), how to create text boxes and command
buttons, how to connect a subroutine to the
command button, and how to get data into and
out of text boxes on the form. This information
is all put together into a simple program that
adds two numbers together. This simple
program becomes the basis of all the other
programs in the class. A screen capture of that
program is shown in Figure 2, while the source
code is given in Appendix B.

COMPUTERS IN EDUCATION JOURNAL 73

Figure 2 – VBA for Excel Addition Program.

The next week of class begins the normal

rotation of two lectures on a numerical method
and one lab period where the students are
introduced to whatever additional programming
techniques are necessary to write the program of
the week. The first topic in numerical methods
is Computer Precision. The programming
topics for the week include a discussion of data
types and of strings, which are used for the first
time in the Computer Precision program, as
shown in Figure 3 below.

Figure 3. VBA for Excel Computer
Precision Program.

In this program, the student learns how to
create, update, and manipulate strings, and how
to create multi-line output in a text box. This
program is a modification of the previous
week’s Addition program. In addition, the
student learns about Computer Precision by
conducting an experiment using the program
shown above.

The next week the students are introduced to

the very important concept of how to
communicate information back and forth
between the program and the spreadsheet. One
of the most pleasing features of using VBA for
Excel as the programming language is that
formulas can be entered on the spreadsheet
rather than hard-coded into the program. For
example, the next numerical method discussed
in this class is Numerical Derivatives (See
Figure 4 for a screenshot, and Appendix C for
the source code). In other languages, the
function that will be differentiated normally
resides in a hard-coded subroutine or function,
requiring the user to modify the program (and
usually to re-compile it as well) every time a
new equation needs to be differentiated. With
VBA for Excel, however, the equation can be
entered as a formula on the spreadsheet. A
subroutine called, “PutData” is created which
will take a double precision variable from the
program and put it into a designated cell on the
spreadsheet (see cell B1 in Figure 4.0 below).
This causes the spreadsheet formula to re-
calculate, and the new function value is then
read into the program from the cell on the
spreadsheet that contains the formula (see cell
E1) using a function called, “Func.” The key
VBA for Excel programming concept is the use
of RefEdit boxes on the form and corresponding
Range type variables in the program to create
pointers in the program to cells on the
spreadsheet. In Figure 4 below, the RefEdit
boxes are boxes designated as, “x Cell,” “h
Cell,” and “f(x) Cell.”

74 COMPUTERS IN EDUCATION JOURNAL

Figure 4. VBA for Excel Numerical
Derivatives Program.

After the Numerical Derivatives program, the

students have most of the user interface
programming skills that they will need to
complete the course, although their skills will
continue to improve as they learn to use
dynamic memory allocation, read and write
matrices to and from the spreadsheet, create an
array function for use directly from a cell in
Excel (a single step simultaneous equation
solver), how to create and write to new sheets in
the Excel workbook, and how to create
programs that incorporate multiple subroutines
and functions in multiple code modules.

During week 10 the students are also

introduced to web programming, HTML, and
VBScript, a subset of Visual Basic that can be
used for client side processing when using
Internet Explorer. Figure 5 shows a screenshot
of the VBScript version of the Newton-Raphson
program to solve for the root of an equation.
Appendix D contains the VBScript source code.

Figure 5. VBScript Newton-Raphson Program.

Results

The Engineering Analysis class at the

University of Louisiana at Lafayette has been
taught using Visual Basic for several years now.
The switch to VBA for Excel, however, has
improved the course in two ways. First, the
language is stable, and second, since the
function to be used can be programmed onto the
spreadsheet, the program does not need to be
modified every time the user wants to operate
on a different function. The students rate the
course very highly, and indicate the workload is
about right for a 3 credit-hour course. There
has always been a high rate of loss of
programming skills in subsequent semesters
unless the students are forced to use their newly
found programming skills in later classes to
cement the knowledge into long term memory.
However, because the students continue to use
Excel in other classes, the students seem to
maintain the programming skills learned in this
class more than if they had to use another
language, such as Java or C++.

COMPUTERS IN EDUCATION JOURNAL 75

Conclusion

The choice of VBA for Excel has been shown

to be an effective choice as a programming
language for engineering students. The choice
is advantageous because: 1) the language is easy
for the students to master in one semester, 2) the
students can easily create graphical user
interfaces for their programs, 3) the language
can be used as a scripting language to create
interactive web pages, 4) the language can be
used as a macro programming language in all
the Microsoft Office products, as well as several
engineering software packages, such as
Solidworks, and 5) the language is embedded in
Excel, which will likely be available in the
workplace, thus making it more likely that the
student will actually make use of the
programming skills after graduation.

The students have responded well to the

change to this programming language and have
demonstrated an ability to become quite
competent in its use in one semester.

References

1. Mason, G., Cornwell, R., 2007, “A C++

Programming Shell to Simplify GUI
Development in a Numerical Methods
Course,” Computers in Education Journal,
Vol. XVII, No. 2, April – June, 2007, pp 66
– 73.

2. Naraghi, M. H. N., 2007, “VBA/Excel: An

alternative Computer Programming Tool for
Engineering Freshman,” Computers in
Education Journal, Vol. XVII, No. 2, April
– June 2007, pp 74 - 80.

3. Thomas, G. E., Minnick, M. V., Gang, D.,

2006, “Evolution of a Freshman Software
Tools Class,” Computers in Education
Journal, Vol. XVI, No. 3, July – September
2006, pp 40 - 49.

4. Chapra, S., Power Programming with

VBA/Excel, Prentice-Hall E-Source, 2003.

5. Chapra S., Canale, Numerical Methods for
Engineers, 5th ed., McGraw-Hill Book
Company, New York, 2003.

Biographical Information

Dr. Chambers currently serves as an Associate

Professor of Mechanical Engineering at the
University of Louisiana at Lafayette. His
research interests include engineering design
and optimization, artificial intelligence, genetic
algorithms and genetic programming,
engineering software development, and numeric
and symbolic solutions to engineering problems.
Prof. Chambers is a registered Professional
Engineer in the state of Louisiana.

76 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 77

Appendix A

MCHE 301 Class Schedule
(Note: PP refers to reference [4], and NM refers to reference [5]).

Week Monday Lecture

(Reading)
Wednesday Lecture
(Reading)

Wednesday Lab
(Reading)

1 Martin Luther King
Holiday

Intro to Programming
(PP Chap 1)

Excel Tutorials
Basic VBA/Excel
(PP Chap 2 – 4)

2 Modular Programming
(PP Chap 5)

Object Oriented
Programming and
Debugging
(PP Chap 6 - 7)

Addition Lab
Custom Dialog Boxes
(Chap 15)

3 Computer Precision
(NM Chap. 3)

Data Types (PP Chap 8)

Computer Precision Lab
Computations and Strings
(PP Chap 9 - 10)

4 High Accuracy
Numerical
Differentiation Methods
(NM Sec. 23.1)

High Accuracy
Numerical
Differentiation Methods
(NM Sec. 23.1)

Num. Derivatives Lab
Structured Programming
Decisions (PP Chap 11)

5

Roots of Equations
Bracketing Methods
(NM Chap. 5)

Roots of Equations
Open Methods
(NM Chap. 6)

Newton-Raphson Lab
Structured Programming
Loops (PP Chap 12)

6 Numerical Integration
(NM Sec. 21.1 - 21.2)

Numerical Integration
(NM Sec. 21.1 - 21.2)

Simpson's 1/3 Rule Lab
Arrays (PP Chap 13)

7 Mardi Gras Mardi Gras Mardi Gras
8 Ordinary Differential

Equations. Euler’s
Method
(NM Sec. 25.1, 2)

Ordinary Differential
Equations. Runge-Kutta
Method (NM Sec. 25.3)

Runge-Kutta Lab
Files (PP Chap 14)

9 Linear Algebra Linear Algebra Midterm Exam
10 Linear Algebra HTML, VBScript VBScript Lab
11 LU Decomposition

(NM Chap. 10)
LU Decomposition
(NM Chap. 10)

LU Decomposition Lab
Linear Algebra HW

12 Curve Fitting
(NM Chap. 17)

Curve Fitting
(NM Chap. 17)

Curve Fitting Lab

13 Easter Easter Easter
14 Simultaneous Non-

linear Equations
(NM Sec. 6.5)

Simultaneous Non-linear
Equations
(NM Sec. 6.5)

Multiple Newton-Raphson
Lab

15 Higher Order ODE's
(NM Sec. 25.4)

Higher Order ODE's
(NM Sec. 25.4)

Multiple Runge-Kutta Lab

Appendix B

Sample VBA for Excel Program

Code for Addition Program in Figure 2.0

Private Sub cmdCompute_Click()
 Dim a As Double, b As Double, c As Double

 If (IsNumeric(txtA.Text)) Then
 a = txtA.Text
 Else
 MsgBox "Please enter a numeric value for A"
 Exit Sub
 End If

 If (IsNumeric(txtB.Text)) Then
 b = txtB.Text
 Else
 MsgBox "Please enter a numeric value for B"
 Exit Sub
 End If

 c = a + b
 txtC.Text = c
End Sub

78 COMPUTERS IN EDUCATION JOURNAL

Appendix C

Sample VBA for Excel Program

Code for Numerical Derivative Program in Figure 4.0

Private Sub cmdCalculate_Click()
 Dim x As Double, h As Double, dfdx As Double, f As Double
 Dim rngVar As Range, rngH As Range, rngFx As Range

 If (frmDeriv.refX.Value = "") Then

i = MsgBox("Must select a cell for the x variable.", vbOKOnly And
vbApplicationModal, "Error")

 Exit Sub
 End If
 Set rngVar = Range(frmDeriv.refX.Value)

 If (frmDeriv.refH.Value = "") Then

i = MsgBox("Must select a cell for the h variable.", vbOKOnly And
vbApplicationModal, "Error")

 Exit Sub
 End If
 Set rngH = Range(frmDeriv.refH.Value)

 If (frmDeriv.refFx.Value = "") Then

i = MsgBox("Must select a cell for the function.", vbOKOnly And
vbApplicationModal, "Error")

 Exit Sub
 End If
 Set rngFx = Range(frmDeriv.refFx.Value)

 Call GetVar(rngVar, x)
 Call GetVar(rngH, h)

 dfdx = (Func(x + h, rngVar, rngFx) - Func(x, rngVar, rngFx)) / h
 txtFx.Text = dfdx

 Call PutVar(x, rngVar)
End Sub

Private Sub PutVar(x As Double, rngVar As Range)
 rngVar.Value = x
End Sub

Private Sub GetVar(rngVar As Range, x As Double)
 x = rngVar.Value
End Sub

Private Function Func(x As Double, rngVar As Range, rngFunc As Range) As
Double
 Call PutVar(x, rngVar)
 Func = rngFunc.Value

COMPUTERS IN EDUCATION JOURNAL 79
End Function

Appendix D

Sample VBA for Excel Program

Code for VBScript Newton-Raphson Program in Figure 5.0

<HTML>
<title>Newton-Raphson Method</title>
<!--Comment-->
<head>
<script language="VBScript">
<!--
Sub cmdCalculate_OnClick()
 Dim x, eps, f, i, output

 if (IsNumeric(txtX.Value)) then
 x = txtX.Value * 1.0
 else
 MsgBox "Enter a numeric value for x."
 Exit Sub
 end if

 if (IsNumeric(txtEps.Value)) then
 eps = txtEps.Value * 1.0
 else
 MsgBox "Enter a numeric value for eps."
 Exit Sub
 end if

 i = 0
 f = Func(x)
 output = "Iter = " & i & ", x = " & x & ", f = " & f & vbCrLf
 Do
 i = i + 1
 x = x - f / Deriv(x)
 f = Func(x)
 output = output & "Iter = " & i & ", x = " & x & ", f = " & f & vbCrLf
 If (i > 20) Then
 MsgBox "Does not converge after 20 iterations."
 Exit Do
 End If
 Loop While (Abs(f) > eps)

 MsgBox = output
 'txtOutput.Value = output
End Sub

Function Func(x)
 Func = x + 2 - Exp(x)
End Function

Function Deriv(x)
 dim h

80 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 81

 h = 0.0001
 Deriv = (Func(x + h) - Func(x)) / h
End Function
-->
</script>
</head>

<body>
<h1>Finding the root of x + 2 = Exp(x)<p>
using the Newton-Raphson method. </h1>
Enter the function (as shown below):<p> <textarea name=txtOutput rows=10
cols=60>
Function Func(x)
 Func = x + 2 - Exp(x)
End Function
</textarea><p>
Enter x: <input type=text size=40 ID=txtX Value="2"><p>
Enter eps: <input type=text size=40 ID=txtEps Value="0.001"><p>
<input type=Button Value="Calculate" ID=cmdCalculate><p>
Results:<p>
<textarea name=txtOutput rows=10 cols=60>
</textarea>
</body>
</html>

	PO Box 44170

