
USING A MICROCODED DATA PATH TO INTRODUCE
THE DATA PATH AND CONTROLLER PARADIGM

Jonathan Hill

Electrical and Computer Engineering Department
University of Hartford

Abstract

I regularly teach a course in VHDL and

typically find that students struggle with the
data path and controller (DPC) paradigm. The
notion of the paradigm is that many systems,
including microprocessors and peripheral
devices, in theory or in practice are constructed
of a data path that essentially performs the
“work” of the system, along with a state
machine that controls the behavior of the data
path. This paradigm is essentially the register-
transfer system level, which helps students to
better understand many types of devices. The
notion of the DPC paradigm is relevant not only
to VHDL but to other hardware description
languages including Verilog as well. Students
generally find that coming to terms with such an
advanced topic takes time and is at least as
significant as a step forward as grasping the
concept of state machines in logic circuits.

I have found that a data path constructed with

simple components combined with a
microcoded state machine aids students in
overcoming the hurdle of mastering the DPC
paradigm. The discussion of microcoding here
is limited to that needed to complete the project.
It is not my intention to develop an interpreter to
construct a conventional microprocessor.
Rather, as a programming language in its own
right, microcoding provides a means to present
the DPC paradigm in a convincing way.

An amazing thing about the paradigm is that a

simple data path constructed with an arithmetic
logic unit (ALU), multiplexers, and a few
registers, along with a controller, can provide
such varied and complex behavior.
Furthermore, with such flexibility in design it is
relatively easy to make changes for the project
to be different each semester. The first version

produced the Fibonacci sequence, and a more
recent version incorporates external memory for
the Sieve of Eratosthenes, producing prime
numbers. Another version is the traditional
Hello World program. Such a system also
provides a context in which memory systems
and peripheral devices can be presented and
discussed.

This project has proven to be educationally

valuable and is regularly assigned in my VHDL
course. This paper outlines the DPC paradigm,
introduces the microcoded data path (MDP)
project, and outlines the how the MDP can be
used as a context for advanced topics such as
memory systems and peripheral devices,
touches on some exercises, and presents student
feedback.

Introduction

Every fall semester I teach an introductory

course in VHDL to seniors and graduate
students. The seniors often make use of their
new skills in performing their senior projects
during the following spring semester. Our
graduate students generally take VHDL early in
their course of study and can apply their skills in
research. The course typically involves four
projects that build upon one another. Students
work as individuals and have two weeks to
implement a given project that is demonstrated
in class and one week to write the corresponding
project report.

Our students use Xilinx ISE software[1] to

simulate and implement their projects along
with an inexpensive Field Programmable Gate
Array (FPGA) development board, such as the
Spartan-3 Starter Board[2] outlined in Figure 1.
Of the features, we use the buttons, switches,
LEDs, seven-segment displays, and the RS232-

66 COMPUTERS IN EDUCATION JOURNAL

VGA

RS232

Power

LEDs

Buttons Switches

Seven Seg.
Displays

FPGA

Platform
FLASH

Expansion
Connectors

PS2

JTAG

Figure 1: Spartan-3 Starter Board.

style serial communications port. There is a
50MHz clock oscillator and two 512 kByte
memory devices, which are not shown here.
Two different JTAG connectors are provided to
configure the board. The platform FLASH is
used to make a design permanent. The board
also has a VGA video port, a PS2 keyboard and
mouse port, as well as power and expansion
connectors.

Students in the course are introduced to the
general structure of an FPGA, in which a two-
dimensional array of regular logic blocks along
with an interconnect resource forms what is
called the FPGA fabric. Each logic block can
implement combinational or registered logic or
a RAM or ROM type device. The Xilinx ISE
software itself determines how each such logic
block in the FPGA fabric is to be actually used.
For the projects considered, other than the clock
and the actual input and output devices, the
designs are implemented entirely in the FPGA.

The third project traditionally involves the data

path and controller (DPC) paradigm and
typically is the most challenging and, as such, is
a significant milestone. Other projects
involving the DPC paradigm that are not
necessarily microcoded include an
asynchronous communications device or
UART, a multiplier for signed integers, and a

stopwatch. The microcoded data path (MDP)
project is another means to introduce the DPC
paradigm. In a nutshell, the MDP uses simple
components such as registers, multiplexers, and
an arithmetic logic unit (ALU) along with a
state machine to implement a rudimentary
processor. Tanenbaum[3] as well Mano and
Kime[4] each provide a more general outline of
MDP structures.

I use class examples as well as homework and

other projects to introduce students to the
building blocks used to construct an MDP.
Despite this practical experience, in selecting
the MDP as the third project, students generally
find it to be challenging. To make the
experience even more challenging, the project
can include an external memory system and a
peripheral device such as a serial
communications transmitter. Example
algorithms using the MDP include those that

• Produce the Fibonacci sequence
• Produce prime numbers with the Sieve of

Eratosthenes
• Perform multiplication by repeated addition
• Perform division by repeated subtraction
• Behave as a repeating counter
• Play a simple game involving input and

output

COMPUTERS IN EDUCATION JOURNAL 67

• Produce the serial data message “Hello
World!”

The MDP is presented to students using a

somewhat deductive approach, which is
generally helpful when first introducing such an
idea. Students are given a block diagram that
uses components they already know. In
implementing the given structure, students must
investigate, debug, and demonstrate their own
work. Once the system is complete, the MPD
provides students an inductive approach to
further develop their knowledge. Students are
asked design and analysis type questions to
expand their knowledge and also write their
own microcode programs. Eventually, students
propose their own MDP and DPC structures.

The Data Path and Controller Paradigm

Figure 2 is a general overview of the DPC

paradigm. The data path is essentially where
the work of the system is performed. The
controller is a state machine; it receives status
information and provides control information,
directing the data path to provide the desired
behavior. The external memory system is
optional. It is the interplay between the
controller and data path that makes such a
system so interesting. Based solely on the
control information provided, the behavior of
the data path can be made to be like that of a
very different system.

M
em

or
y

Controller

Status Control

Control

Address

DataData Path

Figure 2: DPC Paradigm Overview.

In the MDP project we regard the external
memory system as optional and agree that the
controller itself contains a program expressed in
microcode. The discussion of microcoding is
limited to that needed to complete the project. It
is not my intention to construct a conventional
microprocessor or machine code interpreter.
Rather, my concern is presenting the DPC
paradigm in a convincing way. As a
programming language in its own right,
microcoding provides a clear means to make the
necessary points.

The MDP Project Data Path

In preparing the project, the choice of data

path components is based on the algorithm
selected for the semester. Figure 3 is the data
path used to implement the prime numbers sieve
as well as the Hello World program. When used
with external components, this data path is
regarded as more challenging. Prior to
assigning the project, all the components are
introduced to students in examples, homework,
and other projects. The MDP project calls on
students to make use of the structural
expressiveness in VHDL in which each
component is instantiated and interconnected
with other components using signals.

AX

DX

YX
ALU

F

DY

LEDS

Cflag

Zflag

RegA

RegD

RegN

RegL

Mux

KVal

Swx

Figure 3: Example Data Path.

68 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 69

The data path in Figure 3 is constructed with
registers (Reg), multiplexers (Mux), and a
simple arithmetic logic unit (ALU). Registers
A, D, and L are all identical synchronous
registers; when enabled, each performs a
parallel load at a rising clock edge. Register D
is similar in behavior; however, it selects from
one of two inputs. The N register produces the
X input to the ALU. This feature is actually a
significant constraint that we discuss. The
multiplexer provides the second ALU input.
The Swx signal is input from switches, and the
L register provides output to LEDs. The signal
KVal is a value provided by the controller.

The following tables summarize the behavior

of register D, the multiplexer, and the ALU. In
performing addition or subtraction, the Cflag
signal indicates either a carry out or a borrow
condition. The Zflag signal indicates when then
ALU output is zero. The “and” operation is
bitwise, between the corresponding bits in X
and Y.

A data path like that in Figure 3 provides

students an opportunity to explore the difference
between registered signals and combinational
logic signals. The carry/borrow flag (CFlag)
and the zero-result flag (Zflag) are produced by
combinational logic and thus correspond to the
given moment. Signals such as AX and DX,
however, are produced by registers and can only

change following an active clock edge and
hence appear to be delayed. In forming the
difference between two equal values, the Zflag
signal will immediately be asserted; however,
the actual zero value in F will not be seen in a
register until after the following active clock
edge.

Microcode-Based Controller

Figure 4 shows the microcode structure

controlling the data path in Figure 3. The
microstore is a read-only memory device that is
addressed by the parallel loadable binary up-
counter. Based on the signal Test, a multiplexer
selects one of four signals for the counter Load
signal, providing the various branch conditions
listed in Table 4. The signal name “NATT” is
the acronym for “next address if the test result is
true” and serves as the target of a branch action,
so that a branch is performed by loading the
NATT value into the address counter.

The signals EnA, EnN, and EnL enable a
parallel load for the A, N, and L registers,
respectively. The signal EnD enables the D
register according toTable 1. Likewise, SelMux
and SelALU control the multiplexer and ALU
according to Table 2 and Table 3, respectively.
The KVal signal provided to the data path is
constant for one clock cycle. The Wr signal
indicates a memory write action.

Table 1: Register D

 Table 2: Multiplexer Y Table 3: ALU Behavior

EnD Action SelMux Selection SelALU Operation Cflag Zflag
00 Store 00 Y = RegA 00 F = X + Y Carry F = 0?
01 Load F 01 Y = RegD 01 F = X – Y Borrow F = 0?
10 Load DY 10 Y = KVal 10 F = Y Low F = 0?
11 Load F 11 Y = Swx 11 Z = X and Y Low F = 0?

Mux

P
Load

Counter
Q

2

Test

4

Wr

Kval Wr

18

EnA

2

EnD

1 1 1 2 2

Microstore

Data path control signals
I0
I1
I2
I3

’0’
’1’

Cflag
Zflag

NATT KVal

Address

SelALUSelMuxEnL EnN

S

Figure 4: Microcode-Based Controller.

Table 4: Microcode Branch Conditions

Test Branch Condition
00 Do not branch
01 Branch always
10 Branch if Cflag is high
11 Branch is Zflag is high

To see how this controller is a state machine,

consider that the address counter value is the
actual state value. The corresponding Test and
NATT field values and the flag values
determine the next state value. The remaining
microstore field values are the controller output.
Given that the output is a function of only the
current state, the controller is a Moore type[5]
state machine.

Symbolic Microcode

The contents of the microstore are dense and

inconvenient to read. For this reason, we
generally use a language called symbolic
microcode to discuss microcode programs. I
currently do not have tools for automatically
converting between symbolic and actual
microcode. However, the act of converting
between these forms is a good exercise for
students, requiring an understanding of the
interplay between the controller and data path.
We use the Xilinx simulator with the MDP
project as a first step to verify a microcode
program.

Symbolic microcode is organized into lines or

statements, where each statement describes all
the actions that will be performed in one clock
cycle by the data path. Compiling or
assembling microcode involves choosing
microstore field values that produce the desired
actions. Given that some actions can be
performed several different ways, it is possible
for a given symbolic microcode statement to be
expressed several ways in microcode.
Conversely, disassembling microcode involves
describing the actions produced by actual
microcode.

A symbolic statement includes an optional

data action part and an optional branching part.
The symbol “<-” implies the loading of a
register and the validity of each such statement
depends on what the actual hardware is capable
of performing. With respect to Figure 3 the data
actions can involve the A, D, N, and L registers
though the L register cannot be used on the right
side of an assignment and in operations
involving two registers, N must be one of the
registers. Consider the following, where “$”
indicates hexadecimal notation:

N,L <- $01

Figure 5 is highlighted to show how the given

action can be performed, in which case the
following conditions must be true.

70 COMPUTERS IN EDUCATION JOURNAL

• The value of KVal from the controller is
$01

• The multiplexer passes KVal to the ALU
• The ALU passes its Y input to output F
• The N and L registers perform loads

To complete the microcode statement, fill in
microstore fields as necessary so that the given
behavior will be produced. We find that

• EnL = 1, EnN = 1, and that
• SelMux = 10, SelAlu = 10

AX

DX

YX
ALU

F

DY

LEDS

Cflag

Zflag

RegA

RegD

RegN

RegL

Mux

KVal

Swx
$01

Figure 5: Data Path Activity Highlighted.

Since the ALU can pass the Y input value,

passing registers A or D, and the KVal signal is
simple. To pass the N register value, however,
the ALU can be used to add zero to the N

register value so that the following are
equivalent statements:

• A <- N
• A <- N + $00

Sometimes it is useful to specify an ALU
operation without assigning the result to any
register. The following performs a branch if the
N register contains the value four.

• N - $04, if Zflag goto

somewhere

In the example program in Figure 6, the

semicolon indicates the start of a comment, and
the keyword ORG sets the address in
microcode. This program implements a counter
that repeatedly counts from one to four. The
leftmost value is the address of each microcode
statement. The language format is similar to
assembly language in that each label is a name
for an actual address value.

In compiling the symbolic code, the

microstore contents in Table 5 is produced.
Values without a prefix symbol are assumed to
be in binary. Note that a value must be assigned
to each and every field. In cases where a value
does not matter, the arbitrary value zero is used
here.

 ; A repeating counter, one to four
 ORG $0
$0 Start: N,L <- $01 ; initial val
$1 Loop: N,L <- N + $01 ; increment
$2 N - $04, if Zflag goto Start ; start over?
$3 goto Loop ; repeat loop

Figure 6: Repeating Counter Example Program.

COMPUTERS IN EDUCATION JOURNAL 71

Table 5: Mircrostore Contents for Repeating Counter Program.

Address Test NATT EnA EnD EnL EnN SelMux SelAlu KVal Wr
$0 00 $0 0 00 1 1 10 10 $01 0
$1 00 $0 0 00 1 1 10 00 $01 0
$2 11 $0 0 00 0 0 10 01 $04 0
$3 01 $1 0 00 0 0 00 00 $00 0

The Event Table

An event table is used to list the cycle-by-

cycle behavior of a given program. From a
pedagogical view, producing or interpreting
such listings involves the close examination of
each system component. The following notes
apply:

• “T” is the clock period
• “+” is a brief moment after a rising clock

edge allowing the system to settle
• A blank entry in the event table means no

change from the previous clock cycle
• A value loaded into a register is entered into

the table, even if the value is the same

The following event table summarizes the
behavior of the repeating counter program given
above. The reset is asynchronous and clears the
address counter and all the registers. Note that
with the blank entries a pattern appears. Also
note that, unlike registers, the Zflag signal
shown here is produced by combinational logic
and represent conditions currently in the ALU.
At time 8T+ the address refers to the conditional
branch instruction, and the Zflag is immediately
affected with no delay due to the clock. The
program restarts at 9T+ but with N containing
$04.

Table 6: Event Table for Repeating Counter Program

Time Reset Address N F Zflag
0T 1 $0 $00 $01 0
0.5T 0
1T+ $1 $01 $02
2T+ $2 $02 $FE
3T+ $3 $02
4T+ $1 $03
5T+ $2 $03 $FF
6T+ $3 $03
7T+ $1 $04
8T+ $2 $04 $00 1
9T+ $0 $01 0
10T+ $1 $01 $02
11T+ Program continues the pattern above

72 COMPUTERS IN EDUCATION JOURNAL

; Fibonacci sequence
 ORG $0
Start: A,L <- $00 ; older val in A
 D,N <- $01 ; newer val in N
Loop: L,N <- D ; display newer
 D <- A+N, if CFlag goto Start ; restart?
 A <- N, goto Loop ; repeat

Figure 7: Fibonacci Sequence Program.

ROM

Write

Enables

DY

AX

DX
Address

Data

Data

Wr

MDP

RAM

Serial

decoder

Ser.TX

Figure 8: System with Memory and One Device.

The Fibonacci Sequence

The MDP project was first inspired by the well

known algorithm used to produce the Fibonacci
sequence. By this definition the first two
numbers in the sequence are zero and one, and
each of the following numbers is the sum of the
previous two numbers. Hence, the sequence
starts with the values 0, 1, 1, 2, 3, 5, 8, and
continues. The program in Figure 7 displays in
order all the numbers in the Fibonacci sequence
that are less than 255. Producing the microstore
contents and execution history are left as
exercises for students, on the project web
page[6].

Using Memory and Peripheral Devices

Memory systems and peripheral devices are

normally used with conventional
microprocessors. Unfortunately for such a
VHDL course, presenting a microprocessor

along with memory systems and peripherals is
too topically broad and is worthy of a course in
itself. The microcoded data path, however,
provides a useful context in which memory
systems and peripheral devices can be presented
and discussed in this course.

The following outlines how the memory

system in Figure 8 is used with the data path and
controller in Figure 3 and Figure 4, respectively.
Two unidirectional data buses are used for
memory accesses. In the data path, register A
conveys an address through the AX bus.
Register D conveys data sent to and returned
from the memory system, using the DX and DY
buses, respectively. The microstore Wr field
provides the write enable for the memory
system.

In the memory system a decoder uses the

address provided to enable a given device,
causing the device to appear in a particular

COMPUTERS IN EDUCATION JOURNAL 73

region of the memory map. The devices here
include a ROM, a synchronous-write,
asynchronous-read (SWAR) RAM, and a serial
communications data transmitter (Ser.TX).

In symbolic microcode, in performing a read

or write memory action, the symbol M(A)
refers to the memory system. The symbol
implies that the A register provides the address
and that memory is like an array structure. To
read from memory, the D register performs a
load from the DY bus and is expressed as:

D <- M(A)

Memory actions do not involve the rest of the

data path so that concurrent actions involving
the ALU may also be performed in the same
clock cycle. To perform a write to memory, the
memory write enable is asserted. The
corresponding statement is as follows:

M(A) <- D

The following example program demonstrates

how to use the RAM memory device. The
program writes the input switch value to
memory, reads the value back, and then writes
the value to the output LEDs.

Figure 9: Example Demonstrating the Use of
RAM

To implement the Hello World program, the

ROM in Figure 8 contains the ASCII code
values representing the message that is
transmitted. The RAM is used as a scratch pad.
An input switch is moved from low to high to
signal when to send the message, and the LEDs
display the number of times the message is
transmitted. The message is transmitted at 9600
Baud with eight data bits, no parity, and one

stop bit. Further details of the Hello World
project will be posted on the project web
page[6].

Related Exercises

In using an MDP in a course, it is suggested

that the project topics be included in other
assignments including homework. It is
important that students are already familiar with
multiplexers, registers, and an ALU. It is also
important that students are comfortable with the
state machine concept. The MDP project uses
all these ideas and familiar components in an
exciting new way.

To become familiar with the data path,

students can make copies of the block diagram
and for each microcode statement, as in Figure
5, shade the path that data follows from source
to destination. Based on their understanding of
the data path, students can next be asked if a
given microcode statement is valid, that is,
whether or not the data path is capable of
performing the given action.

In addition to hand assembling microcode, it is

worthwhile to disassemble microstore contents
to the corresponding symbolic microcode. To
become familiar with how the controller is
actually a state machine, students can draw the
state diagram for a given program. Producing
an event table is worthwhile. Students can be
asked to explain a particular entry in an event
table or to identify common errors made in
producing an event table.

; Demonstrate how to use the RAM device
 ORG $0
Start: A <- $C0 ; An address
 D <- Swx ; Some data
 M(A) <- D ; Perform write
 D <- $00 ; Proof of no tricks
 D <- M(A) ; Perform read

With some mastery of the MDP project,

students can be asked to write small programs in
symbolic microcode. Most microcode programs
are short. With four address bits, the largest
program can have at most 16 statements.
Students can then be asked to assess the
strengths and weaknesses of a given MDP
structure and to propose their own structure.

The recent inclusion of a memory system and

a peripheral device with the MDP project opens
many new opportunities. It is difficult to

74 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 75

present an example memory system or
peripheral device without first introducing the
concept of what a bus is and how data is
communicated through a bus to attached
devices. The MDP can be useful in such a
VHDL course in teaching topics involving
busses, memory systems, and peripheral
devices.

Student Feedback

A survey was recently distributed and a

modest number of students replied. The
following are the questions and a summary of
the survey results. In a nutshell, students mostly
feel that the MDP project is a satisfying
challenge, that they learned much, that the
project is worthwhile, it should be assigned as
project 3 and that project 4 can go further to
provide a design opportunity. These results
agree with the discussions that I have had with
students.

1. In what year did you take the VHDL course?

Except for 2002, at least one student replied

for each year. The responses for 2009 are the

entire course enrollment for that year. The
largest enrollment ever for the course was 22
students.

2. Which course project was the MDP assigned

as?
3. Which project do you think the MDP should

be assigned as?

I was not able to correlate these two questions;
however, a 57% majority reported the MDP as
project 3, and a larger 71% majority feel that the
MDP should be assigned as the third project.

4. How challenging was the MDP project to

perform?
5. How much did you learn in performing the

MDP project?
6. How worthwhile was the experience in

performing the MDP project?

Of the responses, 73.3% felt that the project
was challenging or difficult, 80% felt that they
learned quite a bit or very much, and 86.6% felt
that the project was mostly or very worthwhile.

Table 7: Responses for the Year VHDL was Taken
2001 2002 2003 2004 2005 2006 2007 2008 2009
1 0 1 2 1 1 1 3 5

Table 8: (Q4)Perceived Challenge of MDP Project
Easy Not simple Moderate Challenging Difficult
6.7% (1) 6.7% (1) 13.2% (2) 53.3% (8) 20% (3)

Table 9: (Q5)Perceived Learning with MDP Project
Very Little Not so much Typical Quite a bit Very much
6.7% (1) 6.7% (1) 6.7% (1) 53.3% (8) 26.7% (4)

Table 10: (Q6) Perceived Worth of MDP Project
Not

worthwhile
A little Partly Mostly Very

worthwhile
0% (0) 13.2% (2) 0% (0) 33.3% (5) 53.3% (8)

7. When you performed the MDP project, did
it include an external memory system?

This question was to gauge the actual

difficulty of the project assigned. It is well
known that a memory system was used only in
2008 and 2009; unfortunately, the responses did
not correlate with those from question 1.

8. Please provide comments about how you

think the MDP project can be improved.
9. Please make any other comments about the

MDP project.

There was a range of replies, but the general

consensus is that the MDP is good as project 3
and that project 4 should provide a needed
design element for the course. One student also
remarked that memory systems can be expanded
as a topic in the course.

• “…there was not enough [actual design

involved] in this project.”
• “…make the MDP project #3 and make #4 a

project that builds on top of the structure in
#3”

• “…a thorough review of memory systems
might be in order. That was my major hang-
up.”

In summary, the feedback agrees with my

experience in talking with students, that the
project is a satisfying challenge. Students
mostly feel that they learned much and that the
project is worthwhile. They also feel that the
MDP should be assigned as project 3 but that
project 4 should take the ideas further.

Summary and Conclusion

The microcoded data path (MDP) project has

proven to be of educational value in the way it
introduces students to the concept of the data
path and controller (DPC) paradigm. The
project uses simple building blocks to construct
a rudimentary processor programmed in
microcode that is capable of providing a range
of behaviors. The project is also motivational
for students, and students have asked for

additional material to build upon the MDP
project.

References

1. Xilinx ISE software download, http:/

/www.xilinx.com/

2. Spartan-3 Starter Board, http://www

digilentinc.com/

3. Tanenbaum, Structured Computer

Organization, fifth edition, 2006, Pearson
Prentice Hall

4. M. Mano and C. Kime, Logic and

Computer Design Fundamentals, fourth
edition, 2007, Pearson Prentice Hall

5. M. Mano and M. Ciletti, Digital Design,

fourth edition, 2007, Pearson Prentice Hall

6. Jonathan Hill, project page, http:/

/uhaweb.hartford.edu/jmhill/suppnotes/Mi
croCodeDP/index.htm

Biographical Information

Jonathan Hill is an Associate Professor in

Electrical and Computer Engineering at the
University of Hartford in Connecticut with
Ph.D. and M.S.E.E. from Worcester Polytechnic
Institute of Worcester, MA. He was previously a
project engineer at Digital Corp. He instructs
graduate and undergraduate computer
engineering computer courses, directs graduate
research, and performs research involving
embedded microprocessor based systems. His
specific projects involve digital
communications, signal processing, and
intelligent instrumentation

76 COMPUTERS IN EDUCATION JOURNAL

http://www.xilinx.com/
http://www.xilinx.com/

