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Abstract 
 

This paper presents an interactive and user 
friendly software environment for the intelligent 
modeling and simulation of flexible manipulator 
systems referred to as SCEFMAS (Simulation 
and Control Environment of Flexible 
Manipulator Systems).  A constrained planer 
single-link flexible manipulator is considered 
for this environment.  The paper presents system 
simulation and intelligent modeling using neural 
network (NN) and genetic algorithm (GA) 
techniques.  All these are presented with a user 
friendly graphical user interface (GUI).  
Simulation algorithm is based on the finite 
difference (FD) method where the system’s 
governing dynamic equation is discretized and 
implemented within the Simulink environment.  
Intelligent modeling techniques using NN and 
GA have been developed and realized using the 
Matlab, Simulink, and associated toolboxes.  
This environment has proven to be a valuable 
educational tool for understanding the behavior 
of flexible manipulator systems and can also be 
used as a computer aided teaching facility and a 
test-bed for controller designs. 
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Introduction 

 
Flexible manipulator systems are receiving 

increasing attention due to their advantages over 
conventional robot manipulators.  The 

advantages include faster response, lower 
energy consumption, relatively smaller 
actuators, higher payload to weight ratio and, in 
general, less overall cost[1].  Some of the 
current applications of such manipulators 
include spacecraft, remote manipulation, and 
radioactive material handling in nuclear power 
plants.  Due to their flexible nature, induced 
vibrations appear in the system during and after 
a positioning motion[2-3].  This restricts their 
widespread use in industry.  A considerable 
amount of research work has already been 
carried out on the vibration control of flexible 
manipulators.  However, a generic solution to 
the problem is yet to be obtained[4-5]. 

 
To formulate and implement an effective 

control strategy for efficient vibration 
suppression of the system, it is important to 
recognize the flexible nature of the manipulator 
and construct a mathematical model for the 
system that accounts for the interactions with 
actuators and payload[6].  Such a model can be 
constructed by solving the partial differential 
equations (PDEs) that describe the system.  
However, the computational complexity and 
subsequent software coding involved in the 
process is a major disadvantage of this 
technique[7].  An alternative solution is to 
utilize intelligent techniques, such as neural 
network (NN) and genetic algorithm (GA) for 
modeling of flexible manipulator systems [8].  
The approaches have proven to be effective in 
modeling and can be used for test and 
verification of controller designs. 

 
There is no reported software environment that 

will allow one to study the behavior of flexible 
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manipulator systems without going into the 
software coding details.  To address this 
problem, the authors have developed a software 
environment that will allow the users to 
generate and validate an intelligent model of a 
flexible manipulator system in an interactive 
manner.  The software package is developed by 
using Matlab, Simulink and other associated 
toolboxes.  The package is known as SCEFMAS 
(Simulation and Control Environment of 
Flexible Manipulator Systems)[9].  The paper 
will address development of classical simulation 
using Finite Difference (FD) method as well as 
NN and GA based intelligent modeling and their 
inclusion within the SCEFMAS environment. 

 
The rest of the paper is structured as follows: 

The first section briefly describes the flexible 
manipulator system considered for this 
development.  The next section presents the 
theoretical analysis of finite difference (FD) 
simulation, NN modeling, GA modeling, and 
subsequent model validation strategies.  The 
final section describes the developed software 
environment with some examples.   
 
 
 

Flexible  Manipulator  Systems 
 

The flexible manipulator system under 
consideration is modeled as a pinned-free 
flexible beam, with a mass at the hub, which can 
bend freely in the horizontal plane but is stiff in 
vertical bending and torsion.  The model 
development utilizes the Lagrange equation and 
modal expansion method[10-11].  To avoid the 
difficulties arising due to time varying length, 
the length of the manipulator is assumed to be 
constant. 

 
A schematic representation of the manipulator 

is shown in Figure 1, where  and  
represent the stationary and moving co-ordinate 
frames, respectively.  The axis OX  coincides 
with the neutral line of the link in its 
undeformed configuration and is tangent to it at 
the clamped end in a deformed configuration.  
The 

ooOYX XOY

τ  represents the applied torque at the hub. 
E , I , ρ , ,  and  represent the Young 
modulus, area moment of inertia, mass density 
per unit volume, cross sectional area, hub inertia  
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Figure 1:  Schematic representation of the flexible manipulator system. 
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and payload of the manipulator, respectively.  
)(tθ  denotes an angular displacement (hub-

angle) of the manipulator and  denotes 
an elastic deflection (deformation) of a point 
along the manipulator at a distance  from the 
hub of the manipulator.  In this work, the 
motion of the manipulator is confined to the 

 plane.  The width of the arm is assumed 
to be much greater than its thickness, thus, 
allowing the manipulator to vibrate (be flexible) 
dominantly in the horizontal direction.  The 
shear deformation and rotary inertia effects are 
also ignored. 

),( txw

x

ooOYX

 
For an angular displacement θ  and an elastic 

deflection u , the total (net) displacement ( )y x t,  
of a point along the manipulator at a distance x  
from the hub can be described as a function of 
both the rigid body motion θ( )t  and elastic 
deflection  measured from the line ; ( tx ),

)

w 0OX
 

( ) ( ) ( txwtxtxy ,, += θ                                  (1) 
 
To obtain equations of motion of the 

manipulator, the associated energies have to be 
obtained.  These include the kinetic, potential, 
and dissipated energies.  To obtain equations of 
motion of the manipulator, the associated 
energies have to be obtained.  These include the 
kinetic, potential, and dissipated energies.  Thus, 
using the Hamiltonian’s extended method, the 
dynamic equation of the flexible manipulator 
with the associated boundary and initial 
conditions can be expressed as [2]: 
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where, E  is the Young modulus, I  is the second 
moment of inertia of the manipulator, and 

( )τ x t,  is the applied torque.  For the system 
under consideration, the torque  is applied 
at the hub of the manipulator, therefore, it can 
be represented as 

(τ )x t,

( )τ 0, t  or simply ( )τ t . 
 

System  Simulation  and  Intelligent  
Modeling 

 
The system modeling techniques using NN 

and GA require input output(s) data of a system 
for their model development.  To address this 
issue, a simulation algorithm has been 
developed to provide required input output(s) 
data for a user specified flexible manipulator 
system.  A FD algorithm has been used to 
develop this simulation.  The accuracy of the 
simulation outcome can be adjusted by changing 
the number of grid points along the length of the 
manipulator. 
 
Finite  Difference  Simulation 
 

The PDE in equation (2) describing the 
flexible manipulator system is of a hyperbolic 
type and can be classified as a boundary value 
problem.  This can be solved using an FD 
method [12].  This involves dividing the arm 
into a finite number of equal-length sections and 
developing a linear difference equation 
describing the deflection of end of each section 
(grid-point).  Thus, using the FD method, a 
solution of the PDE in equation (2) can be 
obtained as [2]; 
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Where 
 

a c= −2 6 , , b c= 4 (c EI t x= ∆ ∆2 ρ 4  and 

( )d D t xs= ∆ ∆ρ 2 . 
 
Equation (5) gives the displacement of section 
 of the manipulator at time step i j +1.  It 

follows from this equation that, to obtain the 
displacements  and , the 
displacements of the fictitious points , 

 and  are required.  These fictitious 
displacements can be obtained using the 
boundary conditions related to the dynamic 
equation of the flexible manipulator.  The 
discrete form of the corresponding boundary 
conditions, obtained in a similar manner as 
above are 

yn j− +1 1, yn j, +1
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y y yn j n j n j+ = −1 2, ,                                       (9) 
 
Manipulating equation (5) using equations (6) 

to (9) yields a matrix formulation of the above 
as 

 
Y AY BY Ci j i j, ,+ −= + +1 i, j 1                        (10) 
 

Where  is the displacement of grid points Yi k,

i = 1 2, , ,L  of the manipulator at time step  
( k j

k
j j= + −1, ,  1). A and B are constant n x n 

matrices whose entries depend on the flexible 
manipulator specification and the number of 
sections the manipulator is divided into, C is a 
constant matrix related to the time step ∆ t  and 
mass per unit length of the flexible manipulator 
and F is an n x 1 matrix related to the given 
input torque [2].  Equation (10) thus represents 
the dynamic equation of the manipulator in the 
presence of hub-inertia and payload, which can 
easily be implemented within the Matlab and 
Simulink environments. 
 
Intelligent  Modeling 
 

In many cases, when it is difficult to obtain a 
model structure for a system with traditional 
system identification techniques, intelligent 
techniques are desired that can describe the 
system in the best possible way[12].  NN and 
GA are two intelligent techniques used 
commonly for system identification and 
modeling.  The major advantage of utilizing GA 
for system identification is that GA 
simultaneously evaluates many points in the 
parameter space and converges towards the 
global solution[13].  The superiority of a GA 
over recursive least squares (RLS) algorithm in 
modeling a fixed-free flexible beam is addressed 
by[14].  In contrast, NN approaches of system 
identification offer many advantages over 
traditional ones, especially in terms of flexibility 
and hardware realization[15].  This technique is 
quite efficient in modeling non-linear systems or 
if the system possesses nonlinearities to any 
degree. 
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Once a model of the system is obtained, it is 
required to validate whether the model is good 
enough to represent the system.  A number of 
such validation tests are available in the 
literature[15].  Some of the techniques are 
incorporated within SCEFMAS for validating 
developed models. Moreover, with NN 
modeling, the input-output data set is divided 
into two halves.  The first half is used to train 
the NN and the output computed.  The NN 
usually tracks the system output well and 
converges to a suitable error minimum.  New 
inputs are presented to the trained neural 
network and the predicted output is observed.  If 
the fitted model is correct, i.e., correct 
assignment of lagged inputs and outputs, then 
the network will predict well for the prediction 
set.  In this case, the model will have captured 
the underlying dynamics of the system.   
 
 NN  Modeling 
 

Various modeling techniques can be used with 
neural networks to identify a non-linear 
dynamical system.  These include state-output 
model, recurrent state model, and non-linear 
autoregressive   moving   average   process  with 
exogeneous (NARMAX) input model. 
However, from the literature, it has been 
established that if the plant’s input and output 
data are available, the NARMAX model is a 
suitable choice, for modeling systems with 
nonlinearities.  Mathematically, the model is 
given as[16-17]: 
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Where, is the output vector determined by 
the past values of the system input vector, 
output vector and noise with maximum lags , 

 and , respectively,  is the system 
mapping constructed through multilayer 
perceptron or radial basis function neural 
networks with an appropriate learning 
algorithm.  The model is also known as 
NARMAX equation error model.  However, if 
the model is good enough to identify the system 
without incorporating the noise term or 
considering the noise as additive at the output, 
the model can be represented in a NARX form 
[16-18] as: 
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The system is shown in Figure 2. 
 
  GA  Modeling 
 

With the GA modelling, an initial population 
of potential solutions is created in the first step.  
Each element of the population is mapped onto 
a set of strings (the chromosome) to be 
manipulated by the genetic operators.  In the 
second step, the performance of each member of 
the population is assessed through an objective 
function imposed by the problem.  This 
establishes the basis for selection of pairs of 
individuals that will be mated together during 
reproduction.  For reproduction, each individual 
is assigned a fitness value derived from its raw 
performance measure, given by the objective 
function.  This value is used in the selection of 
bias towards more fit individuals.  Highly fit 
individuals, relative to the whole population, 
have a high probability of being selected for 
mating, whereas less fit individuals have a 
correspondingly low probability of being 
selected [19].  
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Figure 2:  NARX model identification with MLP/RBF neural networks. 

 
 
In the manipulation phase, genetic operators 

such as crossover and mutation are used to 
produce a new population of individuals 
(offspring) by manipulating the genetic 
information, usually called genes, possessed by 
the members (parents) of the current population.  
The crossover operator is used to exchange 
genetic information between pairs, on larger 
groups of individuals.  Mutation is generally 
considered to be a background operator, which 
ensures that the search process is not trapped at 
local minimum by introducing new genetic 
structures in the population.  After manipulation 
by the crossover and mutation operators, the 
individual strings are then, if necessary, 
decoded, the objective function evaluated, a 
fitness value assigned to each individual and 
individuals selected for mating according to 
their fitness, and so the process continues 
through subsequent generations.  In this way, 
the average performance of individuals in a 
population is expected to increase, as good 
individuals are preserved and breed with one 
another and the less fit individuals die out.  The 
GA is terminated when some criteria are 
satisfied, e.g., a certain number of generations  

 
completed or when a particular point in the 
search space is reached.  

 
For parametric identification of the 

manipulator with GA, randomly selected 
parameters are optimised for different arbitrarily 
chosen order to fit to the system by applying the 
working mechanism of GA as described above.  
The fitness function utilised is the sum-squared 
error between the actual output, y n( ) , of the 
system and the predicted output, $( )y n , 
produced from the input to the system and the 
optimised parameters: 
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Where,  is the number of input/output 
samples.  With the fitness function given above, 
the global search technique of the GA is utilized 
to obtain the best set of parameters among all 
the attempted orders for the system.  The output 
of the system is thus simulated using the best 
sets of parameters and the system input. 

n
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  Model Validation 
 

It is important to devise an effective model 
validation process once a model has been 
developed.  There are various methods of 
validating a model, such as: one step ahead 
(OSA) prediction, model predicted output 
(MPO), and correlation tests.  Both the MPO 
and correlation tests are implemented for this 
software environment.  The MPO method can 
be expressed as: 

 
))(ˆ ...., ),1(ˆ ),( ...., ),1( ),(()(ˆ yu ntytyntututufty −−−−=

                                                                       (14) 
 
and the deterministic error or deterministic 
residual is 
 

)(ˆ)()( tytyt p −=ε                                      (15) 
 

If only lagged inputs are used to assign network 
input nodes, then  

 
)(ˆ)(ˆ tyty d=                                                 (16) 

 
The implication that the fitted model behaves 

well for the MPO does not necessarily imply 
that the model is unbiased.  The prediction over 
a different set of data often reveals that the 
model could be significantly biased.  One way 
to overcome this problem is by splitting the data 
set into two sets, an estimation set and a test set 
(prediction set).  A section of the data is used 
for training the network and the remaining 
portion of the data for validating and testing the 
network. 

 
A more convincing method of model 

validation is to use correlation tests.  If a model 
of a system is adequate, then the residuals or 
prediction errors  should be unpredictable 
from all linear and non-linear combinations of 
past inputs and outputs.  The derivation of 
simple tests, which can detect these conditions, 
is complex, but it can be shown that the 
following conditions should hold[20]. 
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                                                                       (17)  
 
where φ τεu ( )  indicates the cross-correlation 
function between u t  and ( ) ε( )t , 
ε εu t t u t( ) ( ) ( )= + +1 1 ,  = an impulse 
function. 

δ τ( )

 
Ideally the model validity tests should detect 

all the deficiencies in network performance, 
including bias due to internal noise.  The cause 
of the bias will however be different for 
different assignments of network input nodes.  
Consequently, the full five tests defined by 
equation (11) should be satisfied if u(.)'s and 
y(.)'s are used as network input nodes.  In 
practice normalized correlations are computed.  
The sampled correlation function between two 
sequences ψ 1 ( )t  and  is given by, ψ 2 ( )t
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Normalization ensures that all the correlation 

functions lie in the range − ≤ , 
irrespective of the signal strengths.  The 
correlations will never be exactly zero for all 
lags, and the 95% confidence bands defined as 

≤
∧

1 1
1 2

φ τψ ψ ( )

196. / N  are used to indicate if the estimated 
correlations are significant or not, where N is 
the data length.  Therefore, if the correlation 
functions are within the confidence intervals, 
the model is regarded as adequate. 
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The  SCEFMAS 
 

The SCEFMAS is composed of two main 
components, one is the Matlab (and associated 
toolboxes) driven computing part and the other 
is the Guide driven front panel known as GUI.  
The user provides the system specification 
through a GUI that is subsequently passed to the 
Matlab for computation.  The computation 
outcomes are then passed to other GUIs for 
presentation of the results.  A flowchart 
representing the SCEFMAS structure is shown 
in Figure 3. 

 
There are three main parts of the computing 

component: a) FD simulation; b) NN modeling 
and validation; and c) GA modeling and 
validation.  As the name implies the FD 
simulation part provides the computation for FD 
simulation of a flexible manipulator system.  

While the NN modeling and validation and GA 
modeling and validation parts provide 
computation for NN and GA modeling and 
subsequent model validation, respectively.  The 
training data used for NN and GA modeling 
processes are obtained from an open-loop FD 
simulation, using random or composite Pseudo-
random binary sequence (PRBS) torque inputs. 
 

The GUI component of the SCEFMAS has six 
parts: a) Initial GUI; b) Results GUI; c) NN 
modeling GUI; d) GA modeling GUI; e) NN 
model validation GUI; and f) GA model 
validation GUI.  Initial GUI is the home of the 
SCEFMAS and is used to specify a desired 
flexible manipulator, FD simulation parameters, 
nature of excitation input, and direct the users 
towards a desired intelligent modeling 
technique.  Results GUI is used to display the 
FD simulation input and output both in time and 

 

 
 

Figure 3:  A flowchart of the SCEFMAS environment. 
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frequency domains along with a three 
dimensional display of the system movement.  
The NN modeling GUI allows the users to 
provide the NN modeling structure and also 
guides them through the NN modeling process.  
The GA modeling GUI allows the users to pass 
the GA modeling parameters and also guides 
them through the GA modeling process.  NN 
and GA model validation GUIs are used to 
present the validation graphs after NN and GA 
modeling, respectively. 
 
The  FD  Simulation  and  Verification 
 

The FD simulation is one of the main parts of 
the SCEFMAS environment.  This provides an 
open-loop simulation of a specified flexible 
manipulator system.  The output data generated 
through this simulation process along with the 
excitation inputs are stored and subsequently 
used for NN and GA modeling.  The input 
types, which have been provided within the 
SCEFMAS, are the random and composite 
PRBS. 

 
As a starting point, within the Initial GUI a 

user provides the desired system specification, 
simulation parameters, and input types (Figure 
4).  The system specification consists of: 
Manipulator Specifications, Material Properties, 
and Simulation Parameters.  Manipulator 
specifications involve the length, thickness, and 
width of the manipulator along with the hub 
inertia and payload.  While the material 
properties constitute a damping factor, Young’s 
modulus, and mass density per volume. Finally, 
the total simulation time, number of segments, 
and stability factor for the FD algorithm 
constitute the simulation parameters.  At the 
bottom of the option selection box, there are two 
radio buttons, which can be used to select 
excitation input of the flexible manipulator.  The 
inputs are Random input and Composite PRBS 
input. Only these kinds of inputs provide 
sufficient excitation for all the modes associated 
with a flexible manipulator system within the 
frequency range of excitation.  After providing 
all the information within the initial GUI, one 
can click on the FD Simulation button within 

the GUI.  This will bring up a pre-developed 
Simulink model of the flexible manipulator 
system connected in an open-loop manner 
(Figure 5). 
 

The model consists of a FD arm in SS 
block, which implements the FD algorithm for 
the flexible manipulator in state-space form.  
The  composite  PRBS torque  input is  provided  
from the Matlab workspace through the 
Open_loop_input block.  Along with the 
FD arm in SS block, this torque input is 
also passed to the Auxiliary and yin 
blocks.  The Auxiliary block produces data 
for 3D displacement of the manipulator, while 
the yin block passes the input torque values to 
the Matlab workspace for further analysis.  The 
output of the FD arm in SS block contains 
the displacement, velocity, and acceleration data 
for the hub point and end point of the flexible 
manipulator.  These data are passed to the 
Matlab workspace through the Mux and yout 
block.  A simulation run of the Simulink model 
will produce outputs and will be  passed to  the 
Matlab  workspace  along  with  excitation input 
data.  After the completion of the simulation 
run, a new button will appear within the Initial 
GUI, next to the FD Simulation button.  This 
button is called the Results button (Figure 4).  A 
click on this button will open the Results GUI 
that can be used to display the input and  all the  
outputs  produced through this simulation 
process (Figure 6). 
 

The left hand side of the Results GUI includes 
option buttons, the top right part contains time 
domain and frequency domain result windows 
for the selected input or output parameter, 
bottom middle window is for displaying a 3D 
plot of the complete motion of the manipulator 
for a given simulation run.  The drop down 
menus at the bottom right side can be used to 
choose properties of the 3D plot.  After viewing 
the result, the user can choose to return to the 
Initial GUI by clicking on the New Simulation 
button  or  may  exit  SCEFMAS  by clicking on 
the Quit button within the Results GUI (Figure 
6). 
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Figure 4:  Initial GUI for the SCEFMAS environment.
 
 

 
 

 
 

Figure 5: A Simulink model of a flexible manipulator connected in an open-loop manner. 
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Figure 6:  Displaying the results obtained from FD Simulation. 
 

 
NN  Modeling  and  Validation 
 

The NN Modeling GUI is used to carry out the 
NN modeling of a flexible manipulator system.  
This NN Modeling GUI (Figure 7) can be 
invoked by clicking on the NN Modeling button 
within the Initial GUI (Figure 4).  The user can 
choose three, four, or five layers of neurons.  
The types of neurons along with the number of 
neurons in each layer can also be selected.  For 
this specific case, a three layer structure was 
chosen with 5 neurons in each of the inside 
layers. 

 
After specifying the desired NN structure, the 

user can use the available input-output data set 
from a previous run or generate a new set of 
training data by clicking on the Generate Data 
Set button.  This will open a Simulink model 
with open-loop input as shown in Figure 5.  A 
subsequent  run  of the open-loop FD simulation  

 
model will produce the input-output data 
necessary for the NN training. 
 
 After having training data, the user needs to 
click on the Train Network button within the 
NN Modeling GUI.  This will start the NN 
training process and the progress through the 
training can be monitored through the graph 
window shown on the left hand side of the GUI.  
The graph will plot the sum-squared error.  At 
the completion of the training process, a 
message Simulation Done will appear within 
the NN Modeling GUI.   This  will  be  followed 
by the appearance of another button called the 
Model Validation button. 
 

The Model Validation button will allow the 
users to examine the quality of the developed 
NN model by observing all the three model 
outputs   (input   to   hub   angle,   input   to  hub 
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Figure 7:  The GUI used for neural network modeling.
 
 

velocity, and input to end-point acceleration).  
The model validation process involves the MPO 
and correlation tests that are presented through 
the NN Model Validation GUI.  The GUI with 
MPO validation plots for a hub angle model in 
the time and frequency domains are shown in 
Figure 8.  The left hand side of the GUI 
provides all the model validation option buttons.  
The plots within the GUI show a comparison 
between the actual and model outputs for input 
to hub angle model. The top left corner 
graphical window shows the normalized actual 
and predicted outputs, while the top right corner 
graphical window shows the error between the 
actual (from FD simulation) and NN model 
output. The bottom graph window compares the 
actual and predicted outputs in the frequency 
domain.  All the graphs show close matches 
between the real and model predicted outputs.  
The  performance  of  models  from  the input to  

 
 
the remaining two outputs can be displayed by 
clicking on the appropriate button.  In addition 
to the MPO validation plots, one can obtain 
correlation test plots for each of the three model 
outputs.  The hub-angle validation plots with 
correlation tests are shown in Figure 9.  The 
auto-correlation and cross-correlation graphs 
show close proximity between the real output 
and predicted output obtained from the NN 
model.  The user can click on the Quit button to 
return to the Initial GUI and start simulation all 
over again with a different set of system 
parameters. 
 
GA  Modeling  and Validation 
 

This section describes the GA modeling and 
model validation process.  The user will have 
the choice of specifying GA model parameters, 
such as number of individuals, maximum 
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Figure 8:  Time and frequency domain validation plots for a developed NN model. 
 
 

 
 

Figure 9:  Validation plots for a developed hub angle model through correlation tests. 

98                                                                                     COMPUTERS IN EDUCATION JOURNAL 



number of generations, generation gap, binary 
precision, and the order of the GA model.  
Similar to the NN modeling, the input and 
outputs from a FD simulation model will be 
used as a reference for the model development 
process.  The quality of the developed model 
can be verified both in time and frequency 
domains along with suitable correlation tests. 

 
The GA Modeling GUI is used to carry out the 

GA modeling of a flexible manipulator system 
(Figure 10).  This GUI can be invoked by 
clicking on the GA Modeling button within the 
Initial GUI (Figure 4).  The left hand side of the 
GUI is provided with sliders, where a user can 
set the GA modeling parameters. These are 
Number of individuals, Maximum number of 
generations, Generation gap, Binary precision, 
and Order of GA model.  The top right corner of 
the GUI provides a drop down menu to choose a 
model type, such as input to Hub Angle, input to  

 

 Hub Velocity, and input to End-point 
Acceleration.  After entering all the model 
parameters and model types, the user can 
generate training data by clicking on the 
Generate Data button (one of the right bottom 
buttons) or can use the previously generated 
simulation data available within the system.  
The user can proceed with the GA modeling by 
clicking on the GA Modeling button within the 
GUI.  The progression through the GA 
modeling along with the fitness performance 
will be displayed in the figure window at the 
middle of the GUI. 

 
After the model validation process, the 

Validation Plots button will be activated 
(bottom right corner of the GUI).  The user can 
click on this button to observe the performance 
of the developed GA model through GA 
Validation GUI (Figure 11).    The left hand side  

 
 

Figure 10:  The GUI used for GA modeling process. 
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Figure 11:  GA modeling validation GUI. 
 

 
of the GUI is provided with buttons for 
choosing model types.  The model validation 
outputs are displayed through four figure 
windows.  The top two figure windows are for 
comparing the magnitudes of actual and 
predicted outputs.  The bottom right window 
shows the comparison between actual and 
predicted outputs in the frequency domain.  The 
bottom left window shows the sum-squared 
error  for  each  generation.    All  the  validation 
plots show a close match between the real data 
and the output produced by the developed GA 
model.   At the end  of the GA  model validation 
process, the user can return to the Initial GUI for 
further modeling exercises. 
 

Conclusion  and  Discussion 
 

The paper discusses the development of 
intelligent modeling techniques and classical FD 
simulation  and  their  presentation  through  the  

 
SCEFMAS environment.  The FD based 
simulation of a single-link flexible manipulator 
is the backbone of the SCEFMAS system.  The 
user can specify a desired flexible manipulator 
system and observe the behavior of the system 
(both in time and frequency domains) before 
moving into the intelligent modeling process.  
As a part of intelligent modeling techniques, NN 
and GA models have been developed and 
realized using the Matlab, Simulink, Guide, and 
other associated toolboxes.  Results of various 
modeling techniques have been validated 
through various tests, including input/output 
mapping, training and test validation, and 
correlation tests.  The interactive GUIs allow the 
user to choose a model structure and monitor the 
developed model performance without going 
into the programming details.  Moreover, a data 
analysis provision has been made within the 
package to enable users to analyze obtained data 
from a test run.  This makes the environment 
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more user-friendly and saves the time and effort 
to transfer the data to another environment for 
analysis. 

 
The SCEFMAS is in use with the Automatic 

Control and Systems Engineering Department 
of The University of Sheffield (UK).  This 
package is used as a supporting tool to deliver a 
module of a M.Sc. program within the 
department.  The software environment enables 
the students to understand the behavior of a 
flexible manipulator system and also the effect 
of parameter variations.  The learning process 
could be much more difficult without this 
package.  In addition to this, students can test 
the effectiveness of their controller designs 
without spending much time on system 
modeling. 

 
The NN and GA modeling features can easily 

be extended to the development of intelligent 
controllers to investigate various aspects of 
active vibration control in flexible manipulator 
systems.  With the advent of Internet technology 
and the Matlab web server, the package can be 
further developed to be used as a distance 
learning facility. 
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