

AN “EVERYTHING IS ALIVE” AGENT-BASED
ARCHITECTURE FOR AN ONLINE RADIO FREQUENCY

IDENTIFICATION LEARNING ENVIRONMENT

Nabil Lehlou, Nebil Buyurgan, Justin R. Chimka
Industrial Engineering Department

University of Arkansas

Abstract

Similar to many other emerging technologies,
Radio Frequency IDentification (RFID)
technology requires testing as well as proficient
people to perform this task in order to achieve
correct and effective deployment. This fact
motivates efforts to build a remote automated
system that makes testing easier and help
increase the number of people who are educated
about RFID. The authors of this paper take
advantage of Web technology and agent-
systems to (1) develop an online educational
tool for RFID, (2) introduce an automated way
to remotely control its laboratory hardware
devices, and (3) construct an agent-based
architectural model to support the underlying
system as well as its flexibility and robustness.
Moreover, a programming language is designed
to enable experimenters to code hardware
scenarios and hence, ease the task of
configuring the testing setup in the laboratory.
An implementation of the developed
architecture is presented to demonstrate a real
(vs. virtual) testing system and its use to
conduct an experiment.

Introduction

Even though the fields of science and

engineering progressed in large part by
conducting laboratory experiments, access to
resources has been restricted to onsite students
before the emergence of Internet. Now that this
constraint is not an obstacle anymore, some
institutions are promoting online educational
tools from which students at different locations
can greatly benefit by accessing remote
laboratory equipment and obtaining hands-on
experience[1,2,3,4,5,6,7]. Not only that, but
Web technology is also able to provide new

teaching techniques that are appealing to
students[5].

On the other hand, RFID is one of the new

emerging technologies that have a high potential
of being used extensively in the near future.
Some corporations such as Wal-Mart have
shown interest in testing RFID equipment and
developing applications for it, and now they
sponsor research programs to promote such
effort. One of the main objectives of such
promotion is to assess the capability of RFID,
which includes the quality of the RFID reads,
the reliability of tags and readers in different
environments, the impact of electromagnetic
wave interference, etc. If an educational
environment that is meant to convey knowledge
about RFID technology contains a laboratory
with RFID materials, then it is possible to
provide testing results and conclusions, as well
as give the involved students the opportunity to
obtain hands-on experience, rendering them
potential RFID experts and valuable assets to
RFID stakeholders. Because the majority of
employers who wish to adopt RFID believe that
there are not enough RFID-skilled people to
hire[8], attaining such experience by students is
important.

Thus, it would be valuable to have an

automated RFID laboratory whose apparatus
can be remotely controlled, whose supporting
system is flexible to reconfiguration and
renovation, and whose graphical user interface
(GUI) is interconnected with a knowledge bank
about RFID technology and related topics. A
learning environment of this sort has the
potential of satisfying business needs, assisting
collaborative educational programs, and
endorsing RFID technology.

COMPUTERS IN EDUCATION JOURNAL 87

It is important however to mention that in
general, the underlying architecture of
technological laboratories may cause financial
hindrance or structural limitations for
instructional technologies in the long term. To
be more specific, the learning process in
laboratories can only last for so long before
some of the used technologies become obsolete,
a fact that makes the rapid pace of technological
evolvement require the supporting system to be
flexible to change, upgrade, and new-device-
integration. Another issue is the non-
standardized communication, in both software
and hardware, between two or more
technological ends. This worsens the situation
of a system change that depends on replacing a
component with a new one that is not
compatible with other parts of the system. A
large piece of the structure is then replaced,
wasting by that a set of working assets and
causing a considerable financial burden. It is
therefore critical to take flexibility into account
when engineering robust educational tools that
depend heavily on technological means so that
dealing with dynamic change is not only
feasible, but efficient as well.

The contribution of this paper is the

development of (1) a Web-based learning tool
that targets teaching RFID with an emphasis on
the practical aspect of the technology, (2)
automated control of the laboratory hardware
devices, and (3) an agent-based architectural
model that supports the technological
components of the RFID testing mechanism and
endorses its system flexibility. An application
example is given to illustrate the use of such
educational tool, the ease behind its automated
control, and some of the agent operations
performed behind the scenes.

Previous Work

The physical laboratory experiments have

enriched the science and engineering areas;
however, it is not easy for students to fully
understand many modern systems due to the
accessibility constraints associated with
laboratory resources[1,3]. Recent research has

revealed that through interactive examples and
experiments, students are able to learn and
retain information better[4,9,10,11]. As a result,
many researchers from different fields are
taking advantage of the evolution of technology
and the Internet to create Web-based
laboratories in order to better the learning of
students by granting them the capability of
studying anywhere and anytime[3,6,7].
Furthermore, online laboratories have the
advantage of aiding researchers at stimulating
the interest of learners with new teaching
techniques provided by Web technology[5].

Kuester and Hutchinson[3] develop virtual

laboratories in order to complement the limited
classroom material with the laboratory adequate
resources in earthquake engineering education.
Jiang, Kurama, and Fanella[4] present an online
laboratory for instructing the behaviour and
design of reinforced concrete structures. Ozer et
al.[5] construct Web-based modules to enhance
the learning experience of students in thermal
fluids. Anderson, Taraban, and Sharma[10]
explore active-learning methods to influence the
design of their Web-based modules on
thermodynamics. Hsieh and Hsieh [1,2] create a
Web-based system for Programmable Logic
Controller (PLC) education by using “intelligent
tutoring” to convey the knowledge, and they
report very high success through the use of their
tutoring system and virtual PLC, with the
animation being the most popular instructional
activity. Hamada[9] develops a Web-based
educational tool that incorporates a set of visual
modules to promote interactive and
collaborative learning and meet learners’
preferences in the field of computation,
including language processing, compiler design,
and automata theory. The outcome of his
experiments with students shows an increase in
learner’s performance and motivation to
independently acquire more knowledge. Finally,
Gurbuz[6] discusses how the Internet aids the
development of the manufacturing engineering
curriculum in Turkey. The objective of
developing Web-based material for such matter
is to augment the students’ knowledge and
sharpen their technical skills by giving them the

88 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 89

opportunity to access subjects that would
otherwise be unavailable without the use of the
Web.

From the perspective of RFID, the research

efforts in this field were concentrated around the
applications and uses of the technology rather
than the education portion of it. Additionally,
while only a select number of schools and
universities teach RFID, the majority of these
institutions instruct it through research or
projects that are selected by students. Among
the organizations that offer classes in RFID are
Indiana University, University of California,
Michigan State University, and University of
Houston[12,13].

In 2004, Indiana University established its first

working RFID instructive model. Students and
professors are now able to experiment with
RFID technology, build interfaces for RFID-
related systems, generate metrics, and teach
applications of RFID in conjunction with EPC
systems[12].

In fall 2004 at the University of California, a

mechanical engineering professor established an
RFID-focused course called the Management of
Technology, in which business students
collaborate with students with technological
background. In this class, students worked on
designing and implementing novel business
applications using RFID technology[13].

At Michigan State University, East Lansing,
the School of Packaging offers a course on the
utilization of RFID technology in packaging.
Moreover, it has an RFID testing laboratory that
both undergraduate and graduate students
exploit to conduct independent testing for
research projects. In 2005, “At least five
Michigan State University students have
completed their master's degrees in RFID
research, in topics such as RFID in warehousing
and supply chain applications packaging, and
RFID systems design”[13].

In 2005, University of Houston offered a class
in RFID Programming as an elective in the
Management Information Systems (MIS)
department, and it was under the form of a
comprehensive survey of the RFID technology
and its business applications. Most importantly,
students carried out collaborative laboratory
assignments, in which they experimented with
different tag fixed-positions and mobile readers,
and implemented a back-end software
infrastructure using a developer's kit.
Furthermore, they were able to encode data into
RFID tags, deploy readers in a laboratory setting
using TAVIS® middleware and Visual Basic©,
and learn ways of managing the collected RFID
data[13].

Albeit all these efforts, still not enough RFID

skilled personnel are being supplied to the
industry[8,12], and that is simply because the
number of institutions providing the training and
the proportion of students receiving it are
significantly small. A way to promote RFID is
by making it accessible to everyone as well as
supporting collaboration between academic
institutions, and that can be achieved by
implementing the proposed system architecture
of the online RFID learning environment.

Technology Background

RFID Technology

Radio Frequency Identification (RFID) is a

data collection technology that utilizes wireless
radio communication (radio frequency signals)
to identify, track, and categorize objects. The
basic RFID system consists of three main
components (see Figure 1):

• The RFID tag, which is a microchip that is

embedded into a miniature antenna and that
transmits the data stored in it as the
electromagnetic response to the RFID
reader.

Figure 1. Object/device interactions

in an RFID system.

• The RFID reader, which is a subsystem that

contains the processing unit and its connected
antennas. Its main job is to emit
electromagnetic waves to the surrounding
setting and listen for electromagnetic
responses from the RFID tags. It then
forwards the captured RFID reads to the target
database.

• The database where all the raw read data is to
be collected and stored. Such data is usually
translated to meaningful information that
helps capture the business value added by
RFID.

This system can be extended with a set of

middleware devices, a variety of soft-controllers,
a network of readers, and a powerful database
management system (DBMS) to ease data-
acquisition and data-management in a large
information system.

The advantages that an RFID tag has over a

barcode include: (1) the ability of being read from
a further distance, (2) the ease of
storing/representing more encoded data, (3) the
identification of several items at once.

Everything is Alive

“Everything is Alive”[14,15] (EiA) is a concept

that says that all objects in the world can be
connected to a network called the “Internet of
Things”[16] and be intelligent enough to
communicate with humans as well as other
objects without human intervention. Once these
abilities are acquired by an object, it is called an
“EiA agent”, and it is said to be “alive” because it
can interact with humans and agents. Ideally, one
can embed a microchip into an object, program it
to create some kind of intelligence, then, plug this

“thing” to the ubiquitous “Internet.” This entity
therefore becomes an agent that is ready to
communicate with its outside world. However,
this idea needs a while before being implemented
because of the cost of the integrated microchips
and their installation. Fortunately, there are
cheaper ways to achieve the desired EiA
environment. One solution is to use computers,
for they are powerful, available, and can connect
to the Internet, which represents the agent’s
network.

Now, consider XML, which is a structured
programming language used in the Web
technology, to be the standard language that every
agent speaks. A computer program, usually called
a “wrapper,” is written to act as an interpreter
from XML to the native language of a device
(which can vary from encoded data to digital
signals, to actual motion) and vice-versa. In other
words, a hardware device (or software
application) is wrapped with a software translator,
and therefore, mutated into an agent that can
speak XML to other agents.

One popular area in engineering that can benefit

from EiA is system design. Systems that involve
software can greatly benefit from EiA because by
its nature, EiA leads to constructing agents that
are independent of the outside world. To clarify
this, think of a system as a set of independent, but
interrelated, agents. If the system breaks, only the
responsible agents are fixed or replaced. If the
system needs to perform better, only the
inefficient agents are upgraded. If the system
requires an expansion, one or more agents are
added to the system without affecting the existing
ones. One can see that EiA provides engineers
with a way to design a system that is simple,
robust, easy to maintain, and flexible to change.

90 COMPUTERS IN EDUCATION JOURNAL

System Architecture

The goal now is to construct, using an EiA

approach, a tool that provides RFID learners with
hands-on experience and gives them the
opportunity to use their analytical skills. This
section therefore discusses the software and
hardware architecture of an easy-to-maintain
laboratory system, and its soft-controllers that
support the control of RFID equipment and
hardware moving devices, in order to provide a
high-access RFID testing environment to offsite
students. Also, a feature that is added to this
system is a programming language that can be
used to code hardware scenarios so as to
programmatically control the laboratory moving
mechanisms.

Envisioned Setup

Several testing requirements have to be

considered when designing the hardware setup for
the RFID laboratory system. The factors involved
during experimentations are the motion of RFID
tags, their distance from the RFID antenna, the tag
density in the RFID envelope, and the angle of the
RFID antenna. Allowing these factors to be
treated as variables is of extreme value and the

creation of degrees of freedom in the hardware
system for such use is therefore necessary.

The hardware mechanism chosen to be
implemented is in the form of a robotic system
that has a set of motors and a control unit that
cause the RFID tags to move linearly on parallel
train tracks and the RFID antennas to change
angles (see Figure 2.). For more control power,
the tagged trains and the antenna motors can be
programmed to move according to a certain
scenario that is coded in a designed programming
language.

Laborator y System Components

RFID Reader Agent

Besides the previously mentioned benefits that a

system enjoys when it is built using an EiA
framework, there are two other advantages that
are noticed when working with agents such as
RFID reader agents. First, it is possible to control
different types of readers, that are built by
different manufacturers, using the same types of
XML messages; and that is possible thanks to the
agent wrappers that know which native language

Control Unit

Rotatable
Antenna

Tagged Train
Train Track

Platform
Figure 2. RFID laboratory testing system with tagged moving

trains and rotatable antennas.

COMPUTERS IN EDUCATION JOURNAL 91

to translate to. Second, even though the RFID
reader may carry out basic tasks only, it has the
potential of becoming a much superior device if
its agent is extended with more features. For
example, the Alien® RFID reader has only one
reading mode: reporting the RFID reads seen
during an instant when a signal is sent to it. The
RFID reader agent on the other hand can do the
following:

• Continually report the RFID reads as long as

the agent is enabled; that is achieved by
having the wrapper send a signal to the reader
at the end of a time frame called the “Poll
Period,” which is given by the user.

• Report the arrival of a tag to the RFID field,
its departure from it, or both events.

• Be reconfigurable through one XML message
instead of a set of line-commands that requires
the user to be logged into the device.

Database Agent

The DB agent receives from other agents data

encoded in XML and stores it in its database,
regardless of which database type is used (MS-
Access, Oracle, mySQL, etc). The DB agent also
receives queries and replies to their senders with
the appropriate data. One advantage that this
agent has over the regular database systems is the
ability to stay alive and keep an open connection
with the actual database itself, preventing
connection overhead each time the database is to
be queried or modified.

Robotic System

The robotic system discussed in this section is a

set of motors (which cause moving devices to
translate or rotate) as well as the associated
hardware equipment and software applications
that help with the feasibility and efficiency of the
moving mechanism. This system has a core
structure that allows it to work just fine; however,
it is not flexible to change since a simple
modification may require editing the code and the
circuit wiring. To solve this problem, the
components of this mechanism are converted to
EiA agents.

Core System Structure

The core system structure is based on an

electrical circuit that can yield three different
states for a motor: idle, rotate clockwise, and
rotate counter-clockwise. With the use of relays,
such circuit can benefit from the fact that motors
can be controlled by sending signals of 0 or 1 to
the appropriate relays. For example, consider the
circuit shown in Figure 3.: if relay R1 is closed
(sent a signal of 1) and relay R2 is opened (sent a
signal of 0), the motor rotates in the clockwise
direction. Table 1 contains the mapping between
all signal combinations and the motor states.

M

PS

PS

+

‐

+

‐

R2

R1

PS ~ Power Supply
M ~ Motor
Ri ~ Relay number i

Figure 3. Circuit design that allows
three different motor states.

Table 1: Relay signals and their
associated motor states.

One way to send relay signals is by: (1)

connecting a relay circuit board to a computer, (2)
installing the software library of the board in the
machine, and (3) constructing a GUI whose soft-
buttons hide the digital details from the user and
submit the appropriate relay signals according to
the desired motion to be seen.

R1
signal

R2
signal State of motor

0 0 Idle

0 1 Counter-clockwise
rotation

1 0 Clockwise rotation
1 1 Idle

92 COMPUTERS IN EDUCATION JOURNAL

Send XML messages

GUI

XML
Translator

Relay Board

MTurn on/off

Motor

Send signals

Motor Agent
Figure 5. The components involved in the process of controlling a motor agent.

Figure 4 depicts these elements as well as the

process of controlling a set of motors that
constitutes a robotic system.

Note that for this structure to work, the GUI has
to be a local application that runs on the machine
that is directly connected to the relay board. It
would be far more preferable to have a more
flexible system where the motors can be
controlled over a network. For that reason, motors
are turned to motor agents, and the robotic system
is transformed to a robot agent.

Motor Agent

The strategy behind building a motor agent is

grouping all interrelated components that serve
the purpose of rotating a motor to make one
independent unit; that includes the motors
themselves, the power supplies, the relay board,
and the associated middleware. This unit is then

wrapped with an XML translator that converts
XML messages into appropriates signals for
certain time periods. Figure 5 shows the process
of controlling a motor in the new improved
system structure.

Due to this change in the system structure, the
GUI has to be adjusted to send XML messages
rather than digital signals. After this task is carried
out, the motor can be controlled remotely over a
local network. This can be accomplished by
having GUI buttons generate XML messages for
the motions a user wants to see. Nonetheless, for
complicated motion scenarios, the task of pressing
multiple soft-buttons several times becomes
tedious and may lead to inaccurate results. As a
response to this inconvenience, a programming
language called “NBL” is developed to allow the
controller to code an entire scenario, and then
submit it to the appropriate agent with one button
click. The grammar of the NBL language can be

M

M

M

Send signals Turn on/off

GUI Relay Board Motors

Core
Structure

Figure 4. The components involved in the process of controlling a robotic system.

COMPUTERS IN EDUCATION JOURNAL 93

found in Appendix B. Notice that NBL also
allows other computational features such as loops,
conditions, function calls, lists… just like the
majority of programming languages. As an
example, see the following NBL code:

var x = true;
if(x == false)
 motor "engine1" clockwise 2 seconds;
else
 motor "engine1" counterclockwise 2
 seconds;

This is a simple program that declares a variable

x; then depending on the x value, the motor agent,
engine1, will either move clockwise or counter-
clockwise for two seconds before it returns to its
original state (the state in which the motor was
before the scenario was received by the associated
agent).

One important point is that any programming

language is just an abstract syntax, and for a
scenario/program to be translated into action, the
presence of an interpreter or compiler is
compulsory. In an EiA environment, an NBL
interpreter would transform a scenario to an XML
message before the latter is submitted to the
appropriate agent. A question then arises: in the
case of a scenario where several motors are to be
rotated, which agent should receive the XML
message? One solution to this issue is to have a
supervisory agent that encapsulates a number of
agents as one system unit; this container agent can
hence forward the different sub-scenarios to the
associated sub-agents at the proper times.

Robot Agent

In EiA, a set of agents that collectively represent

a certain system or serve a specific purpose can be
grouped under one container agent. As there can
be many types of container agents, a special one
for the robotic system case is the robot agent,
which is primarily responsible for making the
intended motor agents move according to a
received scenario. For instance, consider the
following NBL scenario:

var i = 1;
var sign = 1;
display("Starting scenario...\n");
while(i <= 2)
{
 motor "train2" forward 2*sign seconds;
 motor "antenna3" clockwise 3*sign
 seconds;
 sign = sign * -1;
 i = i + 1;
}
display("Scenario done!\n");

It is expected from this program to yield the

following sequential motions:

1. train2 moves forward for 2 seconds
2. antenna3 rotates in the clockwise direction for

3 seconds
3. train2 moves backward for 2 seconds
4. antenna3 rotates in the counter-clockwise

direction for 3 seconds

In this particular instance, the robot agent knows
that it should tell train2 to move forward for two
seconds, wait for two seconds, then tell antenna3
to rotate in the clockwise direction for 3 seconds,
so on and so forth. The sequential set of
commands can be carried out in a perfect fashion,
and that is because all motor agents in the system
are accessing the (common) relay board card one
at a time. On the other hand, commands that are to
be executed in parallel face the challenge of motor
agents not being able to access the relay card
simultaneously, a fact that leads to the creation of
a waiting queue of motors that needs to utilize the
shared resource. Hence, there is always a time
delay between the different motors that are to be
run in parallel, which negatively affects the
quality of the supposedly synchronous motions.

There is a way to not only solve this problem,

but take advantage of this shortcoming as well.
One thing to know first is that motor agents are
randomly queued while waiting for the
availability of the relay board. This can be used
when randomness is needed in the laboratory
experiment. In NBL, if the earlier scenario is to be
executed in a randomly asynchronous parallel
fashion, the following code can be used:

94 COMPUTERS IN EDUCATION JOURNAL

var i = 1;
var sign = 1;
display("Starting scenario...\n");
while(i < 2)
{
 parallel async
 {
 motor "train2" forward 2*sign
 seconds;
 motor "antenna3" clockwise 3*sign
 seconds;
 }
 sign = sign * -1;
 i = i + 1;
}
display("Scenario done!\n");

Conversely, to achieve synchronous parallel

movements, the robot agent has to be upgraded by
adding the relay board agent. Such an agent
enables the access of all the relays directly, and
thusly, controlling all motors linked to them at the
same time, leading to perfectly parallel motor
motions. The previous scenario example can be
executed in this manner simply by removing the
keyword async from the NBL code.

The robot agent can be sophisticated in many

other different dimensions where the only
limitation is the imagination of the builder. One
dimension would be adding sensor agents that let
the users know the statuses of the motors or their
associated moving devices. By receiving feedback
about the location/position of a hardware unit, the
NBL coder can even surpass the need for visual
system troubleshooting.

Graphical User Interface

Component Agents

The graphical user interface is one of the most
flexible project pieces to construct, and its look
depends purely on the user’s requirements and the
programmer’s imagination. Nevertheless,
regardless of the way it is designed, the GUI
needs two agents embedded in it if its
functionality is to be complete in an RFID
laboratory system that is built on top of an EiA
framework. The first one is the control agent
whose responsibility is to send XML messages
that speak for the user’s intentions, such as

moving a tagged train on a track, reconfigure an
RFID reader, terminate an agent, etc. Moreover,
the control agent should also be able to receive
XML messages that carry specific awaited
information like statuses of controllable devices,
confirmation of agents’ actions, and replies to
other sent messages. Furthermore, it has to be
linked to the NBL interpreter so it can send the
hardware scenarios (encoded in XML by the NBL
interpreter) to the right system receiver. The
second agent that complements the operation of
the GUI is the listener agent whose main purpose
is to capture unexpected messages such as RFID
reads and agents disconnection confirmations. In
other words, because these types of messages are
not awaited by the control agent, it is necessary to
have a listener mechanism take care of receiving
them and displaying their content to the GUI user
at all times.

The functionality of the GUI application is not

bound to these two agents though. Similar to the
robot agent, the GUI can be expanded and
sophisticated through different kinds of agents
and there is no limit on the operability that can be
added.

Migration to the Web

The EiA framework provides agents with a
mean of communicating over a network, which is,
in this specific system, the internet network used
to support the Web technology. Even though it is
conceptually feasible for two computers to send
each other XML messages, it is not realistically
always possible because of the network router
architecture, the security barriers, the
configuration of the local networks, etc. A way to
overcome this constraint can be achieved by
following these steps:

1. Build a local secure network for the RFID

laboratory, adjust its configuration to satisfy
the needs of agents, and make sure that
messaging occurs as expected.

2. Connect a Web server to this network and run
a website on it.

COMPUTERS IN EDUCATION JOURNAL 95

96 COMPUTERS IN EDUCATION JOURNAL

3. Have the website host the GUI that controls
and listens to the agents that exist in the
laboratory system.

This way, people that have access to the

ubiquitous Web technology are able to reach the
RFID laboratory agents and interact with them.

One final important complementary addition to

the system is the presence of a good quality Web-
camera that prompts the user to view and zoom on
specific parts of the laboratory. For example,
Figure 6. shows a Web browser view of an RFID
laboratory obtained with a Sony® Web-camera.
Such a device helps users in many ways such as
obtain a visual of the laboratory and the RFID
equipment, control the hardware with ease, and
take snapshots of the laboratory view for future
documentation.

Figure 6 . A Web-browser real-time view
of an RFID laboratory.

Laboratory System Architecture

At this point, all the critical components of the

RFID laboratory system have been discussed and
its architecture can now be described at a high
level: After the reader agent has its reading mode
configured, it starts reading RFID tags
accordingly. It then broadcasts the captured reads
throughout the local network so that all interested
parties can obtain such data. Two of these parties
are the GUI listener agent, which displays the read

data to the user, and the database agent, which
stores it in the appropriate tables. Through the
GUI and its control agent, the user can also
discover the connected agents in the network,
modify the configuration of the reader agent,
control the robot agent, and query the database.
Because the robot agent allows moving RFID tags
and rotating RFID antennas, changing testing
setups for experimentation on RFID technology
can be acquired through multiple degrees of
freedom. Figure 7 summarizes these interactions
in an architectural model. Note that while a
system can have many agents of the same type,
the interaction with the other sorts of agents is the
same as described above. That is in this EiA
system for instance, one or more GUIs can control
several robot agents, a reader is able to send read
data to all DB agents, and a DB agent is capable
of receiving from all the reader agents.

This agent-based architectural model is also not

saturated and can be extended and modified in
several ways. The fine thing about it is that it is
empowered by three different features that give it
an advantage over other architectural system
designs. The first one is the ability of agents to be
smart and their capability of handling system
issues without the intervention of humans. For
illustration, when the robot agent receives a
scenario, it knows how to distribute the tasks over
its motor agents in a synchronously parallel,
asynchronous parallel, or serial manners. Hence,
an aspect of this kind omits some of the
dependency on humans and promotes more
automation.

The second feature touches upon the structure of

the system and its flexibility to be modified or
extended. First, introducing a new device to the
system is as simple as wrapping it inside an agent
and connecting it to the agent network, a task that
might need the creation or modification of the
agent wrapper, but may be performed without
affecting other components in the environment.
Second, if a device is to be replaced with a more
superior one to achieve the desired system
upgrade, then the replacement is as trivial as

Robot Agent

. . .Motor
Agent

Motor
Agent

Motor
Agent

Relay Board
Agent

Sensor
Agent

Other
Agent

GUI Agent

Database Agent

Reader Agent

RFID
Antenna

RFID
Tag

RFID
ReaderConfigure

Report Reads

Query

Provide Data

Move

Tag Hardware

Control Report
Status Report

Reads

Read

Control
Agent

Listener
Agent

Figure 7 High-level RFID laboratory system architecture.

removing the old agent and introducing the
replacement as a new agent. Finally, an agent can
be made even smarter, and that is just by updating
its wrapper while keeping its proper operating
device as it is. Thus, one can see how inexpensive
changes can be when the system is constructed on
top of an EiA framework.

The final feature on which the architectural
model is based is the fact that the system is
composed of agents that speak and understand the
language of XML; i.e. each one of these entities is
able to send and receive messages encoded in
XML through the local network. This yields
standardization in communication between the
laboratory technological devices in both hardware
(through Internet network) and software (through
XML messaging). In other words, non-Internet
cables that connect electronic devices such as
parallel-port and serial-port cables do not
constitute a restriction in building flexible systems
that are independent of the type of cabling
anymore. Also, the software aspect of the system
gains a similar advantage from the XML
messaging that occurs between the agents, and

that is due to the fact that the transferred data is
recognized by all receiving parties, leading to
error-free agent communication. Furthermore, it
opens the door for agents to be developed in
different programming languages without losing
the ability to interact with each other. Application
developers can therefore program in their
favourite languages and use their most convenient
software framework without problems, a fact that
creates another dimension of flexibility.

Overall, the developed RFID laboratory system

benefits from the EiA architecture in three notable
ways. One is the ability of a device to interact
with any other device, without human
intervention. Secondly, any component in the
system can easily be replaced by a substitute, even
if the two are very different in the way they
operate, resulting in inexpensive reconfiguration,
upgrade, and agent integration. Finally, the
standard fashion agents use to interact in an EiA
network offer a set of benefits to hardware
assemblers and application developers to
construct systems with error-free communication.

COMPUTERS IN EDUCATION JOURNAL 97

Application

This architectural model is applied to an RFID

testing system at the Industrial Engineering RFID
laboratory of the University of Arkansas,
Fayetteville. The hardware setup is composed of
one Alien® RFID reader with two antennas as
well as sixteen moving RFID tagged Lego® trains
on sixteen parallel rail tracks, which are set on a
16x16 ft (4.88x4.88 m) carpeted wooden platform
(see Figure 6). The top part of each rail is made
out of metal in which an electrical current can
pass and cause the trains to move. Each Lego®
system is powered up by two Lego® speed-
adjusters, which are connected to the
QUANCOM® USBOPTOREL32 relay-board,
just as explained in Figure 3. This board is
connectable to a computer through a USB port, is
powered up through the same USB port, and has
an Application Programming Interface (API)
provided by the QLIB software library. The
USBOPTOREL32 device also has thirty-two
relays, where each one is responsible for the
forward or backward motions of one of the
sixteen trains, and thirty-two input-bits that can
report the (on/off) status of every relay.

Given this setting, a sample experiment is
presented in order to show the usefulness of this
educational instrument and its programmable
control as well as the response of some agents to
users’ requests. Such experiment first starts with

aligning the trains to the far left, away from one of
the antennas (see the left 15x15 grid of Figure 8,
where the side of each cell is 1 foot (0.3m) long).
This can be accomplished in several manners; one
quick and easy way is by executing the following
NBL statement:

Motor "" backward 6 seconds;

Note that in the implemented system, when the
name of the agent is not specified in a request, the
associated XML message is broadcast to all the
connected agents in the local network. Also, the
reason for which six seconds is used is because it
takes that long for a train to be displaced from the
extreme right to the extreme left of the platform
on the 15 ft (4.57m) long rail, a fact that implies a
velocity of 2.5 grid-cell per second (0.76 m/s).
Second, the setup depicted on the right of Figure
8 is to be achieved. By using NBL, the following
scenario (where the variable t represents the time
to traverse a cell) performs the required task:

var t = 1/2.5;
display("Start scenario...\n");
motor "engine6" forward 12*t;
motor "engine7" forward 8*t;
motor "engine8" forward 10*t;
motor "engine9" forward 8*t;
motor "engine10" forward 6*t;
motor "engine11" forward 6*t;
display("End scenario.\n");

Figure 8. The initial setup (on the left) and the final setup (on the right).

98 COMPUTERS IN EDUCATION JOURNAL

Upon execution, this scenario is sent to the robot

agent whose IP address and port number are
192.168.0.2 and 4142 respectively. Before it is
sent however, the scenario is compiled and
converted to the following XML message:

<?xml version="1.0" encoding="UTF-8"?>
<Message SrcAddr="192.168.0.3"
 SrcPort="3566"
 DstAddr="192.168.0.2"
 DstPort="4142"
 SeqNo="1" InRe="0">
 <Scenario Name="" Agent="RobotAgent"
 Parallel="False"
 Synchronous="False">
 <Command Motor="engine6"
 Direction="FORWARD"
 Size="4.8" Unit="SECOND"/>
 <Command Motor="engine7"
 Direction="FORWARD"
 Size="3.2" Unit="SECOND"/>
 <Command Motor="engine8"
 Direction="FORWARD"
 Size="4" Unit="SECOND"/>
 <Command Motor="engine9"
 Direction="FORWARD"
 Size="3.2" Unit="SECOND"/>
 <Command Motor="engine10"
 Direction="FORWARD"
 Size="2.4" Unit="SECOND"/>
 <Command Motor="engine11"
 Direction="FORWARD"
 Size="2.4" Unit="SECOND"/>
 </Scenario>
<Message/>

After the desired setup is attained, the

experimenter can start reading the RFID tags for a
certain period of time. Nevertheless, before s/he
does so, the RFID reader agent has to be
configured according to the needs of the
experiment. Configuring an RFID reader agent
involves choosing specific options for three
different features. The first one is the Poll Period,
which refers to the time frame the agent wrapper
waits before it asks the reader device for the next
set of RFID reads. The second feature is whether
or not the read data is to be filtered according to
arrival and departure events before it is reported.
That is RFID reads are only reported when a tag
arrives to or departs from the RFID field of a

reader. If the user opts to enable such filtering,
then the third feature is to be set to log either the
departure event, arrival event, or both.

Consider now that a poll period of 200

milliseconds is chosen, and no filtering is required
since the trains are static and the experiment does
not involve motion. When this configuration is
selected and executed at the GUI level, the
following XML message is generated and sent to
the targeted reader agent:

<?xml version="1.0" encoding="UTF-8"?>
<Message SrcAddr="192.168.0.3"
 SrcPort="3566"
 DstAddr="192.168.0.2"
 DstPort="3185"
 SeqNo="3" InRe="0">
 <ReaderOn LogArrivals="True"
 LogDepartures="True"
 PollPeriod="200"
 FilteredReads="False"
 TagTypeMask="4"/>
<Message/>

Upon receipt of the message, the RFID reader

agent starts broadcasting RFID read data to the
interested agents (such as GUI listener agents and
DB agents), and does not stop doing so until it
receives the ReaderOff message (see below),
which can be generated and sent manually or
programmatically.

<?xml version="1.0" encoding="UTF-8"?>
<Message SrcAddr="192.168.0.3"
 SrcPort="3566"
 DstAddr="192.168.0.2"
 DstPort="3185"
 SeqNo="5" InRe="0">
 <ReaderOff/>
<Message/>

Note: a sample of XML messages that are used

in this system is provided in Appendix A.

After the data collection process is complete, the

user can export the read data to an Excel sheet or
any software package that can allow him/her to
perform data analysis.

COMPUTERS IN EDUCATION JOURNAL 99

Results of Implementation

As mentioned earlier, the developed EiA agent-

based architecture is used to support an
implemented remote RFID testing system at the
University of Arkansas. From a Web-browser,
users can access the RFID laboratory, open a
laboratory view streamed by an onsite Web-
camera, zoom on the target devices, move them
according to the desired test setup, acquire the
reads, and finally export the data to a file for
future analysis. Furthermore, since a website is
used to host the hardware control GUI, the site
can include other pages that broaden the
navigator’s knowledge about different aspects of
the used technologies. For example, specialized
articles about RFID and its components can be
posted, tutorials of the NBL programming
language can be incorporated, and detailed
technical discussions can be shared. Note that the
hosting website is currently being expanded in a
continual fashion.

From the system performance and usability

perspectives, feedback from developers shows
that the mechanism not only works well, but it is
also easy to maintain and upgrade. Moreover,
survey data and its analysis demonstrate that
students who used the associated learning
environment have increased their understanding
of RFID technology and its relevant areas,
improved their attitudes about engineering
education, and enhanced their confidence towards
any instructed technology. The results of the
associated student assessment can be found in
[19].

Conclusions

This document describes the effort of

developing a real (vs. virtual) Web-based
educational tool that exploits the power of the
Everything is Alive paradigm to achieve remote
accessibility of RFID laboratory resources in a
reliable and easy-to-maintain manner. A
significant emphasis is placed on its agent-based
architecture that represents the underlying

framework of the laboratory system due to the
importance of the flexibility of its structure in the
long term. System agents include RFID reader
agents, database agents, GUI listener and
controller agents, motor and robot agents, and
others. Segregating the system components into
independent, but interrelated, agents grants the
system the flexibility to dynamic changes and
upgrades. Furthermore, the ability of objects to
interact through a network by exchanging XML
messages provides standardization of device
communication and omits the human intervention
when a person is needed as an intermediary
between two or more devices. Another feature
that is developed for the testing system is the NBL
programming language, which can not only allow
the experimenter to design and code complex
hardware scenarios before their execution, but
enable him/her to perform logical and
computational tasks as well. One last important
point is that the developed EiA agent architecture
can also serve as a model for laboratories that
support other kinds of technologies such as
robotics and smart-home devices.

Now that such architecture is implemented,

individuals from any place in the world can
perform experiments with RFID, obtain and
analyze data, and deduce conclusions. This not
only helps gain hands-on experience in the
technology and support collaborative programs,
but it also permits to evaluate the equipment’s
performance and find its flaws. Due to their high
access to laboratory resources, learning
environments of this kind have considerable
potentials to help improve targeted technologies
as well as rapidly increase the number of people
who are proficient in them.

Acknowledgment

This material is based upon work supported by

the National Science Foundation under Grant No.
DUE0633334. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not
necessarily reflect the views of the NSF.

100 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 101

Bibliography

1. S. Hsieh and P. Hsieh, “Animations and Intelligent

Tutoring Systems for Programmable Logic
Controller Education,” International Journal of
Engineering Education, vol. 19, no. 2, pp. 282-
296, 2003.

2. S. Hsieh and P. Hsieh, “Web-Based Modules for

Programmable Logic Controller Education,”
Computer Applications in Engineering Education,
vol. 13, no. 4, pp. 266-279, 2005.

3. F. Kuester and T. Hutchinson, “A Virtualized

Laboratory for Earthquake Engineering
Education,” Computer Applications in
Engineering Education, vol. 15, no. 1, pp. 15-29,
2006.

4. H. Jiang, Y. Kurama, and D. Fanella, “WWW-

Based Virtual Laboratories for Reinforced
Concrete Education,” Computer Applications in
Engineering Education, vol. 10, no. 4, pp. 167-181
2002.

5. T. Ozer, M. Kenworthy, J.G. Brisson, E.G.

Cravalho, and G.H. McKinley, “On Developments
in Interactive Web-Based Learning Modules in a
Thermal-Fluids Engineering Course,”
International Journal of Engineering Education,
vol. 19, no. 2, pp. 305-315, 2003.

6. R. Gurbuz, “Web-Based Curriculum Development

of a Manufacturing Technology Programme,”
International Journal of Engineering Education,
vol. 20, no. 4, pp. 566-577, 2004.

7. S. Huang, Q. Su, N. Samant, and I. Khan,

“Development of a Web-Based Integrated
Manufacturing Laboratory,” Computer
Applications in Engineering Education, vol. 9, no.
4, pp. 228-237, 2001.

8. CompTIA, “RFID Adoption Trends in the IT

Channel,” White Paper, May. 2008.

9. M. Hamada, “An Integrated Virtual Environment

for Active and Collaborative e-Learning in Theory
of Computation,” IEEE Trans. Learning
Technologies, vol. 1, no. 2, Apr/Jun 2008, doi:
10.1109/TLT.2008.3.

10. E. Anderson, R. Taraban, and M.P. Sharma,

“Implementing and Assessing Computer-Based
Active Learning Materials in Introductory
Thermodynamics,” International Journal of
Engineering Education, vol. 21, no. 6, pp. 1168-
1176, 2005.

11. D. Diong, R. Wicker, C. Della-Piana, and R.

Quintana, “A Laboratory Designed to Enhance
Students' Interest in and Learning of Controls,”
International Journal of Engineering Education,
vol. 20, no. 4, pp. 628-636, 2004.

12. IU News Room, “IU's Kelley School Receives

Gift from Zebra Technologies for RFID Lab,”
http://newsinfo.iu.edu/news/page/normal/3154.ht
ml. 28 Mar. 2006.

13. M.C. O'Connor, “RFID Makes the Grade,” RFID

Journal,
http://www.rfidjournal.com/article/articleview/153
8/1/1/. 27 Apr. 2005.

14. C. Thompson, “Everything is Alive,”

Architectural Perspectives Column, IEEE Internet
Computing, vol. 8, no. 1, pp. 83-86, 2004.

15. J. Hoag and C. Thompson, “Architecting RFID

Middleware,” Architectural Perspectives column,
IEEE Internet Computing, vol. 10, no. 5, pp. 88-
92, 2006.

16. International Telecommunication Union, “Internet

of Things,”
http://www.itu.int/osg/spu/publications/Internetoft
hings/ InternetofThings_summary.pdf. 2005.

17. M. Wooldridge, “Agent-Based Computing,”

Interoperable Communication Networks, vol. 1,
no. 1, pp. 71-79, 1998.

18. M.R. Genesereth and S.P. Ketchpel, “Software

Agents,” Communication of the ACM, vol. 37, no.
7, pp. 48-53, 1994.

19. N. Lehlou, N. Buyurgan, J.R. Chimka, "An Online

RFID Laboratory Learning Environment," IEEE
Transactions on Learning Technologies, accepted,
10 Aug. 2009.

http://newsinfo.iu.edu/news/page/normal/3154.html.%2028%20Mar.%202006
http://newsinfo.iu.edu/news/page/normal/3154.html.%2028%20Mar.%202006
http://www.rfidjournal.com/article/articleview/1538/1/1/
http://www.rfidjournal.com/article/articleview/1538/1/1/
http://www.itu.int/osg/spu/publications/internetofthings/%20InternetofThings_summary.pdf
http://www.itu.int/osg/spu/publications/internetofthings/%20InternetofThings_summary.pdf

Appendix A

<!--Scenario: a set of commands to be executed-->
<Scenario Name="" Agent="" Parallel="False"

Synchronous="False">
 <Command Motor="train2" Direction="FORWARD"

Size="2" Unit="SECOND"/>
 <Command Motor="antenna3" Direction="CLOCKWISE"

Size="3" Unit="SECOND"/>
</Scenario>

<!--LaunchAgent: to launch an agent in the receiver agent-->
<LaunchAgent FullClassName="Agentlib.Diagnostic"

TranslatorPath="Agentlib"
StringParam="DiagAgent">

</LaunchAgent>
<LaunchAgent

FullClassName="Agentlib.Motors.QLibMotorAgent"
TranslatorPath="Agentlib.Motors"
StringParam="Engine1">

 <MotorAgentConfig>
 <!--Caution: value is in hexadecimal-->
 <Action key="" value="FFFFFFFC"/>
 <Action key="INWARD" value="00000001"/>
 <Action key="OUTWARD" value="00000002"/>
 <Action key="FORWARD" value="00000002"/>
 <Action key="BACKWARD" value="00000001"/>
 <Action key="CLOCKWISE" value="00000002"/>
 <Action key="COUNTERCLOCKWISE"

value="00000001"/>
 </MotorAgentConfig>
</LaunchAgent>

<!--ACK: for agent-acknolegments-->
<ACK/>

<!--AgentConnected: to report an agent’s connection coordinates-->
<AgentConnected Name="DiagAgent"

Type="Diagnostic"
IPAddr="192.168.0.4"
IPPort="983"/>

<!--AgentDisconnected: to declare an agent’s termination-->
<AgentDisconnected Name="ControlInterface"

Type="GUI" IPAddr="10.0.0.2" IPPort="763"/>

<!--DiagnosticPacket: to report byte-transfer diagnostics-->
<DiagnosticPacket Payload="10" SeqNo="2"/>

<!--DiscoveryRequest: to discover connected agents-->
<DiscoveryRequest Type="" Name=""/>
<DiscoveryRequest Type="Diagnostic" Name=""/>
<DiscoveryRequest Type="Diagnostic"

Name="DiagAgent"/>

<!--Ping: to ping an agent-->
<Ping/>

<!--PingReply: to reply to an agent’s Ping-->
<PingReply/>

<!--Terminate-->
<Terminate/>

102 COMPUTERS IN EDUCATION JOURNAL

Appendix B

scenario -> *nothing* | statement scenario

statement -> command | parallelStatement
| expressionStatement | ifStatement
| whileStatement | forStatement
| variableDefinition | displayStatement

expressionStatement -> expression SEMICOLON

forStatement -> FOR O_PAREN [assignmentExpression] SEMICOLON expression SEMICOLON
[assignmentExpression] C_PAREN statement
| FOR O_PAREN [assignmentExpression] SEMICOLON expression SEMICOLON [assignmentExpression]
block

displayStatement -> DISPLAY O_PAREN argumentList C_PAREN SEMICOLON
| CELLDISPLAY O_PAREN argumentList C_PAREN SEMICOLON
| CARDISPLAY O_PAREN argumentList C_PAREN SEMICOLON
| CDRDISPLAY O_PAREN argumentList C_PAREN SEMICOLON

argumentList -> *nothing*
| expression
| expression COMMA argumentList

whileStatement -> WHILE O_PAREN expression C_PAREN block
| WHILE O_PAREN expression C_PAREN statement

ifStatement -> IF O_PAREN expression C_PAREN statement [elseStatement]
| IF O_PAREN expression C_PAREN block [elseStatement]

elseStatement -> ELSE statement | ELSE block

block -> O_CURLY_BRACE scenario C_CURLY_BRACE

assignmentStatement -> assignmentExpression SEMICOLON

assignmentExpression -> VARIABLE ASSIGN expression
| valExpression ASSIGN expression
| carExpression ASSIGN expression
| cdrExpression ASSIGN expression

expression -> primary | primary operat expression

primary -> NULL | VARIABLE | INTEGER | DOUBLE
| STRING | valExpression | cdrExpression
| carExpression | NOT primary | MINUS primary
| O_PAREN expression C_PAREN | functionCall

functionCall -> VARIABLE argumentLists

argumentLists -> O_PAREN C_PAREN
| O_PAREN C_PAREN argumentLists
| O_PAREN argumentList C_PAREN
| O_PAREN argumentList C_PAREN argumentLists

valExpression –> VAL O_PAREN expression C_PAREN

cdrExpression –> CDR O_PAREN expression C_PAREN

carExpression –> CAR O_PAREN expression C_PAREN

variableDefinition -> VAR VARIABLE SEMICOLON
| VAR VARIABLE ASSIGN expression SEMICOLON
| VAR VARIABLE O_PAREN C_PAREN block
| VAR VARIABLE O_PAREN parameterList C_PAREN block

COMPUTERS IN EDUCATION JOURNAL 103

104 COMPUTERS IN EDUCATION JOURNAL

parameterList -> VARIABLE
| VARIABLE COMMA parameterList

parallelStatement -> PARALLEL O_CURLY_BRACE commandList C_CURLY_BRACE
| PARALLEL ASYNC O_CURLY_BRACE commandList C_CURLY_BRACE

commandList -> *nothing* | command commandList

command -> MOTOR motor direction size [unit] SEMICOLON
| MOTOR motor IDLE size [SECOND] SEMICOLON
| IDLE [SECOND] SEMICOLON

Motor -> VARIABLE | STRING

direction -> IN | OUT | FORWARD | BACKWARD
| CLOCKWISE | COUNTERCLOCKWISE | FW | BW | CW | CCW

Size -> expression

Unit -> SECONDS | SECOND | SEC | METERS | METER | M
| FEET | FOOT | FT | DEGREES | DEGREE | DEG

operat -> PLUS | MINUS | MULTIPLY | DIVIDE
| MODULUS | POWER |EQUAL | DIFFER | SAME
| DIFFERENT | LESS_THAN | MORE_THAN
| LESS_OR_EQUAL | MORE_OR_EQUAL | CONDITIONAL_AND
| CONDITIONAL_OR | LOGICAL_AND | LOGICAL_OR

true -> 1

false -> 0

Biographical Information

Nabil Lehlou obtained his Honors Bachelor in
computer science from the University of
Arkansas, Fayetteville, USA, in 2007, and his
Masters in Industrial Engineering in 2008 from
the same institution. He worked with Wal-Mart
Information System Division as a programmer for
one year starting in summer 2005. He joined the
graduate program of the Industrial Engineering
Department at the University of Arkansas in
summer 2007, where he was assigned an NSF
project of developing an online testing system for
RFID technology. He is currently pursuing a
Ph.D. in Industrial Engineering and working as a
graduate assistant at the University of Arkansas.
His research interests span RFID technology,
agent-systems, heuristics and optimization, and
renewable energy.

Nebil Buyurgan is an assistant professor of
Industrial Engineering, director of the AT&T
Material Handling Laboratory, and co-director of
the AT&T Manufacturing Automation Laboratory
at the University of Arkansas. After receiving his
PhD degree in Engineering Management from the
University of Missouri-Rolla, he joined the
Industrial Engineering Department at the
University of Arkansas in 2004. His research and
teaching interests include modeling and analysis
of discrete event systems, supervisory control
systems and distributed control, and Auto-ID
technologies. He has directed several projects
funded by National Science Foundation, Air Force
Research Lab, and Wal-Mart Stores.

Justin R. Chimka is an assistant professor in the
Department of Industrial Engineering at the
University of Arkansas. His PhD with a major in
industrial engineering is from the University of
Pittsburgh. Justin's academic interests include
education research, and statistical quality control.

	Abstract
	Introduction
	Previous Work
	Technology Background
	RFID Technology
	Everything is Alive

	System Architecture
	Envisioned Setup
	Laborator y System Components
	RFID Reader Agent
	Database Agent
	Robotic System
	Core System Structure
	Motor Agent
	Robot Agent

	Graphical User Interface
	Component Agents
	Migration to the Web

	Laboratory System Architecture

	Application
	Results of Implementation
	Conclusions
	Acknowledgment
	Appendix A
	Appendix B

