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Abstract 
 

Similar to many other emerging technologies, 
Radio Frequency IDentification (RFID) 
technology requires testing as well as proficient 
people to perform this task in order to achieve 
correct and effective deployment. This fact 
motivates efforts to build a remote automated 
system that makes testing easier and help 
increase the number of people who are educated 
about RFID. The authors of this paper take 
advantage of Web technology and agent-
systems to (1) develop an online educational 
tool for RFID, (2) introduce an automated way 
to remotely control its laboratory hardware 
devices, and (3) construct an agent-based 
architectural model to support the underlying 
system as well as its flexibility and robustness. 
Moreover, a programming language is designed 
to enable experimenters to code hardware 
scenarios and hence, ease the task of 
configuring the testing setup in the laboratory. 
An implementation of the developed 
architecture is presented to demonstrate a real 
(vs. virtual) testing system and its use to 
conduct an experiment.  
 

Introduction 
 
Even though the fields of science and 

engineering progressed in large part by 
conducting laboratory experiments, access to 
resources has been restricted to onsite students 
before the emergence of Internet. Now that this 
constraint is not an obstacle anymore, some 
institutions are promoting online educational 
tools from which students at different locations 
can greatly benefit by accessing remote 
laboratory equipment and obtaining hands-on 
experience[1,2,3,4,5,6,7]. Not only that, but 
Web technology is also able to provide new 

teaching techniques that are appealing to 
students[5]. 

 
On the other hand, RFID is one of the new 

emerging technologies that have a high potential 
of being used extensively in the near future. 
Some corporations such as Wal-Mart have 
shown interest in testing RFID equipment and 
developing applications for it, and now they 
sponsor research programs to promote such 
effort. One of the main objectives of such 
promotion is to assess the capability of RFID, 
which includes the quality of the RFID reads, 
the reliability of tags and readers in different 
environments, the impact of electromagnetic 
wave interference, etc. If an educational 
environment that is meant to convey knowledge 
about RFID technology contains a laboratory 
with RFID materials, then it is possible to 
provide testing results and conclusions, as well 
as give the involved students the opportunity to 
obtain hands-on experience, rendering them 
potential RFID experts and valuable assets to 
RFID stakeholders. Because the majority of 
employers who wish to adopt RFID believe that 
there are not enough RFID-skilled people to 
hire[8], attaining such experience by students is 
important. 

 
Thus, it would be valuable to have an 

automated RFID laboratory whose apparatus 
can be remotely controlled, whose supporting 
system is flexible to reconfiguration and 
renovation, and whose graphical user interface 
(GUI) is interconnected with a knowledge bank 
about RFID technology and related topics. A 
learning environment of this sort has the 
potential of satisfying business needs, assisting 
collaborative educational programs, and 
endorsing RFID technology. 
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It is important however to mention that in 
general, the underlying architecture of 
technological laboratories may cause financial 
hindrance or structural limitations for 
instructional technologies in the long term. To 
be more specific, the learning process in 
laboratories can only last for so long before 
some of the used technologies become obsolete, 
a fact that makes the rapid pace of technological 
evolvement require the supporting system to be 
flexible to change, upgrade, and new-device-
integration. Another issue is the non-
standardized communication, in both software 
and hardware, between two or more 
technological ends. This worsens the situation 
of a system change that depends on replacing a 
component with a new one that is not 
compatible with other parts of the system. A 
large piece of the structure is then replaced, 
wasting by that a set of working assets and 
causing a considerable financial burden. It is 
therefore critical to take flexibility into account 
when engineering robust educational tools that 
depend heavily on technological means so that 
dealing with dynamic change is not only 
feasible, but efficient as well. 

 
The contribution of this paper is the 

development of (1) a Web-based learning tool 
that targets teaching RFID with an emphasis on 
the practical aspect of the technology, (2) 
automated control of the laboratory hardware 
devices, and (3) an agent-based architectural 
model that supports the technological 
components of the RFID testing mechanism and 
endorses its system flexibility. An application 
example is given to illustrate the use of such 
educational tool, the ease behind its automated 
control, and some of the agent operations 
performed behind the scenes. 
 

Previous  Work 
 
The physical laboratory experiments have 

enriched the science and engineering areas; 
however, it is not easy for students to fully 
understand many modern systems due to the 
accessibility constraints associated with 
laboratory resources[1,3]. Recent research has 

revealed that through interactive examples and 
experiments, students are able to learn and 
retain information better[4,9,10,11]. As a result, 
many researchers from different fields are 
taking advantage of the evolution of technology 
and the Internet to create Web-based 
laboratories in order to better the learning of 
students by granting them the capability of 
studying anywhere and anytime[3,6,7]. 
Furthermore, online laboratories have the 
advantage of aiding researchers at stimulating 
the interest of learners with new teaching 
techniques provided by Web technology[5]. 

 
Kuester and Hutchinson[3] develop virtual 

laboratories in order to complement the limited 
classroom material with the laboratory adequate 
resources in earthquake engineering education. 
Jiang, Kurama, and Fanella[4] present an online 
laboratory for instructing the behaviour and 
design of reinforced concrete structures. Ozer et 
al.[5] construct Web-based modules to enhance 
the learning experience of students in thermal 
fluids. Anderson, Taraban, and Sharma[10] 
explore active-learning methods to influence the 
design of their Web-based modules on 
thermodynamics. Hsieh and Hsieh [1,2] create a 
Web-based system for Programmable Logic 
Controller (PLC) education by using “intelligent 
tutoring” to convey the knowledge, and they 
report very high success through the use of their 
tutoring system and virtual PLC, with the 
animation being the most popular instructional 
activity. Hamada[9] develops a Web-based 
educational tool that incorporates a set of visual 
modules to promote interactive and 
collaborative learning and meet learners’ 
preferences in the field of computation, 
including language processing, compiler design, 
and automata theory. The outcome of his 
experiments with students shows an increase in 
learner’s performance and motivation to 
independently acquire more knowledge. Finally, 
Gurbuz[6] discusses how the Internet aids the 
development of the manufacturing engineering 
curriculum in Turkey. The objective of 
developing Web-based material for such matter 
is to augment the students’ knowledge and 
sharpen their technical skills by giving them the 
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opportunity to access subjects that would 
otherwise be unavailable without the use of the 
Web.  

 
From the perspective of RFID, the research 

efforts in this field were concentrated around the 
applications and uses of the technology rather 
than the education portion of it. Additionally, 
while only a select number of schools and 
universities teach RFID, the majority of these 
institutions instruct it through research or 
projects that are selected by students. Among 
the organizations that offer classes in RFID are 
Indiana University, University of California, 
Michigan State University, and University of 
Houston[12,13].  

 
In 2004, Indiana University established its first 

working RFID instructive model. Students and 
professors are now able to experiment with 
RFID technology, build interfaces for RFID-
related systems, generate metrics, and teach 
applications of RFID in conjunction with EPC 
systems[12]. 

 
In fall 2004 at the University of California, a 

mechanical engineering professor established an 
RFID-focused course called the Management of 
Technology, in which business students 
collaborate with students with technological 
background. In this class, students worked on 
designing and implementing novel business 
applications using RFID technology[13]. 
 

At Michigan State University, East Lansing, 
the School of Packaging offers a course on the 
utilization of RFID technology in packaging. 
Moreover, it has an RFID testing laboratory that 
both undergraduate and graduate students 
exploit to conduct independent testing for 
research projects. In 2005, “At least five 
Michigan State University students have 
completed their master's degrees in RFID 
research, in topics such as RFID in warehousing 
and supply chain applications packaging, and 
RFID systems design”[13]. 

 
 

In 2005, University of Houston offered a class 
in RFID Programming as an elective in the 
Management Information Systems (MIS) 
department, and it was under the form of a 
comprehensive survey of the RFID technology 
and its business applications. Most importantly, 
students carried out collaborative laboratory 
assignments, in which they experimented with 
different tag fixed-positions and mobile readers, 
and implemented a back-end software 
infrastructure using a developer's kit. 
Furthermore, they were able to encode data into 
RFID tags, deploy readers in a laboratory setting 
using TAVIS® middleware and Visual Basic©, 
and learn ways of managing the collected RFID 
data[13]. 

 
Albeit all these efforts, still not enough RFID 

skilled personnel are being supplied to the 
industry[8,12], and that is simply because the 
number of institutions providing the training and 
the proportion of students receiving it are 
significantly small. A way to promote RFID is 
by making it accessible to everyone as well as 
supporting collaboration between academic 
institutions, and that can be achieved by 
implementing the proposed system architecture 
of the online RFID learning environment. 

 
Technology  Background 

 
RFID  Technology 

 
Radio Frequency Identification (RFID) is a 

data collection technology that utilizes wireless 
radio communication (radio frequency signals) 
to identify, track, and categorize objects. The 
basic RFID system consists of three main 
components (see Figure 1): 
 
• The RFID tag, which is a microchip that is 

embedded into a miniature antenna and that 
transmits the data stored in it as the 
electromagnetic response to the RFID 
reader. 

 
 
 

 



 

 
Figure 1. Object/device interactions  

in an RFID system.
 
 
• The RFID reader, which is a subsystem that 

contains the processing unit and its connected 
antennas. Its main job is to emit 
electromagnetic waves to the surrounding 
setting and listen for electromagnetic 
responses from the RFID tags. It then 
forwards the captured RFID reads to the target 
database. 

• The database where all the raw read data is to 
be collected and stored. Such data is usually 
translated to meaningful information that 
helps capture the business value added by 
RFID. 

 
This system can be extended with a set of 

middleware devices, a variety of soft-controllers, 
a network of readers, and a powerful database 
management system (DBMS) to ease data-
acquisition and data-management in a large 
information system. 

 
The advantages that an RFID tag has over a 

barcode include: (1) the ability of being read from 
a further distance, (2) the ease of 
storing/representing more encoded data, (3) the 
identification of several items at once. 

 
Everything  is  Alive 

 
“Everything is Alive”[14,15] (EiA) is a concept 

that says that all objects in the world can be 
connected to a network called the “Internet of 
Things”[16] and be intelligent enough to 
communicate with humans as well as other 
objects without human intervention. Once these 
abilities are acquired by an object, it is called an 
“EiA agent”, and it is said to be “alive” because it 
can interact with humans and agents. Ideally, one 
can embed a microchip into an object, program it 
to create some kind of intelligence, then, plug this  

 
“thing” to the ubiquitous “Internet.” This entity 
therefore becomes an agent that is ready to 
communicate with its outside world. However, 
this idea needs a while before being implemented 
because of the cost of the integrated microchips 
and their installation. Fortunately, there are 
cheaper ways to achieve the desired EiA 
environment. One solution is to use computers, 
for they are powerful, available, and can connect 
to the Internet, which represents the agent’s 
network.  
 

Now, consider XML, which is a structured 
programming language used in the Web 
technology, to be the standard language that every 
agent speaks. A computer program, usually called 
a “wrapper,” is written to act as an interpreter 
from XML to the native language of a device 
(which can vary from encoded data to digital 
signals, to actual motion) and vice-versa. In other 
words, a hardware device (or software 
application) is wrapped with a software translator, 
and therefore, mutated into an agent that can 
speak XML to other agents. 

 
One popular area in engineering that can benefit 

from EiA is system design. Systems that involve 
software can greatly benefit from EiA because by 
its nature, EiA leads to constructing agents that 
are independent of the outside world. To clarify 
this, think of a system as a set of independent, but 
interrelated, agents. If the system breaks, only the 
responsible agents are fixed or replaced. If the 
system needs to perform better, only the 
inefficient agents are upgraded. If the system 
requires an expansion, one or more agents are 
added to the system without affecting the existing 
ones.  One can see that EiA provides engineers 
with a way to design a system that is simple, 
robust, easy to maintain, and flexible to change. 
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System  Architecture 
 
The goal now is to construct, using an EiA 

approach, a tool that provides RFID learners with 
hands-on experience and gives them the 
opportunity to use their analytical skills. This 
section therefore discusses the software and 
hardware architecture of an easy-to-maintain 
laboratory system, and its soft-controllers that 
support the control of RFID equipment and 
hardware moving devices, in order to provide a 
high-access RFID testing environment to offsite 
students. Also, a feature that is added to this 
system is a programming language that can be 
used to code hardware scenarios so as to 
programmatically control the laboratory moving 
mechanisms.  

 
Envisioned  Setup 

 
Several testing requirements have to be 

considered when designing the hardware setup for 
the RFID laboratory system. The factors involved 
during experimentations are the motion of RFID 
tags, their distance from the RFID antenna, the tag 
density in the RFID envelope, and the angle of the 
RFID antenna. Allowing these factors to be 
treated as variables is of extreme value and the 

creation of degrees of freedom in the hardware 
system for such use is therefore necessary. 
 

The hardware mechanism chosen to be 
implemented is in the form of a robotic system 
that has a set of motors and a control unit that 
cause the RFID tags to move linearly on parallel 
train tracks and the RFID antennas to change 
angles (see Figure 2.). For more control power, 
the tagged trains and the antenna motors can be 
programmed to move according to a certain 
scenario that is coded in a designed programming 
language. 
 
Laborator y System  Components 
 
RFID Reader Agent 
 
Besides the previously mentioned benefits that a 

system enjoys when it is built using an EiA 
framework, there are two other advantages that 
are noticed when working with agents such as 
RFID reader agents. First, it is possible to control 
different types of readers, that are built by 
different manufacturers, using the same types of 
XML messages; and that is possible thanks to the 
agent wrappers that know which native language

 

Control Unit

Rotatable 
Antenna

Tagged Train
Train Track

Platform  
Figure 2.  RFID laboratory testing system with tagged moving  

trains and rotatable antennas. 
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to translate to. Second, even though the RFID 
reader may carry out basic tasks only, it has the 
potential of becoming a much superior device if 
its agent is extended with more features. For 
example, the Alien® RFID reader has only one 
reading mode: reporting the RFID reads seen 
during an instant when a signal is sent to it. The 
RFID reader agent on the other hand can do the 
following:  

 
• Continually report the RFID reads as long as 

the agent is enabled; that is achieved by 
having the wrapper send a signal to the reader 
at the end of a time frame called the “Poll 
Period,” which is given by the user. 

• Report the arrival of a tag to the RFID field, 
its departure from it, or both events. 

• Be reconfigurable through one XML message 
instead of a set of line-commands that requires 
the user to be logged into the device. 

 
Database  Agent 

 
The DB agent receives from other agents data 

encoded in XML and stores it in its database, 
regardless of which database type is used (MS-
Access, Oracle, mySQL, etc). The DB agent also 
receives queries and replies to their senders with 
the appropriate data. One advantage that this 
agent has over the regular database systems is the 
ability to stay alive and keep an open connection 
with the actual database itself, preventing 
connection overhead each time the database is to 
be queried or modified. 
 
Robotic  System 

 
The robotic system discussed in this section is a 

set of motors (which cause moving devices to 
translate or rotate) as well as the associated 
hardware equipment and software applications 
that help with the feasibility and efficiency of the 
moving mechanism. This system has a core 
structure that allows it to work just fine; however, 
it is not flexible to change since a simple 
modification may require editing the code and the 
circuit wiring. To solve this problem, the 
components of this mechanism are converted to 
EiA agents. 

Core  System  Structure 
 
The core system structure is based on an 

electrical circuit that can yield three different 
states for a motor: idle, rotate clockwise, and 
rotate counter-clockwise. With the use of relays, 
such circuit can benefit from the fact that motors 
can be controlled by sending signals of 0 or 1 to 
the appropriate relays. For example, consider the 
circuit shown in Figure 3.: if relay R1 is closed 
(sent a signal of 1) and relay R2 is opened (sent a 
signal of 0), the motor rotates in the clockwise 
direction. Table 1 contains the mapping between 
all signal combinations and the motor states. 

 
 

M

PS

PS

+

‐

+

‐

R2

R1

PS ~ Power Supply
M ~ Motor
Ri ~ Relay number i

Figure 3. Circuit design that allows  
three different motor states. 

 
 

Table 1: Relay signals and their  
associated motor states. 

 
 
One way to send relay signals is by: (1) 

connecting a relay circuit board to a computer, (2) 
installing the software library of the board in the 
machine, and (3) constructing a GUI whose soft-
buttons hide the digital details from the user and 
submit the appropriate relay signals according to 
the desired motion to be seen.  

 
 
 

R1  
signal 

R2  
signal State of motor 

0 0 Idle 

0 1 Counter-clockwise 
rotation 

1 0 Clockwise rotation 
1 1 Idle 
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Send XML messages

GUI

XML
Translator

Relay Board

MTurn on/off

Motor

Send signals

Motor Agent  
Figure 5. The components involved in the process of controlling a motor agent. 

 
 
Figure 4  depicts these elements as well as the 

process of controlling a set of motors that 
constitutes a robotic system. 
 

Note that for this structure to work, the GUI has 
to be a local application that runs on the machine 
that is directly connected to the relay board. It 
would be far more preferable to have a more 
flexible system where the motors can be 
controlled over a network. For that reason, motors 
are turned to motor agents, and the robotic system 
is transformed to a robot agent. 
 
Motor  Agent 

 
The strategy behind building a motor agent is 

grouping all interrelated components that serve 
the purpose of rotating a motor to make one 
independent unit; that includes the motors 
themselves, the power supplies, the relay board, 
and the associated middleware.  This  unit  is  then  

 
wrapped with an XML translator that converts 
XML messages into appropriates signals for 
certain time periods. Figure 5 shows the process 
of controlling a motor in the new improved 
system structure. 
 

Due to this change in the system structure, the 
GUI has to be adjusted to send XML messages 
rather than digital signals. After this task is carried 
out, the motor can be controlled remotely over a 
local network. This can be accomplished by 
having GUI buttons generate XML messages for 
the motions a user wants to see. Nonetheless, for 
complicated motion scenarios, the task of pressing 
multiple soft-buttons several times becomes 
tedious and may lead to inaccurate results. As a 
response to this inconvenience, a programming 
language called “NBL” is developed to allow the 
controller to code an entire scenario, and then 
submit it to the appropriate agent with one button 
click. The grammar of the NBL language can be 

M

M

M

Send signals Turn on/off

GUI Relay Board Motors

Core
Structure

 
Figure 4. The components involved in the process of controlling a robotic system. 
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found in Appendix B. Notice that NBL also 
allows other computational features such as loops, 
conditions, function calls, lists… just like the 
majority of programming languages. As an 
example, see the following NBL code: 

 
var x = true; 
if(x == false) 
  motor "engine1" clockwise 2 seconds; 
else  
  motor "engine1" counterclockwise 2 
  seconds; 

 
This is a simple program that declares a variable 

x; then depending on the x value, the motor agent, 
engine1, will either move clockwise or counter-
clockwise for two seconds before it returns to its 
original state (the state in which the motor was 
before the scenario was received by the associated 
agent).  

 
One important point is that any programming 

language is just an abstract syntax, and for a 
scenario/program to be translated into action, the 
presence of an interpreter or compiler is 
compulsory. In an EiA environment, an NBL 
interpreter would transform a scenario to an XML 
message before the latter is submitted to the 
appropriate agent. A question then arises: in the 
case of a scenario where several motors are to be 
rotated, which agent should receive the XML 
message? One solution to this issue is to have a 
supervisory agent that encapsulates a number of 
agents as one system unit; this container agent can 
hence forward the different sub-scenarios to the 
associated sub-agents at the proper times. 

 
Robot  Agent 

 
In EiA, a set of agents that collectively represent 

a certain system or serve a specific purpose can be 
grouped under one container agent. As there can 
be many types of container agents, a special one 
for the robotic system case is the robot agent, 
which is primarily responsible for making the 
intended motor agents move according to a 
received scenario. For instance, consider the 
following NBL scenario: 

 
 

var i = 1; 
var sign = 1; 
display("Starting scenario...\n"); 
while(i <= 2) 
{ 
  motor "train2" forward 2*sign seconds; 
  motor "antenna3" clockwise 3*sign  
  seconds; 
  sign = sign * -1; 
  i = i + 1; 
} 
display("Scenario done!\n"); 

 
It is expected from this program to yield the 

following sequential motions: 
 

1. train2 moves forward for 2 seconds 
2. antenna3 rotates in the clockwise direction for 

3 seconds 
3. train2 moves backward for 2 seconds 
4. antenna3 rotates in the counter-clockwise 

direction for 3 seconds 
 

In this particular instance, the robot agent knows 
that it should tell train2 to move forward for two 
seconds, wait for two seconds, then tell antenna3 
to rotate in the clockwise direction for 3 seconds, 
so on and so forth. The sequential set of 
commands can be carried out in a perfect fashion, 
and that is because all motor agents in the system 
are accessing the (common) relay board card one 
at a time. On the other hand, commands that are to 
be executed in parallel face the challenge of motor 
agents not being able to access the relay card 
simultaneously, a fact that leads to the creation of 
a waiting queue of motors that needs to utilize the 
shared resource. Hence, there is always a time 
delay between the different motors that are to be 
run in parallel, which negatively affects the 
quality of the supposedly synchronous motions. 

 
There is a way to not only solve this problem, 

but take advantage of this shortcoming as well. 
One thing to know first is that motor agents are 
randomly queued while waiting for the 
availability of the relay board. This can be used 
when randomness is needed in the laboratory 
experiment. In NBL, if the earlier scenario is to be 
executed in a randomly asynchronous parallel 
fashion, the following code can be used: 
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var i = 1; 
var sign = 1; 
display("Starting scenario...\n"); 
while(i < 2) 
{ 
  parallel async  
  { 
    motor "train2" forward 2*sign  
    seconds; 
    motor "antenna3" clockwise 3*sign  
    seconds; 
  } 
  sign = sign * -1; 
  i = i + 1; 
} 
display("Scenario done!\n"); 

 
Conversely, to achieve synchronous parallel 

movements, the robot agent has to be upgraded by 
adding the relay board agent. Such an agent 
enables the access of all the relays directly, and 
thusly, controlling all motors linked to them at the 
same time, leading to perfectly parallel motor 
motions. The previous scenario example can be 
executed in this manner simply by removing the 
keyword async from the NBL code. 

 
The robot agent can be sophisticated in many 

other different dimensions where the only 
limitation is the imagination of the builder. One 
dimension would be adding sensor agents that let 
the users know the statuses of the motors or their 
associated moving devices. By receiving feedback 
about the location/position of a hardware unit, the 
NBL coder can even surpass the need for visual 
system troubleshooting. 

 
Graphical  User  Interface 
 
Component  Agents 
 

The graphical user interface is one of the most 
flexible project pieces to construct, and its look 
depends purely on the user’s requirements and the 
programmer’s imagination. Nevertheless, 
regardless of the way it is designed, the GUI 
needs two agents embedded in it if its 
functionality is to be complete in an RFID 
laboratory system that is built on top of an EiA 
framework. The first one is the control agent 
whose responsibility is to send XML messages 
that speak for the user’s intentions, such as 

moving a tagged train on a track, reconfigure an 
RFID reader, terminate an agent, etc. Moreover, 
the control agent should also be able to receive 
XML messages that carry specific awaited 
information like statuses of controllable devices, 
confirmation of agents’ actions, and replies to 
other sent messages. Furthermore, it has to be 
linked to the NBL interpreter so it can send the 
hardware scenarios (encoded in XML by the NBL 
interpreter) to the right system receiver. The 
second agent that complements the operation of 
the GUI is the listener agent whose main purpose 
is to capture unexpected messages such as RFID 
reads and agents disconnection confirmations. In 
other words, because these types of messages are 
not awaited by the control agent, it is necessary to 
have a listener mechanism take care of receiving 
them and displaying their content to the GUI user 
at all times. 

 
The functionality of the GUI application is not 

bound to these two agents though. Similar to the 
robot agent, the GUI can be expanded and 
sophisticated through different kinds of agents 
and there is no limit on the operability that can be 
added. 

 
Migration  to  the  Web  
 

The EiA framework provides agents with a 
mean of communicating over a network, which is, 
in this specific system, the internet network used 
to support the Web technology. Even though it is 
conceptually feasible for two computers to send 
each other XML messages, it is not realistically 
always possible because of the network router 
architecture, the security barriers, the 
configuration of the local networks, etc. A way to 
overcome this constraint can be achieved by 
following these steps: 

 
1. Build a local secure network for the RFID 

laboratory, adjust its configuration to satisfy 
the needs of agents, and make sure that 
messaging occurs as expected. 

2. Connect a Web server to this network and run 
a website on it. 
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3. Have the website host the GUI that controls 
and listens to the agents that exist in the 
laboratory system. 

 
This way, people that have access to the 

ubiquitous Web technology are able to reach the 
RFID laboratory agents and interact with them. 

 
One final important complementary addition to 

the system is the presence of a good quality Web-
camera that prompts the user to view and zoom on 
specific parts of the laboratory. For example, 
Figure 6. shows a Web browser view of an RFID 
laboratory obtained with a Sony® Web-camera. 
Such a device helps users in many ways such as 
obtain a visual of the laboratory and the RFID 
equipment, control the hardware with ease, and 
take snapshots of the laboratory view for future 
documentation. 

 
 

 
 

Figure 6 . A Web-browser real-time view  
of an RFID laboratory. 

 
Laboratory  System  Architecture 

 
At this point, all the critical components of the 

RFID laboratory system have been discussed and 
its architecture can now be described at a high 
level: After the reader agent has its reading mode 
configured, it starts reading RFID tags 
accordingly. It then broadcasts the captured reads 
throughout the local network so that all interested 
parties can obtain such data. Two of these parties 
are the GUI listener agent, which displays the read 

data to the user, and the database agent, which 
stores it in the appropriate tables. Through the 
GUI and its control agent, the user can also 
discover the connected agents in the network, 
modify the configuration of the reader agent, 
control the robot agent, and query the database. 
Because the robot agent allows moving RFID tags 
and rotating RFID antennas, changing testing 
setups for experimentation on RFID technology 
can be acquired through multiple degrees of 
freedom. Figure 7 summarizes these interactions 
in an architectural model. Note that while a 
system can have many agents of the same type, 
the interaction with the other sorts of agents is the 
same as described above. That is in this EiA 
system for instance, one or more GUIs can control 
several robot agents, a reader is able to send read 
data to all DB agents, and a DB agent is capable 
of receiving from all the reader agents. 

 
This agent-based architectural model is also not 

saturated and can be extended and modified in 
several ways. The fine thing about it is that it is 
empowered by three different features that give it 
an advantage over other architectural system 
designs. The first one is the ability of agents to be 
smart and their capability of handling system 
issues without the intervention of humans. For 
illustration, when the robot agent receives a 
scenario, it knows how to distribute the tasks over 
its motor agents in a synchronously parallel, 
asynchronous parallel, or serial manners. Hence, 
an aspect of this kind omits some of the 
dependency on humans and promotes more 
automation. 

 
The second feature touches upon the structure of 

the system and its flexibility to be modified or 
extended. First, introducing a new device to the 
system is as simple as wrapping it inside an agent 
and connecting it to the agent network, a task that 
might need the creation or modification of the 
agent wrapper, but may be performed without 
affecting other components in the environment. 
Second, if a device is to be replaced with a more 
superior one to achieve the desired system 
upgrade, then the replacement is as trivial as 
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Figure 7 High-level RFID laboratory system architecture. 
 
 
removing the old agent and introducing the 
replacement as a new agent. Finally, an agent can 
be made even smarter, and that is just by updating 
its wrapper while keeping its proper operating 
device as it is. Thus, one can see how inexpensive 
changes can be when the system is constructed on 
top of an EiA framework. 
 

The final feature on which the architectural 
model is based is the fact that the system is 
composed of agents that speak and understand the 
language of XML; i.e. each one of these entities is 
able to send and receive messages encoded in 
XML through the local network. This yields 
standardization in communication between the 
laboratory technological devices in both hardware 
(through Internet network) and software (through 
XML messaging). In other words, non-Internet 
cables that connect electronic devices such as 
parallel-port and serial-port cables do not 
constitute a restriction in building flexible systems 
that are independent of the type of cabling 
anymore. Also, the software aspect of the system 
gains a similar advantage from the XML 
messaging that occurs between the agents, and 

that is due to the fact that the transferred data is 
recognized by all receiving parties, leading to 
error-free agent communication. Furthermore, it 
opens the door for agents to be developed in 
different programming languages without losing 
the ability to interact with each other. Application 
developers can therefore program in their 
favourite languages and use their most convenient 
software framework without problems, a fact that 
creates another dimension of flexibility. 

 
Overall, the developed RFID laboratory system 

benefits from the EiA architecture in three notable 
ways. One is the ability of a device to interact 
with any other device, without human 
intervention. Secondly, any component in the 
system can easily be replaced by a substitute, even 
if the two are very different in the way they 
operate, resulting in inexpensive reconfiguration, 
upgrade, and agent integration.  Finally, the 
standard fashion agents use to interact in an EiA 
network offer a set of benefits to hardware 
assemblers and application developers to 
construct systems with error-free communication. 
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Application 
 
This architectural model is applied to an RFID 

testing system at the Industrial Engineering RFID 
laboratory of the University of Arkansas, 
Fayetteville. The hardware setup is composed of 
one Alien® RFID reader with two antennas as 
well as sixteen moving RFID tagged Lego® trains 
on sixteen parallel rail tracks, which are set on a 
16x16 ft (4.88x4.88 m) carpeted wooden platform 
(see Figure 6). The top part of each rail is made 
out of metal in which an electrical current can 
pass and cause the trains to move. Each Lego® 
system is powered up by two Lego® speed-
adjusters, which are connected to the 
QUANCOM® USBOPTOREL32 relay-board, 
just as explained in Figure 3. This board is 
connectable to a computer through a USB port, is 
powered up through the same USB port, and has 
an Application Programming Interface (API) 
provided by the QLIB software library. The 
USBOPTOREL32 device also has thirty-two 
relays, where each one is responsible for the 
forward or backward motions of one of the 
sixteen trains, and thirty-two input-bits that can 
report the (on/off) status of every relay. 
 

Given this setting, a sample experiment is 
presented in order to show the usefulness of this 
educational instrument and its programmable 
control as well as the response of some agents to 
users’ requests. Such experiment first starts with 

aligning the trains to the far left, away from one of 
the antennas (see the left 15x15 grid of Figure 8, 
where the side of each cell is 1 foot (0.3m) long). 
This can be accomplished in several manners; one 
quick and easy way is by executing the following 
NBL statement: 

 
Motor "" backward 6 seconds; 

 
Note that in the implemented system, when the 
name of the agent is not specified in a request, the 
associated XML message is broadcast to all the 
connected agents in the local network. Also, the 
reason for which six seconds is used is because it 
takes that long for a train to be displaced from the 
extreme right to the extreme left of the platform 
on the 15 ft (4.57m) long rail, a fact that implies a 
velocity of 2.5 grid-cell per second (0.76 m/s). 
Second, the setup depicted on the right of  Figure 
8 is to be achieved. By using NBL, the following 
scenario (where the variable t represents the time 
to traverse a cell) performs the required task: 

 
var t = 1/2.5; 
display("Start scenario...\n");  
motor "engine6"  forward 12*t; 
motor "engine7"  forward  8*t; 
motor "engine8"  forward 10*t; 
motor "engine9"  forward  8*t; 
motor "engine10" forward  6*t; 
motor "engine11" forward  6*t; 
display("End scenario.\n"); 

 
 
 
 

 
 

Figure 8. The initial setup (on the left) and the final setup (on the right). 
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Upon execution, this scenario is sent to the robot 

agent whose IP address and port number are 
192.168.0.2 and 4142 respectively. Before it is 
sent however, the scenario is compiled and 
converted to the following XML message: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<Message SrcAddr="192.168.0.3" 
      SrcPort="3566"  
      DstAddr="192.168.0.2"  
  DstPort="4142"  
      SeqNo="1" InRe="0"> 
  <Scenario Name="" Agent="RobotAgent"  
      Parallel="False"  
      Synchronous="False"> 
    <Command Motor="engine6"  
      Direction="FORWARD"  
      Size="4.8" Unit="SECOND"/> 
    <Command Motor="engine7"  
      Direction="FORWARD"  
      Size="3.2" Unit="SECOND"/> 
    <Command Motor="engine8"  
      Direction="FORWARD"  
      Size="4" Unit="SECOND"/> 
    <Command Motor="engine9"  
      Direction="FORWARD"  
      Size="3.2" Unit="SECOND"/> 
    <Command Motor="engine10"  
      Direction="FORWARD"  
      Size="2.4" Unit="SECOND"/> 
    <Command Motor="engine11"  
      Direction="FORWARD"  
      Size="2.4" Unit="SECOND"/> 
  </Scenario> 
<Message/> 

 
After the desired setup is attained, the 

experimenter can start reading the RFID tags for a 
certain period of time. Nevertheless, before s/he 
does so, the RFID reader agent has to be 
configured according to the needs of the 
experiment. Configuring an RFID reader agent 
involves choosing specific options for three 
different features. The first one is the Poll Period, 
which refers to the time frame the agent wrapper 
waits before it asks the reader device for the next 
set of RFID reads. The second feature is whether 
or not the read data is to be filtered according to 
arrival and departure events before it is reported. 
That is RFID reads are only reported when a tag 
arrives  to  or  departs  from  the  RFID  field  of a  

reader. If the user opts to enable such filtering, 
then the third feature is to be set to log either the 
departure event, arrival event, or both. 

   
Consider now that a poll period of 200 

milliseconds is chosen, and no filtering is required 
since the trains are static and the experiment does 
not involve motion. When this configuration is 
selected and executed at the GUI level, the 
following XML message is generated and sent to 
the targeted reader agent: 

 
<?xml version="1.0" encoding="UTF-8"?> 
<Message SrcAddr="192.168.0.3"  
     SrcPort="3566"  
     DstAddr="192.168.0.2"  
  DstPort="3185"  
     SeqNo="3" InRe="0"> 
  <ReaderOn LogArrivals="True"  
     LogDepartures="True"  
     PollPeriod="200" 
     FilteredReads="False" 
     TagTypeMask="4"/> 
<Message/> 

 
Upon receipt of the message, the RFID reader 

agent starts broadcasting RFID read data to the 
interested agents (such as GUI listener agents and 
DB agents), and does not stop doing so until it 
receives the ReaderOff message (see below), 
which can be generated and sent manually or 
programmatically. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<Message SrcAddr="192.168.0.3" 
     SrcPort="3566"  
     DstAddr="192.168.0.2"  
     DstPort="3185"  
     SeqNo="5" InRe="0"> 
  <ReaderOff/> 
<Message/> 

 
Note: a sample of XML messages that are used 

in this system is provided in Appendix A. 
 
After the data collection process is complete, the 

user can export the read data to an Excel sheet or 
any software package that can allow him/her to 
perform data analysis. 
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Results  of  Implementation 
 
As mentioned earlier, the developed EiA agent-

based architecture is used to support an 
implemented remote RFID testing system at the 
University of Arkansas. From a Web-browser, 
users can access the RFID laboratory, open a 
laboratory view streamed by an onsite Web-
camera, zoom on the target devices, move them 
according to the desired test setup, acquire the 
reads, and finally export the data to a file for 
future analysis. Furthermore, since a website is 
used to host the hardware control GUI, the site 
can include other pages that broaden the 
navigator’s knowledge about different aspects of 
the used technologies. For example, specialized 
articles about RFID and its components can be 
posted, tutorials of the NBL programming 
language can be incorporated, and detailed 
technical discussions can be shared. Note that the 
hosting website is currently being expanded in a 
continual fashion. 

 
From the system performance and usability 

perspectives, feedback from developers shows 
that the mechanism not only works well, but it is 
also easy to maintain and upgrade. Moreover, 
survey data and its analysis demonstrate that 
students who used the associated learning 
environment have increased their understanding 
of RFID technology and its relevant areas, 
improved their attitudes about engineering 
education, and enhanced their confidence towards 
any instructed technology. The results of the 
associated student assessment can be found in 
[19]. 
 

Conclusions 
 
This document describes the effort of 

developing a real (vs. virtual) Web-based 
educational tool that exploits the power of the 
Everything is Alive paradigm to achieve remote 
accessibility of RFID laboratory resources in a 
reliable and easy-to-maintain manner. A 
significant emphasis is placed on its agent-based 
architecture    that     represents    the    underlying  

 

framework of the laboratory system due to the 
importance of the flexibility of its structure in the 
long term. System agents include RFID reader 
agents, database agents, GUI listener and 
controller agents, motor and robot agents, and 
others. Segregating the system components into 
independent, but interrelated, agents grants the 
system the flexibility to dynamic changes and 
upgrades. Furthermore, the ability of objects to 
interact through a network by exchanging XML 
messages provides standardization of device 
communication and omits the human intervention 
when a person is needed as an intermediary 
between two or more devices. Another feature 
that is developed for the testing system is the NBL 
programming language, which can not only allow 
the experimenter to design and code complex 
hardware scenarios before their execution, but 
enable him/her to perform logical and 
computational tasks as well. One last important 
point is that the developed EiA agent architecture 
can also serve as a model for laboratories that 
support other kinds of technologies such as 
robotics and smart-home devices. 

 
Now that such architecture is implemented, 

individuals from any place in the world can 
perform experiments with RFID, obtain and 
analyze data, and deduce conclusions. This not 
only helps gain hands-on experience in the 
technology and support collaborative programs, 
but it also permits to evaluate the equipment’s 
performance and find its flaws. Due to their high 
access to laboratory resources, learning 
environments of this kind have considerable 
potentials to help improve targeted technologies 
as well as rapidly increase the number of people 
who are proficient in them. 
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Appendix A 
 
<!--Scenario: a set of commands to be executed--> 
<Scenario Name="" Agent="" Parallel="False"  

Synchronous="False"> 
  <Command Motor="train2" Direction="FORWARD"  

Size="2" Unit="SECOND"/> 
  <Command Motor="antenna3" Direction="CLOCKWISE"  

Size="3" Unit="SECOND"/> 
</Scenario> 
 
<!--LaunchAgent: to launch an agent in the receiver agent--> 
<LaunchAgent FullClassName="Agentlib.Diagnostic"  

TranslatorPath="Agentlib" 
StringParam="DiagAgent"> 

</LaunchAgent> 
<LaunchAgent 

FullClassName="Agentlib.Motors.QLibMotorAgent"  
TranslatorPath="Agentlib.Motors"  
StringParam="Engine1"> 

  <MotorAgentConfig> 
    <!--Caution: value is in hexadecimal--> 
    <Action key="" value="FFFFFFFC"/> 
    <Action key="INWARD" value="00000001"/> 
    <Action key="OUTWARD" value="00000002"/> 
    <Action key="FORWARD" value="00000002"/> 
    <Action key="BACKWARD" value="00000001"/> 
    <Action key="CLOCKWISE" value="00000002"/> 
    <Action key="COUNTERCLOCKWISE"  

value="00000001"/> 
  </MotorAgentConfig> 
</LaunchAgent> 
 
<!--ACK: for agent-acknolegments--> 
<ACK/> 
 
<!--AgentConnected: to report an agent’s connection coordinates--> 
<AgentConnected Name="DiagAgent"  

Type="Diagnostic"  
IPAddr="192.168.0.4"  
IPPort="983"/> 

 
<!--AgentDisconnected: to declare an agent’s termination--> 
<AgentDisconnected Name="ControlInterface"  

Type="GUI" IPAddr="10.0.0.2" IPPort="763"/> 
 
<!--DiagnosticPacket: to report byte-transfer diagnostics--> 
<DiagnosticPacket Payload="10" SeqNo="2"/> 
 
<!--DiscoveryRequest: to discover connected agents--> 
<DiscoveryRequest Type="" Name=""/> 
<DiscoveryRequest Type="Diagnostic" Name=""/> 
<DiscoveryRequest Type="Diagnostic"  

Name="DiagAgent"/> 
 
<!--Ping: to ping an agent--> 
<Ping/> 
 
<!--PingReply: to reply to an agent’s Ping--> 
<PingReply/> 
 
<!--Terminate--> 
<Terminate/> 
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Appendix B 
 
scenario -> *nothing* | statement scenario 
 
statement -> command | parallelStatement  
| expressionStatement | ifStatement  
| whileStatement | forStatement  
| variableDefinition | displayStatement 
 
expressionStatement -> expression SEMICOLON 
 
forStatement -> FOR O_PAREN [assignmentExpression] SEMICOLON expression SEMICOLON 
[assignmentExpression] C_PAREN statement 
| FOR O_PAREN [assignmentExpression] SEMICOLON expression SEMICOLON [assignmentExpression] 
block 
 
displayStatement -> DISPLAY O_PAREN argumentList C_PAREN SEMICOLON 
| CELLDISPLAY O_PAREN argumentList C_PAREN SEMICOLON 
| CARDISPLAY O_PAREN argumentList C_PAREN SEMICOLON 
| CDRDISPLAY O_PAREN argumentList C_PAREN SEMICOLON 
 
argumentList -> *nothing* 
| expression 
| expression COMMA argumentList 
 
whileStatement -> WHILE O_PAREN expression C_PAREN block 
| WHILE O_PAREN expression C_PAREN statement 
 
ifStatement -> IF O_PAREN expression C_PAREN statement [elseStatement] 
| IF O_PAREN expression C_PAREN block [elseStatement] 
 
elseStatement -> ELSE statement | ELSE block 
 
block -> O_CURLY_BRACE scenario C_CURLY_BRACE 
 
assignmentStatement -> assignmentExpression SEMICOLON 
 
assignmentExpression -> VARIABLE ASSIGN expression 
| valExpression ASSIGN expression 
| carExpression ASSIGN expression 
| cdrExpression ASSIGN expression 
 
expression -> primary | primary operat expression 
 
primary -> NULL | VARIABLE | INTEGER | DOUBLE 
| STRING | valExpression | cdrExpression 
| carExpression | NOT primary | MINUS primary 
| O_PAREN expression C_PAREN | functionCall 
 
functionCall -> VARIABLE argumentLists 
 
argumentLists -> O_PAREN C_PAREN 
| O_PAREN C_PAREN argumentLists 
| O_PAREN argumentList C_PAREN 
| O_PAREN argumentList C_PAREN argumentLists 
 
valExpression –> VAL O_PAREN expression C_PAREN 
 
cdrExpression –> CDR O_PAREN expression C_PAREN 
 
carExpression –> CAR O_PAREN expression C_PAREN 
 
variableDefinition -> VAR VARIABLE SEMICOLON 
| VAR VARIABLE ASSIGN expression SEMICOLON 
| VAR VARIABLE O_PAREN C_PAREN block 
| VAR VARIABLE O_PAREN parameterList C_PAREN block 
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parameterList -> VARIABLE 
| VARIABLE COMMA parameterList 
 
parallelStatement -> PARALLEL O_CURLY_BRACE commandList C_CURLY_BRACE 
| PARALLEL ASYNC O_CURLY_BRACE commandList C_CURLY_BRACE 
 
commandList -> *nothing* | command commandList 
 
command -> MOTOR motor direction size [unit] SEMICOLON 
| MOTOR motor IDLE size [SECOND] SEMICOLON 
| IDLE [SECOND] SEMICOLON 
 
Motor -> VARIABLE | STRING 
 
direction -> IN | OUT | FORWARD | BACKWARD  
| CLOCKWISE | COUNTERCLOCKWISE | FW | BW | CW | CCW 
 
Size -> expression 
 
Unit -> SECONDS | SECOND | SEC | METERS | METER | M 
| FEET | FOOT | FT | DEGREES | DEGREE | DEG 
 
operat -> PLUS | MINUS | MULTIPLY | DIVIDE  
| MODULUS | POWER |EQUAL | DIFFER | SAME  
| DIFFERENT | LESS_THAN | MORE_THAN  
| LESS_OR_EQUAL | MORE_OR_EQUAL | CONDITIONAL_AND  
| CONDITIONAL_OR | LOGICAL_AND | LOGICAL_OR 
 
true -> 1 
 
false -> 0 
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