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Abstract 

 
Fourier Transforms are an important element 

of undergraduate training in various engineering 
and scientific fields. This article presents a 
general derivation of the Fourier Transform for 
arbitrary dimension. It is shown that Fourier 
Transforms in even dimensions entail Bessel 
functions. Then data sets from Monte Carlo 
simulations for two and four dimensional 
systems are used to numerically perform the 
appropriate Fourier Transforms. Such activities 
expose students to both special functions and 
numerical methods of integration.  

 
Introduction 

 
In a previous article [1] in this journal we have 

presented derivations and applications of the 
Fourier Transform in one and three dimensions. 
In the present paper we extend this work to 
arbitrary dimension.  It is found that Bessel 
functions [2, 3] are involved when taking the 
Fourier Transform in even dimensions. Bessel 
functions occur in many two dimensional 
engineering and physics applications such as 
heat conduction and electromagnetic wave 
propagation in waveguides of circular cross-
section. 
 

The general form of the Fourier transform [4, 
5, 6] in any spatial dimension, D, of a function, 
F(|R|), which is symmetric in angular 
coordinates is given by 

 
    F(|K|)   =  ∫  e i K · R  F(|R|) dR               (1) 
 

where K is the wave-vector, K · R  is the vector 
dot product between K and R , dR is the 
appropriate volume element in D dimensional 
space and  | | denotes the magnitude of a vector.  

In order to simplify the equations we will use 
bold on a variable to indicate a vector and 
ordinary text to indicate a vector magnitude. 
 

In two dimensions the volume element in Eq. 
1 in Cartesian coordinates is dxdy. If integration 
is performed employing Cartesian coordinates, 
two separate one dimensional integrals must be 
calculated. However, if the problem under 
investigation has angular symmetry (as is 
usually the case in many problems), polar 
coordinates can be employed to reduce the 
integral over two components, x and y, to a 
single integral. Then we are left with a one 
dimensional integral which will be simpler to 
handle both analytically and numerically than 
two different component integrals in x and y. 

 
The volume element in polar coordinates is 

dR = RdRdθ. Then the Fourier Transform is 
given by 

                   ∞   2π   
   F(K)   =      ∫     ∫   eiKRcosθ F(R) dθ RdR     (2)                  

0 0 
 

But the zero-th order Bessel function, J0(KR), is 
defined [2, 3] as 

 
                                  2π   
    J0(KR) =  (1 / 2π)   ∫   eiKRcosθ  dθ           (3) 
                                   0   
 
Hence, 
                                ∞    
    F(K)   =       2π   ∫  J0(KR) F(R) R dR       (4)                  
                               0 
 

This relationship is often called the Hankel 
Transform in the literature.   
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To reduce the general D dimensional case, 
which involves D component integrals, to a 
single integral over the magnitude of R one 
needs to relate the Cartesian coordinates of R to 
its D dimensional spherical coordinates 
expressed by |R| and D -1 angles θ1 θ2... θ D-1 .  
The resulting infinitesimal solid angle, de, is 
given by [7] 

 
                              D-1 
                      de = Π  sink-1 θk dθk                (5) 
                             k=1 

 
Then the surface area of a D dimensional sphere 
would be 
                             
                           ΩD = ∫ RD-1 de                   (6a) 
 
                  2π     π                   π              
      =  RD-1 ∫ dθ1 ∫ sin θ2 dθ2  ∫  sin2 θ3 dθ3  ...  

0 0                    0 
 

                             π 
                             ∫ sinD-2 θD-1 dθ D-1          (6b)  
                             0                           

or 
 

       ΩD = 2 π D/2 R D-1 /  Γ(D/2)                  (7) 
 
Here, Γ is the Gamma function [3] 

                            ∞ 
                   Γ(x) = ∫ t x-1 e - t dt                     (8) 

                           0 
 
Eq. 7 follows from the trigonometric integral [7] 
 
  π    
  ∫ sinN θ dθ     = Γ( (N + 1) / 2) Γ (1/2)  /  
 0 
                                     Γ(N/2+1)                    (9)                                                       Application 

                                     
Then Eq. 1 becomes 

                                           
 
 
                                                   

  F(|K|)   = [ 2 π (D-1)/2  /  Γ( (D - 1) / 2) ]   
 
 
∞                        π 
 ∫ RD-1 F(R) dR ∫ eiKRcosθ  sinD-2 θ dθ       (10) 
0                       0 
 
Here we have integrated over one less angle 
because of the cosine term in the exponential 
from the dot product. The angular integration 
can be expressed [6] in terms of the (D / 2  - 1) - 
th order Bessel function,  JD/2-1 (KR): 
 
π    
 ∫ eiKRcosθ sinD-2 θdθ=[2D/2-1Γ(1/2)Γ((D-1)/2)]   
0 

                            JD/2-1(KR) / (KR) D/2 -1 (11)           
 
Using Eq. 11 in Eq. 10 one obtains 

                                                                                     
  F(|K|)   = [ (2 π) D/2 / K (D-2)/2]          

                   ∞                                
                     ∫ RD/2 F(R) JD/2-1(KR) dR   (12)                      

                  0         
                                                                   

 Eq. 12 is the generalized D dimensional Fourier 
transform. 
 

When D = 2, Eq. 12 reduces to Eq. 4 and 
when D = 4, Eq. 12 will involve the first order 
Bessel function, J1(KR). The one dimensional 
integrals required for the Fourier Transform can 
be handled with either the integration facilities 
of software packages such as Maple or 
Mathematica or by numerical integration with 
Simpson's Rule and the computer routines for 
the zero and first order Bessel functions 
provided by Press et al [8]. 

 

 
We have developed an independent studies 

project using Eq.12 in two and four dimensions, 
by providing a tabulated function of R as input 
for students. This function is the total 
correlation  function, H(R), which  is defined as,               
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                            H(R) = G(R) -1                  (13) Figure 1 presents the original G(R) Monte 
Carlo simulation data in two and four 
dimensions at ρ = 0.70. G(R) is zero when R ≤ 
1.0 since particles cannot penetrate each other. 
When G(R) attains a value of 1.0 the fluid is 
uniform in its structure. The appearance of the 
second and even small third peak in two 
dimensions indicates the onset of ordering at 
this density but in four dimensions there is 
essentially only a single peak. In four 
dimensions particles can easily avoid each other 
and therefore have a larger free space in which 
to move. Hence, higher densities are needed 
before particles start to become localized. 

     
The pair correlation function, G(R), measures 

the order of a fluid at a particular number 
density, ρ.  The Fourier Transform of H(R) is 
called the structure function, S(K). In this 
journal Harnett and Bishop [9], Lasky and 
Bishop [10] and Tiglias and Bishop [1] have 
described the behavior of G(R) for one, two and 
three dimensional systems respectively. Bishop, 
Whitlock and Klein [11] have computed G(R) 
for hard particle systems for a variety of 
dimensions and densities by Monte Carlo 
simulation methods. The Fourier Transform of 
H(R) has been evaluated by using Eq. 12 and 
employing Simpson's integration formula with a 
mesh size of ∆R = 0.01 and a cutoff upper 
bound of R = 4.0.  The numerical integration 
routines have been written in C and can perform 
the Fourier Transform of any tabulated data set. 
For this case the upper bound value in the 
integral in Eq. 12, only needs to be large enough 
so that G(R) has essentially become one and 
therefore, H(R) is zero. 

 
Figure 2 presents the Fourier Transform of the 

curves in figure 1. The behavior of the S(K) 
graphs at low values of K reflects the behavior 
of the pair correlation function at large R values. 
One needs to be in an R regime in which the 
pair correlation has decayed smoothly to a value 
of one and does not display oscillations. 
Otherwise, one obtains low K values of S(K) 
which  are  artifacts  of  the  Fourier   Transform  
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Figure 1: The pair correlation function for D=2 (solid line) and D=4 (dotted line) when ρ = 0.7. 
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Figure 2: S(K) for D=2 (solid line) and D=4 (dotted line) when ρ = 0.7. 
 

 
process. In Figure 2 the structure of G(R) is 
mirrored in S(K). The strong multiple peaks in 
S(K) for the two dimensional system confirms 
that it is much more ordered than the four 
dimensional one. 

 
Conclusions 

 
We have presented a general derivation and an 

interesting application of Fourier Transforms in 
arbitrary dimension by studying S(K) of hard 
particle systems in two and four dimensions.  
Having students numerically compute the 
Fourier Transform of tabulated data exposes 
them to important tools of analysis which will 
be of great use in their future careers.  
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