

High Performance Computing Student Projects

Hassan Rajaei and Mohammad B. Dadfar
Department of Computer Science
Bowling Green State University

Bowling Green, Ohio 43403

Abstract

Commodity High Performance Computing
(HPC) platforms such as Beowulf Clusters
provide excellent opportunities to engage
students with challenging projects. Courses such
as parallel programming, distributed systems,
operating systems, and networking can benefit
from the low-cost HPC platform. In this paper
we report the results on series of student
projects in an advanced operating systems
course which jointly have contributed to a larger
group project. Several students designed,
implemented, and tested segments of
manageable term projects contributing to the
student learning in the advanced topic of high
performance computing. We focused on job
scheduling for a cluster of processors as the
main topic, while pursuing other HPC-related
areas such as parallel programming, load
balancing, computer simulation, and
performance analysis embedded in the theme.

In this paper we examine the following

scheduling polices: FCFS (First-Come-First-
Serve), Backfilling Algorithms (Aggressive,
Conservative, Multiple Queue, Look-ahead),
Co-scheduling, and Gang Scheduling. While
most of the scheduling policies are batch, Gang
Scheduling provides a timesharing approach to
the multiprocessor system. Our results indicate
that Gang scheduling offers an attractive
solution to the drawbacks of batch scheduling.
This is especially true with respect to the
response time and overestimation of the
processing time of the submitted jobs in the
system.

Introduction

High performance computing offers an

excellent vehicle to accelerate computational
needs of scientific and engineering applications.

This platform can easily be configured with
clusters of PCs connected through a high-speed
switch on a high-speed network. Such a tool
provides exceptional opportunities to explore
numerous projects for educational as well as
research purposes. We have installed a Beowulf
Cluster[1] with 16 compute-nodes in our
computing lab, and have engaged our students
with exciting projects in courses such as
Operating Systems, Communication Networks,
Parallel Programming, Distributed Simulation,
Algorithms, Database Management, and several
others. Within a short period of time, we have
witnessed considerable increase in student
projects in our HPC lab with several success
stories[2,3]. Student interest and their reported
success are growing. They are excited to work
with advanced and practical problems which
take them beyond the theory of their textbooks.

In this paper, we provide a comprehensive

report about a series of studies on job
scheduling in a distributed multiprocessor
environment, which engaged several students in
a three-year period. We also show how students
can utilize and build upon the results of
previous groups while laying the ground work
and providing continuity for the future students.
The incremental development method was
particularly beneficial both for the students and
the faculty. Students were well aware that their
work would be used by others, and as a result,
paid extra attention to the viability of their work
which contributed to a great learning outcome.
Integrating small projects into larger ones has
twofold benefits for faculty: achieving the
research objectives, and sharing the obtained
results in the classroom. These studies
encapsulated challenging HPC-related
components such as parallel computing, load
balancing, and distributed simulation.

COMPUTERS IN EDUCATION JOURNAL 79

Scheduling of parallel applications on
distributed-memory parallel system often occurs
by granting each job the requested number of
processors for its entire run time. This approach
is referred to as variable partitioning which
frequently utilizes non-preemptive batch
scheduling[4, 5, 6]. That is, once a job gets
hold of the requested number of compute-nodes,
it continues execution until the job is completed
or some error forces the system to abort the
faulty job. Consequently, most parallel
programs restrict their I/O bursts to the
beginning and end of the program in order to
avoid significant performance penalties.

Another scheduling approach is dynamic

partitioning. This scheme suggests partial
allocation of requested nodes for a parallel job.
Even though this approach could help some jobs
to start processing their task, the scheduling
method is not widely used because of practical
limitations. As an example consider a job
where it needs all its requested nodes in order to
start processing the parallel tasks. In this case,
allocating fewer compute-nodes than requested
can lead to system deficiencies since those
allocated nodes can become idle until this job
receives all of its requested nodes.

A third method regards use of co-scheduling

of the tasks and timesharing processor powers
among existing jobs in the system. Co-
scheduling can be implicit or explicit. We use
the latter method described as Gang
Scheduling[7,8,9]. In this method, all the
processes of a parallel job are assigned to a
Gang of processors for execution. Context
switching is coordinated across the nodes such
that all processes are executed and preempted at
a fixed interval. Gang scheduling favors short
jobs.

In our studies, we looked into the batch and

co-scheduling policies with Backfilling
Algorithms using different flavors such as
Aggressive, Conservative, Multiple Queue, and
Look-ahead schemes.

The remainder of this paper is organized as

follows: the next section provides some

challenging HPC topics suitable for student
projects. Then it describes job scheduling
problem in HPC platforms as well as details of
the methods used in the studies. In the next
section simulation techniques for the employed
policies are described. Followed by a section
that describes implementation issues, and then
provides the obtained results and analysis. The
final two sections outline future work and then
provide concluding remarks.

HPC Stimulating Topics

High performance computing opens the doors
for solving numerous fascinating scientific and
engineering problems. However, several items
should be considered at the same time. In order
for a HPC task to obtain the desired answer, the
programmer needs first to be familiar with
parallel programming and load balancing
issues. After that, the programmer needs to
model the application domain problem in form
of a parallel program. Knowledge of load
balancing, networking, operating systems, and
parallel processing facilitate the goal of
reaching the desired results. On top of this list,
we have added two more items: the application
domain of job scheduling in multiprocessor
environment, and simulation of the job
scheduler in the multiprocessor system. These
topics often stimulate senior and graduate
students who desire to put their theoretical
knowledge into practice.

We target an advanced operating systems

course since in such a course students often
learn about concurrent processes,
communication and synchronization between
processes, as well as task scheduling and
policies. We train the students with parallel
programming, load balancing, and simulation
issues with simple examples and benchmarks.

For parallel programming purpose, the

Message-Passing Interface[10,11] (MPI) library
was used as part of the Beowulf cluster. MPI
uses the master-slave paradigm similar to
parent-child method of the Unix fork command.
Students are well aware of this method and are
excited to experiment with the execution of

80 COMPUTERS IN EDUCATION JOURNAL

concurrent processing on multiprocessors. As a
warm-up exercise, we assign students the matrix
multiplication benchmark problem. In this
problem, we assume that we have two large
matrices A and B to be multiplied and the result
would be stored in matrix C. By varying the
dimension of matrices A and B, as well as the
number of processors to obtain the result, we
will achieve a well-designed exercise where the
students will observe the following:

• writing a simple parallel program to be

executed on a Beowulf cluster
• partitioning the task between the existing

number of processes and processors
• scheduling the task of multiplication to

processors
• choice of static vs. dynamic task assignment
• impacts of method of assigning tasks to

processors
• impacts of load balancing to the execution

of parallel task
• performance of parallel execution and

speedup
• inter-process communications with send,

receive, scatter, gather, and broadcast
• synchronization issues such as barrier,

blocking and non-blocking send and receive
• understanding the ratio of computation vs.

communication, and
• debugging issues in parallel execution.

The matrix multiplication benchmark is fairly
straightforward; nevertheless it provides an
excellent training for students and prepares
them to perform their domain application task
which in our case is scheduling of parallel
programs arriving in multiprocessor
environment such as a Beowulf Cluster.

Job Scheduling Problem

Job scheduling on distributed-memory

multiprocessors is a challenging task.
Traditional factors such as job length to allocate
the requested resources do not suffice.
Communication delays and synchronization
overhead which are normally in the user domain
could turn out to be key issues for

multiprocessor utilization. If scheduling does
not carefully address these and several other
issues, the utilization of each processor in the
distributed platform can end up comparatively
lower than a single processor system. Such
scenario should be avoided since high
performance computing is all about
performance. To better understand these issues,
our studies looked into both batch orient non-
preemptive schemes as well as preemptive
timesharing polices. For both types, we used
different flavors of backfilling methods such as
conservative, aggressive, look-ahead, and
multiple queues. In the following subsections
we provide an overview of these algorithms.

Non-FCFS Batch Schemes

Strict First-Come First-Serve (FCFS) policies

are seldom used for resource managers. Some
sort of priority mechanism is often added to
handle resource queues. One solution is to
prioritize the jobs in the waiting queue based on
a preset policy such as the requested number of
processors or the estimated wall-clock time in
addition to the arrival time. The resource
manager then tries to allocate compute nodes to
the waiting jobs in the order inserted in the
queue. When resources for the job at the head
of the line with the highest priority are not
available then other jobs in the queue with the
lower priority can obtain the available
resources. This approach has three pitfalls: 1)
jobs can starve, 2) no guarantee is made to the
user as to when a job is likely to be executed,
and 3) there is no real priority since high
priority jobs can starve. However, most
schedulers that use this approach employ a
starvation prevention policy by enforcing an
upper bound for waiting. These systems
normally use two priority levels and a certain
time limit, for example 12 or 24 hours, for a job
to be in the Non-FCFS waiting queue. After
this time limit the priority is increased and the
FCFS policy is enforced. Another way to
prevent starvation would be to allow only a
certain number of lower priority jobs to jump
over a queued job. The OpenPBS (Portable
Batch Scheduler) Torque[2], which is
incorporated in numerous clusters, employs

COMPUTERS IN EDUCATION JOURNAL 81

such a policy. It is important to mention that
starvation can be prevented at the cost of
utilization.

Aggressive Backfilling Algorithm

This scheme requires the user to provide an

estimated runtime in order to overcome the
deficiency problem of Non-FCFS algorithm.
With the additional information this algorithm
makes a first reservation scheduled for the
queued job. Then, it scans through the waiting
queue to find a smaller job which can be run
ahead of the reserved job without imposing any
further delay for the reserved jobs. This
algorithm solves the starvation problem and
improves system utilization by using backfilling
technique. That is, a job that does not risk
delaying the reserved job is allowed to execute
prior to the reserved job. The drawback of this
technique is that it cannot make any guarantee
about the response time of the user job at the
time of job submission. Further, the user
estimation may not be correct. Early
terminations and exceeding the estimated
runtime have to be dealt with. While early
termination may not cause serious concerns,
exceeding the estimated runtime may generate
numerous problems.

Another issue is how to handle high priority

job arrival. If a new job has a higher priority
than the reserved job in the queue, then the
system has two choices: either preempt the
existing reservation and reschedule for the new
job, or make another reservation for the new job
immediately after the current reservation
without preempting it. There is no simple
solution for this case. Choosing the former may
result in starvation again as higher priority jobs
may continue to arrive, whereas choosing the
latter approach is not fair for the high priority
jobs as their requests could be delayed and
hence risking not be scheduled on time.

Conservative Backfilling Algorithm

In Aggressive Backfilling algorithm only one

reservation is made for the job in front of the
queue. This could delay execution of a job even

though adequate resources may exist which can
be allocated for that job. The situation can be
improved by allowing the scheduler to take a
further step in backfilling. In Conservative
Backfilling all jobs get their own reservations
when they are submitted. Therefore this
algorithm can guarantee execution time when a
new job is submitted. However, the algorithm
works only for the First-Come First-Serve
priority policy. As jobs arrive in the system, the
scheduler makes reservation for them and
provides a guaranteed execution time for each
arriving job based on the estimated times
provided by the users. When a job with higher
priority arrives, the system cannot reshuffle its
current reservations to provide the higher
priority job a reservation ahead of the existing
ones for the previous queued jobs. The reason
is simple since any rearrangement would lead
not executing existing jobs at their guaranteed
times. A system using Conservative Backfilling
with guaranteed execution time can only have
FCFS priority.

Early job terminations lead to vacancies in the

system. In order to make efficient use of these
vacancies the algorithm must reschedule the
existing reservations for queued jobs. However,
keeping in mind that the reservations cannot be
reshuffled as that may lead to not executing the
jobs at their guaranteed times, we can only
compress the existing reservation schedule so
that it runs at an earlier time. This however may
lead to an unfair scheduling.

Look-ahead Backfilling Scheduling
Algorithm

This algorithm tries to find the best packing

possible for current composition of the queue,
thus maximizing the utilization at every
scheduling step[12,13]. The jobs are divided
into two parts: running and waiting jobs. The
jobs that are waiting may be either in the
Waiting Queue or in the Selected Queue. The
jobs in the Selected Queue are the ones selected
for execution. All jobs have two attributes: size
(number of requested processors) and estimated
computing time remaining. The main task of

82 COMPUTERS IN EDUCATION JOURNAL

this algorithm is to select jobs from the Waiting
Queue and improve system utilization.

The scheduler receives the incoming jobs from

the job file specified by the user. When the
scheduler starts, the simulation time is set to 0
and is incremented by 1 after each iteration.
Incoming jobs get filed in the Event Queue
according to their arrival time. The arrival time
of the jobs in the Event Queue is compared with
the CPU time. If they are equal, the jobs are
moved to the Waiting Queue. Jobs in this queue
are ordered by estimated execution time.

Multiple-Queue Backfilling Scheduling
Algorithm

This algorithm is based on aggressive

backfilling strategy. It continuously monitors
the incoming jobs and rearranges them into
different waiting queues. Rearrangement is
necessary to reduce fragmentation of the
resources and improve the utilization[4]. We
define several waiting queues to separate the
short jobs from the long ones. The scheduler
orders the jobs according to their estimated
execution time.

The system is divided into variable partitions

and processors are equally distributed among
the partitions. However, if a processor is idle in
one partition then it can be used by a job in
another partition. In effect, depending upon the
work load of the jobs in the partitions, the
processors are exchanged from one partition to
another. In our simulation the algorithm uses
four waiting queues instead of four actual
partitions. Initially, each queue has equal
number of processors assigned to it. We assume
te represents the estimated execution time of a
job and pi represents the partition number where
i = 1, 2, 3, 4. The jobs are classified into
partitions p1, p2, p3 and p4 based on their
execution times:

p1 : 0 < te <= 100
p2 : 100 < te <= 1,000
p3 : 1,000 < te <= 10,0000
p4 : 10,000 < te

Gang Scheduling

Gang scheduling refers to a policy where all

the processes of a parallel application are
grouped into a gang and simultaneously
scheduled on distinct processors of a parallel
computer system such as a Beowulf cluster.
Multiple gangs may execute concurrently by
space-sharing the resources. Furthermore,
division of the system according to time slots is
supported through synchronized preemption and
later rescheduling of the gang. Context
switching is coordinated across the nodes such
that all the processes are scheduled and de-
scheduled at the same time. At the end of a time
slot, the running gangs get blocked allowing
other gangs to run. One important promise of
the Gang scheduling regards better resource
utilization for parallel programs across the
available compute nodes. We use a
synchronization scheme which is coordinated by
the master node (ParPar Scheduler or Score-D).
Other options such as synchronized clocks
(SHARE Scheduler IBM SP2) are also viable.

The number of time slots n is limited to a
number supplied by the user. This number
should be kept moderate since increasing it
would result in a job having to wait longer for
its turn to run which can be unacceptable. The
maximum time a job will have to wait after it is
being pre-empted, to get rescheduled, will be (n-
1)*tq, where tq is the time quantum of each time
slot. The maximum time can be reduced by
reducing tq, but it will result in increased
number of context switches which is not
desirable.

Gang Scheduling with Greedy Approach

With the greedy approach, all jobs in the
waiting queue are considered as suitable
candidates for execution. The jobs that have the
required number of computing nodes in any
time slots are executed. The policy does not take
into consideration the arrival time of the jobs
nor does it consider the estimated end-time. As
with any greedy approach, the resulting
schedule may not be fair.

COMPUTERS IN EDUCATION JOURNAL 83

Gang Scheduling with Backfilling

The jobs in the waiting queue are considered
as per the look-ahead backfilling policy. The job
at head of the waiting queue has the reservation
of the computing nodes it requires, and that
reservation is not violated by the jobs that arrive
later even if they get executed earlier than the
first waiting job. This approach is fair
comparing to the greedy approach, but not as
fair as the conservative backfilling approach.

Simulation Studies

Three methods were used for performance

studies of the selected scheduling policies:
Gantt-chart walk through, simulator using single
machine, and simulators using Beowulf Cluster.

Gantt-chart walk through

As an example consider the case for

aggressive backfilling algorithm in batch
scheduling for a system having 16 compute
nodes. Table 1 shows a set of jobs in the system
ordered based on their arrival.

Table 1: Status of current jobs in the system
for a backfilled queue.

Job

ID
Nodes

Needed
Time

unit
Status

Job1 6 3 running
Job2 6 1 running
Job3 12 1 queued
Job4 14 1 queued
Job5 4 2 new arrival

– backfilled
Job6 4 3 new arrival

– backfilled

Job3 is the first queued job so it has a
reservation in the system. Job4 is queued
behind Job3. When Job5 and Job6 arrive, the
system attempts to backfill the jobs. Job5 can
be backfilled and scheduled immediately. Job6
is queued. This case is shown in Figure 1(a) for
the system after arrival of Job4 and Job5. When
Job2 is terminated, its 6 nodes become available
for 2 time units before Job1 terminates. Since

Job6 requires 3 time units the system cannot
schedule it. Job6 is scheduled after the
termination of Job5. This case is demonstrated
in Figure 1(b), after Job5 has terminated. At
time 3, Job3 starts its execution. Now that Job3
has been removed from the ready queue, Job4
becomes the first job in the queue so the system
makes a reservation for it. Figure 1(c) shows
snapshot of the system after Job3 starts
execution. Figure 1(d) illustrates the overall
snapshot. This example also demonstrates the
queued jobs (except the first one).

Simulation of Backfilling schemes

A base class simulator was developed to

support different flavors of the backfilling
algorithm. This simulator has a hierarchical
view. The base simulator provides the base
services needed for all favors. From this base
class, other needed types of scheduler are
derived. This is illustrated in Figure 2 with the
Basic Aggressive, Multiple-Queue, and Look-
ahead.

Look-ahead Backfilling Simulator

In Figure 3, a look-ahead scheduler is derived

from the base class Simulator. It receives the
incoming jobs from the job file specified by the
user. When the scheduler starts, the simulation
time is set to 0 and is incremented by 1 after
each iteration. Incoming jobs get filed in the
Event Queue according to their arrival time.
The arrival time of the jobs in the Event Queue
is compared with the CPU time. If they are
equal, the jobs are moved to the Waiting Queue.
Jobs in this queue are ordered by estimated
execution time. Considering only the jobs in the
Waiting Queue, the scheduler builds a matrix of
size (|WQ|+1) × (n+1) where WQ is the Waiting
Queue and n is the number of free processors in
the system. Each cell of the matrix contains an
integer value called util that holds the maximum
achievable utilization at this time and a Boolean
flag called selected that is set to true if it is
chosen for execution. Select Queue selects all
the jobs from Waiting Queue with the selected
flag set to true. The utilization is calculated

84 COMPUTERS IN EDUCATION JOURNAL

(a): Snapshot after arrival of Job 4 & 5 (b): When Job5 terminated Legends

(c): When Job3 starts execution (d): Overall job scheduling order

 Figure 1: Illustration of the Aggressive Backfilling algorithm based on the job arrivals.

Basic Aggressive Multiple-Queue Look-ahead

Base Class: Simulator

Figure 2: The class hierarchy of the simulators.

COMPUTERS IN EDUCATION JOURNAL 85

Event Queue
Base Class: Simulator Create dynamic

matrix

Figure 3: Overview of Look-ahead Backfilling Scheduler simulator.

Figure 4: Overview of Multiple Queues Backfilling Scheduler simulator.

according to the number of computing nodes
they have requested and what is currently
available. The selected jobs then receive the

number of nodes they have requested and start
to execute.

Look-
ahead
Simulator

Job
file

 Waiting Queue Select Jobs
from matrix

Send selected jobs to
running queue

Nodes

Base Class: Simulator

Multiple
Queue
Simulator

P1

P2

P3

P4

Execute Queue

Write PBS script

Nodes

Lobby for Free Nodes

Schedule

Schedule

Schedule
Job
File

Schedule

86 COMPUTERS IN EDUCATION JOURNAL

Multiple-Queue Backfilling Simulator

In our implementation, Multiple-Queue

Simulator is derived from the base class
Simulator. When it receives input jobs it
categorizes them into different waiting queues
say P1, P2, P3 and P4 (Figure 4). The queues
hold jobs based on their estimated execution
time from 0 to 100, 101 to 1,000, and 1,001 to
10,000 and above 10,000 respectively. We use
the MPI programming package[10], and have
the first node considered as a master and the rest
as the worker nodes. The scheduler program
runs in the master node. It divides the
computing nodes into groups of 4, 4, 4 and 3 for
the queues P1, P2, P3 and P4 respectively (the
master node does not participate in the
computation).

Consider one of the queues in Figure 4, for

example P1. It holds jobs with execution time
ranges of 0 to 100. They are ordered based on
their estimated execution time and then the
arrival time in case of ties. The scheduler starts
checking the number of computing nodes
requested by the first job. If there are enough
free processors designated for queue P1, then it
records the PBS (Portable Batch Scheduler)[6]
script and starts running that job. Otherwise,
the job is sent to another queue called Lobby for
Free Nodes where it waits for the free nodes
before it can execute. If there is a job at this
queue (Lobby for Free Nodes) the scheduler
searches for free nodes from other queues (P2,
P3, P4) to check if the requested number of
computing nodes could be granted. If the
answer is yes, then resources will be allocated
to that job to start execution. Otherwise, the job
is transferred to Ready Queue (not shown in the
figure). The scheduler uses the aggressive
method to make reservation for the required
number of nodes for that job. The same process
is followed for jobs in the other partitions.

Simulation of Gang Scheduler

This simulator has different design and

methods from the backfilling ones mentioned
above. The architecture of the simulator is
shown in Figure 5. A simulator for the scheduler

is created on top of the Message Passing
Interface (MPI) for various message passing and
synchronization purposes of the simulated
scheduler. The simulation program itself is a
parallel job to the cluster. It consists of one
dedicated scheduler process and several
application processes. The Portable Batch
Scheduler[6] (PBS) is used to launch the
simulator from the server to the compute nodes
of the cluster. The PBS script reserves all the
nodes and dispatches the job.

Figure 5: Gang scheduler simulator architecture.

Since our simulator runs on top of MPI/PBS,

we use one node as the simulated scheduler and
the rest as the simulated computed nodes. All 16
nodes of the cluster are reserved using the PBS
commands. As an MPI application, the program
lets Node 0 to act as a scheduler, while all the
other 15 nodes wait for messages from the
scheduler. The simulator accepts jobs from the
user. Depending on the simulated policy, the
scheduler allocates the required number of
nodes for the job from the available resources
among the 15 workers. For the Gang scheduling
policy, the scheduler also allocates the time slot
for the job.

For the Gang scheduler, at the end of each

time quantum, the simulated scheduler
broadcasts a SWITCH_CONTEXT message
using scatter provided by the communicator
class. The message contains information about
which time slot is to be scheduled next. On
receiving the context switch command from the
scheduler, each node stops the currently running
process using SIGSTOP, and resumes the jobs
scheduled to run next using the signal
SIGCONT. Experiments were carried out with a
randomly generated workload. The arrival time,
estimated execution time of the jobs (submitted

Linux Kernel
PBS

MPI Library

Simulated
Scheduler

Jobs

COMPUTERS IN EDUCATION JOURNAL 87

by the user), the actual simulated run-time by
the simulator, and the number of requested
nodes were generated randomly.

Implementation Issues

In this study, several backfilling scheduling

policies as well as Gang Scheduling with
Greedy Approach and Gang Scheduling with
Look-ahead Backfilling Policy were simulated.
This section provides some details of the
implementations. Interested readers can contact
the authors.

The Environment:

Our cluster has the following system features:
16 homogeneous compute nodes; 2.8 GHz
Pentium 4 processor per node; 1 GB of RAM
per node; 1 GB/sec Ethernet switch; Gentoo
Linux operating system; Batch System with
PBS based Torque.

The Simulators

All simulators are written in C++. Those
running on the cluster are using MPI. The base
class Simulator provides some very basic
functionalities of the simulation platform. It
maintains an event list where events, in the form
of arrival of new jobs, are inserted in the order
of their arrival time. It also maintains the
waiting queue where events that cannot be
scheduled immediately are queued. Derived
classes override processEventQueue() and
processWaitQueue() methods to process the
event and waiting queues.

For time management, the simulator provides

one-shot timer functionality. Subclasses need to
override a method called timerFunction()
which is invoked when the one-shot timer
expires. The scheduler classes, derived from the
Simulator class, make use of the timer to trigger
events like global context switch and the start
and the termination of jobs. The simulation time
is forwarded at the timer expiration. The
resolution of simulation time and the time
interval between context switches have been

kept the same in this implementation for
simplicity.

Jobs are generated in a pseudo-random fashion

using the Linux rand() function in the current
implementation. Other distributions, like
exponential or Poisson, can be used for the
study of scheduling characteristics under
various workloads.

Results and Analysis

Batch processing with Backfilling

Experiments were carried out with a randomly

generated workload. Further, the following
parameters of interest were used: 1) Makespan:
Total time to complete processing all jobs from
a given pool representing utilization, 2) Wait
Time: Length of time for a task waiting in the
scheduling queue, 3) Number of requested
compute-nodes, and 4) Estimated execution
time.

The results for this part are shown in Figure 6

and Figure 7. Waiting time for the jobs in the
Multiple Queue is more than Look-ahead
backfilling algorithms and for the aggressive
backfilling is smallest in comparison to the
other two. Looking at the line graph of each
algorithm in Figure 6 separately, it seems that
all three algorithms have one thing in common:
the execution of jobs do not depend on the
arrival time. The jobs arriving late may execute
before the other jobs that arrive before them,
and hence, the algorithms are not fair. In case
of look-ahead, the waiting time depends upon
the utilization value of the job at that particular
instant in time. The utilization value of each job
is calculated by checking the number of
requested processors and the number of
available computing nodes at that time.

Requested Nodes versus Waiting Time

Figure 7 shows the waiting time of a job based

on the number of compute nodes it needs. In
the basic aggressive algorithm, jobs that request
more nodes wait longer than jobs that request
fewer nodes. For multiple queues, the jobs

88 COMPUTERS IN EDUCATION JOURNAL

requesting fewer nodes are executed before the
jobs requesting more nodes in that queue. This
figure suggests that the look-ahead
backfilling

Figure 6: Arrival Time versus Wait Time of
the three algorithms.

Figure 7: Nodes Requested versus Waiting
Time.

algorithm provides better utilization. Further,
jobs in Multiple Queue algorithm wait longer
than the jobs in the other two backfilling
algorithms.

Estimated Time versus Waiting Time

Normally, jobs with shorter estimated time are

executed before jobs with larger estimated
times. However, our results suggest that the
look-ahead algorithm does not execute the jobs
according to the estimated time of completion.
In all three cases presented in our studies,

Multiple Queue exhibits longer waiting time
and look-ahead appears as a better choice.

Gang Scheduling and Backfilling

A policy is evaluated by scheduling criteria

which reflect user’s parameters of interest. A
fair and quick response time is desired.
Completion time of the last job, or makespan, is
used in report. Figure 8 advocated that the
Gang scheduling outperforms the backfill with
look-ahead in terms of both makespan and the
average response time. Plotted against
increasing number of jobs, the makespan for the
backfill is always more than those for the Gang
scheduling. Within the Gang scheduling[14]
(GS) category, the greedy approach seems
superior to the backfilled one. Interestingly, GS
with backfill tends to exhibit a behavior that is a
compromise between backfill and GS with
greedy approach. For fewer jobs, the GS with
backfill coalesces with GS with greedy
approach. This is because, as the number of
jobs becomes smaller, time slots are readily
available for most of them and neither the
greedy nor the backfill policy effectively come
into play. As the number of jobs increases, they
are queued and scheduling criteria are applied to
pick the job to be scheduled. The greedy GS
tries to schedule as many jobs as it can without
consideration for fairness or reservation for the
first job in the wait queue as is done by GS with
backfill. It is not surprising that for a fairer
scheduling policy the makespan is relatively
worse but it is still better than the backfilling
used with batch processing.

As expected the average wait-time for the
Gang scheduling is far less than that for the
backfill as shown in Figure 8. In the case of
backfill, the average response time increases
more rapidly making it unsuitable for interactive
jobs. The Gang scheduler performs better, as
the response time does not show a rapid
increase in average response time. It also
suggests that more jobs are getting completed
making room for newer jobs to get scheduled.

Performance of the Gang scheduling exhibits
noticeable improvement when the number of

0

100

200

300

400

500

600

700

2 4 6 8 10 12 16

Arrival Time

W
a
i
t

T
i

m
e

Basic Aggressive
Look-ahead
Multiple Queue

0

100

200

300

400

500

600

700

1 2 3 4

Nodes Requested

W
a
i
t

T
i

m
e

 Look-ahead
Basic Aggressive
Multiple Queue

COMPUTERS IN EDUCATION JOURNAL 89

time slots increases from 1 to 15 as suggested
by Figure 9. With only one time slot, the Gang
scheduler behaves like a batch scheduler.
Further, as the number of time slots increases,
the average wait time decreases significantly.
As the system behaves like having virtual nodes
equal to the number of slots multiply the
number of actual nodes, more jobs can run
without any delay, thus reducing the total and
average wait time.

0
20
40
60
80

100
120
140

10 20 30 40 50 60 70 80

M
ak
es
pa
n
(in
 T
ic
ks
)

Number of Jobs

Backfill

GS
Greedy

0
5

10
15
20
25
30
35
40

Av
er
ag
e
W
ai
t o
r R
es
po
ns
e

Ti
m
e
(in
 T
ic
ks
)

Number of Jobs

Back fill

GS Greedy

GS Back fill

Figure 8: Makespan and Average Wait Time

versus Number of Jobs

0
20
40
60
80

100
120
140

M
ak
es
pa
n
(ti
ck
s)

Number of Time Slots

0
5

10
15
20
25
30
35

Av
er
ag
e
W
ai
t T
im
e

(T
ic
ks
)

Number of time slots

Figure 9: Makespan and Average Wait-Time
versus Number of Time Slots.

Future Work

Several potential extensions to the current

work can be explored. An exciting topic
concerns the use of process migration, the
second regards implicit scheduling, and third on
the use of statistics based on real workload. The
scalability of the scheduling algorithms needs to
be closely looked into as well.

Migration appears to improve performance of

the Gang scheduling[15]. It embodies moving a
job in the Ousterhout matrix to a row in which
there are enough free processors to execute that
job. This will allow the row from which the job
got migrated to have more free nodes and can
therefore be able to run jobs requesting large
number of nodes.

The workload was randomly generated in this

study. A real application could exhibit different
result and hence impact the outcomes. We need
to look at this situation as well and run several
benchmark processes to measure the outcome.

90 COMPUTERS IN EDUCATION JOURNAL

Concluding Remarks

In this paper we reported how a complex task

such as scheduling in multiprocessor
environment could be broken in manageable
pieces and assigned to several students as term
projects. Our experiments suggest that students
appreciate working with such challenging
projects in the High Performance Computing
field. As pilot study, we targeted an advanced
operating systems course which had sufficient
components for students to work with a HPC
project.

Our obtained results from the scheduling case

study suggest that this project can be extended
even further to include more sophisticated
scenarios such as process migration, load-
balancing of processor allocation, use of real
tasks in the simulated scheduler instead of
randomly generated payload, and scaling the
number of processors. Regarding the topic of
scheduling, more studies are needed to analyze
behavior of the backfilling schemes as well as
Gang scheduling.

Bibliography

1. Gropp, William, Lusk, Ewing and Sterling,
Beowulf Cluster Computing with Linux,
Second Edition, ISBN 0-262-69292-9,
Thomas, 2003.

2. Rajaei, Hassan and Dadfar, Mohammad,

"Comparison of Backfilling Algorithms for
Job Scheduling in Distributed Memory
Parallel System", In Proceedings of the 2006
ASEE Annual Conference.

3. Rajaei, Hassan and Dadfar, Mohammad,

“Job Scheduling in Cluster Computing: A
Student Project”, ASEE 2005 Annual
Conference, 3620-03.

4. Lawson, Barry G., Smirni, Evgenia,

”Multiple-queue Backfilling Scheduling with
Priorities and Reservations for Parallel
Systems” Department of Computer Science,
College of William and Mary Williamsburg,
VA 23187-8795, USA

5. Srinivasan, S., Kettimuthu, R., Subramani,
V., and Sadayappan, P., “Characterization
of backfilling strategies for parallel job
scheduling”. IEEE International Conference
on Parallel Processing Workshops, pages
514–519, August 2002.

6. Bode, Brett, Halstead, David M., Kendall,

Ricky and Lei, Zhou, “The Portable Batch
Scheduler and the Maui Scheduler on Linux
Clusters”. In Annual Technical Conference,
USENIX, June 1999.

7. Góes, L. F. W., and Martins, C. A. P. S.,

2004. Reconfigurable Gang Scheduling
Algorithm, 10th Workshop on Job
Scheduling Strategies for Parallel
Processing (JSSPP). LNCS.

8. Frachtenberg, E., Petrini, F., Coll, S., and

Feng, W. C., 2001. Gang Scheduling with
Lightweight User-Level Communication.
International Conference on Parallel
Processing (ICPP) Workshops, pp. 339-348.

9. Feitelson, Dror G., Packing schemes for

gang scheduling. In Dror G. Feitelson and
Larry Rudolph, editors, 2ndWorkshop on
Job Scheduling Strategies for Parallel
Processing (in IPPS ’96), pages 89–110,
Honolulu, Hawaii, April 16, 1996.
Springer-Verlag. Published in Lecture
Notes in Computer Science, volume 1162.
ISBN 3-540-61864-3.

10. MPI: Message Passing Interface. Available

via http://www.mpi-forum.org.

11. Gropp, William, Lusk, Ewing and Sterling,

Using MPI, Portable Parallel Programming
with Message-Passing Interface, Second
Edition, ISBN 0-262-57132-3, Thomas,
2003.

12. Yu, Philip S., Wolf, Joel L., Shachnai,

Hadas, "Look-ahead scheduling to support
pause-resume for video-on-demand
applications", Multimedia Computing and
Networking 1995; Arturo A. Rodriguez,
Jacek Maitan; Eds, March 1995

COMPUTERS IN EDUCATION JOURNAL 91

http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=400
http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=894
http://www.mpi-forum.org/
http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=400
http://mitpress.mit.edu/catalog/author/default.asp?sid=29D30D78-6371-4B6D-8020-AA934DF68CCF&aid=894

13. Shmueli, E. and Feitelson, Dror G., 2003.
Backfilling with Look-ahead to Optimize
the Performance of Parallel Job Scheduling.
Job Scheduling Strategies for Parallel
Processing (JSSPP). Lecture Notes in
Computer Science, 2862, Springer-Verlag,
pp. 228–251.

14. Wiseman, Y., and Feitelson, Dror G., 2003.

Paired Gang Scheduling. IEEE Transactions
on Parallel and Distributed Systems. 14(6),
pp. 581-592.

15. Zhang, Y., Franke, H., Moreira, J., and

Sivasubramaniam, A., 2003. An Integrated
Approach to Parallel Scheduling Using
Gang-Scheduling, Backfilling, and
Migration. IEEE Transactions on Parallel
and Distributed Systems, 14(3), pp. 236-
247.

Biographical Information

Hassan Rajaei is an Associate Professor in the

Computer Science Department at Bowling
Green State University. His research interests
include computer simulation, distributed and
parallel simulation, performance evaluation of
communication networks, wireless
communications, distributed and parallel
processing. Dr. Rajaei received his Ph.D. from
Royal Institute of Technologies, KTH,
Stockholm, Sweden and he holds an MSEE
from Univ. of Utah.

Mohammad B. Dadfar is an Associate

Professor in the Computer Science Department
at Bowling Green State University. His
research interests include Computer Extension
and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He
currently teaches undergraduate and graduate
courses in data communications, operating
systems, and computer algorithms. He is a
member of ACM and ASEE.

ASEE MEMBERS

How To Join Computers in Education
Division

 (CoED)

1) Check ASEE annual dues statement
 for CoED Membership and add $7.00
 to ASEE dues payment.

2) Complete this form and send to
 American Society for Engineering
 Education, 1818 N. Street, N.W.,
 Suite 600, Washington, DC 20036.

I wish to join CoED. Enclosed is my check
for $7.00 for annual membership (make check
payable to ASEE).

 PLEASE PRINT

NAME:

MAILING
ADDRESS: _____________________________________

CITY: _____________________________________

STATE: _____________________________________

ZIP CODE: _____________________________________

92 COMPUTERS IN EDUCATION JOURNAL

	High Performance Computing Student Projects
	Bowling Green State University
	Abstract

	Aggressive Backfilling Algorithm
	Conservative Backfilling Algorithm
	Gang Scheduling with Greedy Approach
	Gang Scheduling with Backfilling

	The Environment:
	The Simulators

	Bibliography
	ASEE MEMBERS
	How To Join Computers in Education Division
	PLEASE PRINT
	NAME: _____________________________________

