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Abstract 
 

Commodity High Performance Computing 
(HPC) platforms such as Beowulf Clusters 
provide excellent opportunities to engage 
students with challenging projects. Courses such 
as parallel programming, distributed systems, 
operating systems, and networking can benefit 
from the low-cost HPC platform. In this paper 
we report the results on series of student 
projects in an advanced operating systems 
course which jointly have contributed to a larger 
group project. Several students designed, 
implemented, and tested segments of 
manageable term projects contributing to the 
student learning in the advanced topic of high 
performance computing. We focused on job 
scheduling for a cluster of processors as the 
main topic, while pursuing other HPC-related 
areas such as parallel programming, load 
balancing, computer simulation, and 
performance analysis embedded in the theme.   

 
In this paper we examine the following 

scheduling polices: FCFS (First-Come-First-
Serve), Backfilling Algorithms (Aggressive, 
Conservative, Multiple Queue, Look-ahead), 
Co-scheduling, and Gang Scheduling. While 
most of the scheduling policies are batch, Gang 
Scheduling provides a timesharing approach to 
the multiprocessor system. Our results indicate 
that Gang scheduling offers an attractive 
solution to the drawbacks of batch scheduling. 
This is especially true with respect to the 
response time and overestimation of the 
processing time of the submitted jobs in the 
system.  
 

Introduction 
 
High performance computing offers an 

excellent vehicle to accelerate computational 
needs of scientific and engineering applications. 

This platform can easily be configured with 
clusters of PCs connected through a high-speed 
switch on a high-speed network.  Such a tool 
provides exceptional opportunities to explore 
numerous projects for educational as well as 
research purposes. We have installed a Beowulf 
Cluster[1] with 16 compute-nodes in our 
computing lab, and have engaged our students 
with exciting projects in courses such as 
Operating Systems, Communication Networks, 
Parallel Programming, Distributed Simulation, 
Algorithms, Database Management, and several 
others. Within a short period of time, we have 
witnessed considerable increase in student 
projects in our HPC lab with several success 
stories[2,3]. Student interest and their reported 
success are growing. They are excited to work 
with advanced and practical problems which 
take them beyond the theory of their textbooks. 

 
In this paper, we provide a comprehensive 

report about a series of studies on job 
scheduling in a distributed multiprocessor 
environment, which engaged several students in 
a three-year period. We also show how students 
can utilize and build upon the results of 
previous groups while laying the ground work 
and providing continuity for the future students. 
The incremental development method was 
particularly beneficial both for the students and 
the faculty. Students were well aware that their 
work would be used by others, and as a result, 
paid extra attention to the viability of their work 
which contributed to a great learning outcome. 
Integrating small projects into larger ones has 
twofold benefits for faculty: achieving the 
research objectives, and sharing the obtained 
results in the classroom. These studies 
encapsulated challenging HPC-related 
components such as parallel computing, load 
balancing, and distributed simulation. 
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Scheduling of parallel applications on 
distributed-memory parallel system often occurs 
by granting each job the requested number of 
processors for its entire run time. This approach 
is referred to as variable partitioning which 
frequently utilizes non-preemptive batch 
scheduling[4, 5, 6].  That is, once a job gets 
hold of the requested number of compute-nodes, 
it continues execution until the job is completed 
or some error forces the system to abort the 
faulty job. Consequently, most parallel 
programs restrict their I/O bursts to the 
beginning and end of the program in order to 
avoid significant performance penalties. 

 
Another scheduling approach is dynamic 

partitioning. This scheme suggests partial 
allocation of requested nodes for a parallel job. 
Even though this approach could help some jobs 
to start processing their task, the scheduling 
method is not widely used because of practical 
limitations.  As an example consider a job 
where it needs all its requested nodes in order to 
start processing the parallel tasks.  In this case, 
allocating fewer compute-nodes than requested 
can lead to system deficiencies since those 
allocated nodes can become idle until this job 
receives all of its requested nodes. 

 
A third method regards use of co-scheduling 

of the tasks and timesharing processor powers 
among existing jobs in the system. Co-
scheduling can be implicit or explicit. We use 
the latter method described as Gang 
Scheduling[7,8,9]. In this method, all the 
processes of a parallel job are assigned to a 
Gang of processors for execution. Context 
switching is coordinated across the nodes such 
that all processes are executed and preempted at 
a fixed interval. Gang scheduling favors short 
jobs.    

 
In our studies, we looked into the batch and 

co-scheduling policies with Backfilling 
Algorithms using different flavors such as 
Aggressive, Conservative, Multiple Queue, and 
Look-ahead schemes.     

 
The remainder of this paper is organized as 

follows: the next section provides some 

challenging HPC topics suitable for student 
projects. Then it describes job scheduling 
problem in HPC platforms as well as details of 
the methods used in the studies. In the next 
section simulation techniques for the employed 
policies are described. Followed by a section 
that describes implementation issues, and then 
provides the obtained results and analysis. The 
final two sections outline future work and then 
provide concluding remarks.  
 

HPC  Stimulating  Topics 
 

High performance computing opens the doors 
for solving numerous fascinating scientific and 
engineering problems.  However, several items 
should be considered at the same time. In order 
for a HPC task to obtain the desired answer, the 
programmer needs first to be familiar with 
parallel programming and load balancing 
issues. After that, the programmer needs to 
model the application domain problem in form 
of a parallel program. Knowledge of load 
balancing, networking, operating systems, and 
parallel processing facilitate the goal of 
reaching the desired results. On top of this list, 
we have added two more items: the application 
domain of job scheduling in multiprocessor 
environment, and simulation of the job 
scheduler in the multiprocessor system. These 
topics often stimulate senior and graduate 
students who desire to put their theoretical 
knowledge into practice.  

 
We target an advanced operating systems 

course since in such a course students often 
learn about concurrent processes, 
communication and synchronization between 
processes, as well as task scheduling and 
policies. We train the students with parallel 
programming, load balancing, and simulation 
issues with simple examples and benchmarks.  

 
For parallel programming purpose, the 

Message-Passing Interface[10,11] (MPI) library 
was used as part of the Beowulf cluster. MPI 
uses the master-slave paradigm similar to 
parent-child method of the Unix fork command. 
Students are well aware of this method and are 
excited to experiment with the execution of 
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concurrent processing on multiprocessors. As a 
warm-up exercise, we assign students the matrix 
multiplication benchmark problem. In this 
problem, we assume that we have two large 
matrices A and B to be multiplied and the result 
would be stored in matrix C. By varying the 
dimension of matrices A and B, as well as the 
number of processors to obtain the result, we 
will achieve a well-designed exercise where the 
students will observe the following: 

 
• writing a simple parallel program to be 

executed on a Beowulf cluster 
• partitioning the task between the existing 

number of processes and  processors 
• scheduling the task of multiplication to 

processors 
• choice of static vs. dynamic task assignment 
• impacts of method of assigning tasks to 

processors 
• impacts of load balancing to the execution 

of parallel task 
• performance of parallel execution and 

speedup 
• inter-process communications with send, 

receive, scatter, gather, and broadcast 
• synchronization issues such as barrier, 

blocking and non-blocking send and receive 
• understanding the ratio of computation vs. 

communication, and 
• debugging issues in parallel execution.   
 

The matrix multiplication benchmark is fairly 
straightforward; nevertheless it provides an 
excellent training for students and prepares 
them to perform their domain application task 
which in our case is scheduling of parallel 
programs arriving in multiprocessor 
environment such as a Beowulf Cluster.         
 

Job  Scheduling  Problem 
 
Job scheduling on distributed-memory 

multiprocessors is a challenging task. 
Traditional factors such as job length to allocate 
the requested resources do not suffice. 
Communication delays and synchronization 
overhead which are normally in the user domain 
could turn out to be key issues for 

multiprocessor utilization. If scheduling does 
not carefully address these and several other 
issues, the utilization of each processor in the 
distributed platform can end up comparatively 
lower than a single processor system. Such 
scenario should be avoided since high 
performance computing is all about 
performance. To better understand these issues, 
our studies looked into both batch orient non-
preemptive schemes as well as preemptive 
timesharing polices. For both types, we used 
different flavors of backfilling methods such as 
conservative, aggressive, look-ahead, and 
multiple queues. In the following subsections 
we provide an overview of these algorithms.   

 
Non-FCFS  Batch  Schemes 

 
Strict First-Come First-Serve (FCFS) policies 

are seldom used for resource managers. Some 
sort of priority mechanism is often added to 
handle resource queues. One solution is to 
prioritize the jobs in the waiting queue based on 
a preset policy such as the requested number of 
processors or the estimated wall-clock time in 
addition to the arrival time.  The resource 
manager then tries to allocate compute nodes to 
the waiting jobs in the order inserted in the 
queue.  When resources for the job at the head 
of the line with the highest priority are not 
available then other jobs in the queue with the 
lower priority can obtain the available 
resources.  This approach has three pitfalls: 1) 
jobs can starve, 2) no guarantee is made to the 
user as to when a job is likely to be executed, 
and 3) there is no real priority since high 
priority jobs can starve.  However, most 
schedulers that use this approach employ a 
starvation prevention policy by enforcing an 
upper bound for waiting.  These systems 
normally use two priority levels and a certain 
time limit, for example 12 or 24 hours, for a job 
to be in the Non-FCFS waiting queue.  After 
this time limit the priority is increased and the 
FCFS policy is enforced.  Another way to 
prevent starvation would be to allow only a 
certain number of lower priority jobs to jump 
over a queued job.  The OpenPBS (Portable 
Batch Scheduler) Torque[2], which is 
incorporated in numerous clusters, employs 

COMPUTERS IN EDUCATION JOURNAL 81 



such a policy.  It is important to mention that 
starvation can be prevented at the cost of 
utilization. 

 
Aggressive  Backfilling  Algorithm 

 
This scheme requires the user to provide an 

estimated runtime in order to overcome the 
deficiency problem of Non-FCFS algorithm.  
With the additional information this algorithm 
makes a first reservation scheduled for the 
queued job.  Then, it scans through the waiting 
queue to find a smaller job which can be run 
ahead of the reserved job without imposing any 
further delay for the reserved jobs.  This 
algorithm solves the starvation problem and 
improves system utilization by using backfilling 
technique.  That is, a job that does not risk 
delaying the reserved job is allowed to execute 
prior to the reserved job.  The drawback of this 
technique is that it cannot make any guarantee 
about the response time of the user job at the 
time of job submission.  Further, the user 
estimation may not be correct.  Early 
terminations and exceeding the estimated 
runtime have to be dealt with.  While early 
termination may not cause serious concerns, 
exceeding the estimated runtime may generate 
numerous problems. 

 
Another issue is how to handle high priority 

job arrival.  If a new job has a higher priority 
than the reserved job in the queue, then the 
system has two choices: either preempt the 
existing reservation and reschedule for the new 
job, or make another reservation for the new job 
immediately after the current reservation 
without preempting it. There is no simple 
solution for this case.  Choosing the former may 
result in starvation again as higher priority jobs 
may continue to arrive, whereas choosing the 
latter approach is not fair for the high priority 
jobs as their requests could be delayed and 
hence risking not be scheduled on time. 

 
Conservative  Backfilling  Algorithm 

 
In Aggressive Backfilling algorithm only one 

reservation is made for the job in front of the 
queue.  This could delay execution of a job even 

though adequate resources may exist which can 
be allocated for that job.  The situation can be 
improved by allowing the scheduler to take a 
further step in backfilling.  In Conservative 
Backfilling all jobs get their own reservations 
when they are submitted.  Therefore this 
algorithm can guarantee execution time when a 
new job is submitted.  However, the algorithm 
works only for the First-Come First-Serve 
priority policy.  As jobs arrive in the system, the 
scheduler makes reservation for them and 
provides a guaranteed execution time for each 
arriving job based on the estimated times 
provided by the users.  When a job with higher 
priority arrives, the system cannot reshuffle its 
current reservations to provide the higher 
priority job a reservation ahead of the existing 
ones for the previous queued jobs.  The reason 
is simple since any rearrangement would lead 
not executing existing jobs at their guaranteed 
times.  A system using Conservative Backfilling 
with guaranteed execution time can only have 
FCFS priority. 

 
Early job terminations lead to vacancies in the 

system.  In order to make efficient use of these 
vacancies the algorithm must reschedule the 
existing reservations for queued jobs.  However, 
keeping in mind that the reservations cannot be 
reshuffled as that may lead to not executing the 
jobs at their guaranteed times, we can only 
compress the existing reservation schedule so 
that it runs at an earlier time.  This however may 
lead to an unfair scheduling. 

 
Look-ahead  Backfilling  Scheduling 
Algorithm 

 
This algorithm tries to find the best packing 

possible for current composition of the queue, 
thus maximizing the utilization at every 
scheduling step[12,13].  The jobs are divided 
into two parts: running and waiting jobs.  The 
jobs that are waiting may be either in the 
Waiting Queue or in the Selected Queue.  The 
jobs in the Selected Queue are the ones selected 
for execution.  All jobs have two attributes: size 
(number of requested processors) and estimated 
computing time remaining.  The main task of 
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this algorithm is to select jobs from the Waiting 
Queue and improve system utilization. 

 
The scheduler receives the incoming jobs from 

the job file specified by the user.  When the 
scheduler starts, the simulation time is set to 0 
and is incremented by 1 after each iteration.  
Incoming jobs get filed in the Event Queue 
according to their arrival time.  The arrival time 
of the jobs in the Event Queue is compared with 
the CPU time.  If they are equal, the jobs are 
moved to the Waiting Queue.  Jobs in this queue 
are ordered by estimated execution time.   
 
Multiple-Queue  Backfilling  Scheduling 
Algorithm 

 
This algorithm is based on aggressive 

backfilling strategy.  It continuously monitors 
the incoming jobs and rearranges them into 
different waiting queues.  Rearrangement is 
necessary to reduce fragmentation of the 
resources and improve the utilization[4].  We 
define several waiting queues to separate the 
short jobs from the long ones.  The scheduler 
orders the jobs according to their estimated 
execution time.  

 
The system is divided into variable partitions 

and processors are equally distributed among 
the partitions.  However, if a processor is idle in 
one partition then it can be used by a job in 
another partition.  In effect, depending upon the 
work load of the jobs in the partitions, the 
processors are exchanged from one partition to 
another.  In our simulation the algorithm uses 
four waiting queues instead of four actual 
partitions.  Initially, each queue has equal 
number of processors assigned to it.  We assume 
te represents the estimated execution time of a 
job and pi represents the partition number where 
i = 1, 2, 3, 4.  The jobs are classified into 
partitions p1, p2, p3 and p4 based on their 
execution times: 

 
p1 :  0   <  te  <=  100 
p2 :  100   <  te  <=  1,000 
p3 :  1,000   <  te  <=  10,0000 
p4 :    10,000   <  te
 

Gang  Scheduling 
 
Gang scheduling refers to a policy where all 

the processes of a parallel application are 
grouped into a gang and simultaneously 
scheduled on distinct processors of a parallel 
computer system such as a Beowulf cluster. 
Multiple gangs may execute concurrently by 
space-sharing the resources. Furthermore, 
division of the system according to time slots is 
supported through synchronized preemption and 
later rescheduling of the gang. Context 
switching is coordinated across the nodes such 
that all the processes are scheduled and de-
scheduled at the same time. At the end of a time 
slot, the running gangs get blocked allowing 
other gangs to run. One important promise of 
the Gang scheduling regards better resource 
utilization for parallel programs across the 
available compute nodes.  We use a 
synchronization scheme which is coordinated by 
the master node (ParPar Scheduler or Score-D). 
Other options such as synchronized clocks 
(SHARE Scheduler IBM SP2) are also viable. 
 

The number of time slots n is limited to a 
number supplied by the user. This number 
should be kept moderate since  increasing  it 
would result in a job having to wait longer for 
its turn to run which can be unacceptable. The 
maximum time a job will have to wait after it is 
being pre-empted, to get rescheduled, will be (n-
1)*tq, where tq is the time quantum of each time 
slot. The maximum time can be reduced by 
reducing tq, but it will result in increased 
number of context switches which is not 
desirable.   
 
Gang Scheduling with Greedy Approach 
 

With the greedy approach, all jobs in the 
waiting queue are considered as suitable 
candidates for execution. The jobs that have the 
required number of computing nodes in any 
time slots are executed. The policy does not take 
into consideration the arrival time of the jobs 
nor does it consider the estimated end-time. As 
with any greedy approach, the resulting 
schedule may not be fair. 
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Gang Scheduling with Backfilling 
 

The jobs in the waiting queue are considered 
as per the look-ahead backfilling policy. The job 
at head of the waiting queue has the reservation 
of the computing nodes it requires, and that 
reservation is not violated by the jobs that arrive 
later even if they get executed earlier than the 
first waiting job. This approach is fair 
comparing to the greedy approach, but not as 
fair as the conservative backfilling approach. 

 
Simulation  Studies 

 
Three methods were used for performance 

studies of the selected scheduling policies: 
Gantt-chart walk through, simulator using single 
machine, and simulators using Beowulf Cluster. 

 
Gantt-chart  walk  through   

 
As an example consider the case for 

aggressive backfilling algorithm in batch 
scheduling for a system having 16 compute 
nodes. Table 1 shows a set of jobs in the system 
ordered based on their arrival.  
 

Table 1: Status of current jobs in the system 
for a backfilled queue. 

 
Job 

ID 
Nodes 

Needed 
Time 

unit 
Status 

Job1 6 3 running 
Job2 6 1 running 
Job3 12 1 queued  
Job4 14 1 queued 
Job5 4 2 new arrival 

– backfilled 
Job6 4 3 new arrival 

– backfilled 
 

Job3 is the first queued job so it has a 
reservation in the system.  Job4 is queued 
behind Job3.  When Job5 and Job6 arrive, the 
system attempts to backfill the jobs.  Job5 can 
be backfilled and scheduled immediately.  Job6 
is queued.  This case is shown in Figure 1(a) for 
the system after arrival of Job4 and Job5.  When 
Job2 is terminated, its 6 nodes become available 
for 2 time units before Job1 terminates.  Since 

Job6 requires 3 time units the system cannot 
schedule it.  Job6 is scheduled after the 
termination of Job5.  This case is demonstrated 
in Figure 1(b), after Job5 has terminated.  At 
time 3, Job3 starts its execution.  Now that Job3 
has been removed from the ready queue, Job4 
becomes the first job in the queue so the system 
makes a reservation for it.  Figure 1(c) shows 
snapshot of the system after Job3 starts 
execution.  Figure 1(d) illustrates the overall 
snapshot.  This example also demonstrates the 
queued jobs (except the first one).  

 
Simulation  of  Backfilling  schemes    

 
A base class simulator was developed to 

support different flavors of the backfilling 
algorithm. This simulator has a hierarchical 
view.  The base simulator provides the base 
services needed for all favors. From this base 
class, other needed types of scheduler are 
derived.  This is illustrated in Figure 2 with the 
Basic Aggressive, Multiple-Queue, and Look-
ahead. 

 
Look-ahead  Backfilling  Simulator 

 
In Figure 3, a look-ahead scheduler is derived 

from the base class Simulator.  It receives the 
incoming jobs from the job file specified by the 
user.  When the scheduler starts, the simulation 
time is set to 0 and is incremented by 1 after 
each iteration.  Incoming jobs get filed in the 
Event Queue according to their arrival time.  
The arrival time of the jobs in the Event Queue 
is compared with the CPU time.  If they are 
equal, the jobs are moved to the Waiting Queue. 
Jobs in this queue are ordered by estimated 
execution time.  Considering only the jobs in the 
Waiting Queue, the scheduler builds a matrix of 
size (|WQ|+1) × (n+1) where WQ is the Waiting 
Queue and n is the number of free processors in 
the system.  Each cell of the matrix contains an 
integer value called util that holds the maximum 
achievable utilization at this time and a Boolean 
flag called selected that is set to true if it is 
chosen for execution.  Select Queue selects all 
the jobs from Waiting Queue with the selected 
flag set to true.  The utilization is calculated 

84  COMPUTERS IN EDUCATION JOURNAL 



    

 

                 
(a):  Snapshot after arrival of Job 4 & 5              (b):  When Job5 terminated              Legends 

 

               
(c):   When Job3 starts execution                          (d):   Overall job scheduling order 
 
 
 Figure 1: Illustration of the Aggressive Backfilling algorithm based on the job arrivals. 

 
 
 

 

Basic Aggressive Multiple-Queue Look-ahead 

Base Class: Simulator
 
 
 
 
 
 
 
 
 

Figure 2: The class hierarchy of the simulators. 
 
 
 
 
 
 
 
 

 
 

COMPUTERS IN EDUCATION JOURNAL 85 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Event Queue 
Base Class: Simulator Create dynamic 

matrix  

 
Figure 3:  Overview of Look-ahead Backfilling Scheduler simulator. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4:  Overview of Multiple Queues Backfilling Scheduler simulator. 

 
 
according to the number of computing nodes 
they have requested and what is currently 
available.  The selected jobs then receive the 

number of nodes they have requested and start 
to execute.  
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Multiple-Queue  Backfilling  Simulator 
 
In our implementation, Multiple-Queue 

Simulator is derived from the base class 
Simulator.   When   it   receives   input   jobs    it  
categorizes them into different waiting queues 
say P1, P2, P3 and P4 (Figure 4).  The queues 
hold jobs based on their estimated execution 
time from 0 to 100, 101 to 1,000, and 1,001 to 
10,000 and above 10,000 respectively.  We use 
the MPI programming package[10], and have 
the first node considered as a master and the rest 
as the worker nodes.  The scheduler program 
runs in the master node.  It divides the 
computing nodes into groups of 4, 4, 4 and 3 for 
the queues P1, P2, P3 and P4 respectively (the 
master node does not participate in the 
computation).  

 
Consider one of the queues in Figure 4, for 

example P1.  It holds jobs with execution time 
ranges of 0 to 100.  They are ordered based on 
their estimated execution time and then the 
arrival time in case of ties.  The scheduler starts 
checking the number of computing nodes 
requested by the first job.  If there are enough 
free processors designated for queue P1, then it 
records the PBS (Portable Batch Scheduler)[6] 
script and starts running  that job.  Otherwise, 
the job is sent to another queue called Lobby for 
Free Nodes where it waits for the free nodes 
before it can execute.  If there is a job at this 
queue (Lobby for Free Nodes) the scheduler 
searches for free nodes from other queues (P2, 
P3, P4) to check if the requested number of 
computing nodes could be granted.  If the 
answer is yes, then resources will be allocated 
to that job to start execution.  Otherwise, the job 
is transferred to Ready Queue (not shown in the 
figure).  The scheduler uses the aggressive 
method to make reservation for the required 
number of nodes for that job.  The same process 
is followed for jobs in the other partitions. 

 
Simulation  of  Gang  Scheduler   

 
This simulator has different design and 

methods from the backfilling ones mentioned 
above. The architecture of the simulator is 
shown in Figure 5. A simulator for the scheduler 

is created on top of the Message Passing 
Interface (MPI) for various message passing and 
synchronization purposes of the simulated 
scheduler. The simulation program itself is a 
parallel job to the cluster. It consists of one 
dedicated scheduler process and several 
application processes. The Portable Batch 
Scheduler[6] (PBS) is used to launch the 
simulator from the server to the compute nodes 
of the cluster. The PBS script reserves all the 
nodes and dispatches the job. 

 
 

 
 

Figure 5: Gang scheduler simulator architecture. 
 
Since our simulator runs on top of MPI/PBS, 

we use one node as the simulated scheduler and 
the rest as the simulated computed nodes. All 16 
nodes of the cluster are reserved using the PBS 
commands. As an MPI application, the program 
lets Node 0 to act as a scheduler, while all the 
other 15 nodes wait for messages from the 
scheduler. The simulator accepts jobs from the 
user. Depending on the simulated policy, the 
scheduler allocates the required number of 
nodes for the job from the available resources 
among the 15 workers. For the Gang scheduling 
policy, the scheduler also allocates the time slot 
for the job. 

  
For the Gang scheduler, at the end of each 

time quantum, the simulated scheduler 
broadcasts a SWITCH_CONTEXT message 
using scatter provided by the communicator 
class. The message contains information about 
which time slot is to be scheduled next. On 
receiving the context switch command from the 
scheduler, each node stops the currently running 
process using SIGSTOP, and resumes the jobs 
scheduled to run next using the signal 
SIGCONT. Experiments were carried out with a 
randomly generated workload.  The arrival time, 
estimated execution time of the jobs (submitted 

Linux Kernel 
PBS 

MPI Library 

Simulated  
Scheduler 

Jobs 
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by the user), the actual simulated run-time by 
the simulator, and the number of requested 
nodes were generated randomly.  

  
Implementation  Issues 

 
In this study, several backfilling scheduling 

policies as well as Gang Scheduling with 
Greedy Approach and Gang Scheduling with 
Look-ahead Backfilling Policy were simulated. 
This section provides some details of the 
implementations. Interested readers can contact 
the authors. 
 
The Environment:  
 

Our cluster has the following system features: 
16 homogeneous compute nodes; 2.8 GHz 
Pentium 4 processor per node; 1 GB of RAM 
per node; 1 GB/sec Ethernet switch; Gentoo 
Linux operating system; Batch System with 
PBS based Torque. 
 
The Simulators 
 

All simulators are written in C++. Those 
running on the cluster are using MPI. The base 
class Simulator provides some very basic 
functionalities of the simulation platform. It 
maintains an event list where events, in the form 
of arrival of new jobs, are inserted in the order 
of their arrival time. It also maintains the 
waiting queue where events that cannot be 
scheduled immediately are queued. Derived 
classes override processEventQueue( ) and 
processWaitQueue( ) methods to process the 
event and waiting queues. 

 
For time management, the simulator provides 

one-shot timer functionality. Subclasses need to 
override a method called timerFunction( ) 
which is invoked when the one-shot timer 
expires. The scheduler classes, derived from the 
Simulator class, make use of the timer to trigger 
events like global context switch and the start 
and the termination of jobs. The simulation time 
is forwarded at the timer expiration. The 
resolution of simulation time and the time 
interval between context switches have been 

kept the same in this implementation for 
simplicity.  

 
Jobs are generated in a pseudo-random fashion 

using the Linux rand() function in the current 
implementation. Other distributions, like 
exponential or Poisson, can be used for the 
study of scheduling characteristics under 
various workloads.  
 

Results  and  Analysis 
 

Batch  processing  with  Backfilling 
 
Experiments were carried out with a randomly 

generated workload.  Further, the following 
parameters of interest were used: 1) Makespan: 
Total time to complete processing all jobs from 
a given pool representing utilization, 2) Wait 
Time: Length of time for a task waiting in the 
scheduling queue, 3) Number of requested 
compute-nodes, and 4) Estimated execution 
time. 

  
The results for this part are shown in Figure 6 

and Figure 7.  Waiting time for the jobs in the 
Multiple Queue is more than Look-ahead 
backfilling algorithms and for the aggressive 
backfilling is smallest in comparison to the 
other two.  Looking at the line graph of each 
algorithm in Figure 6 separately, it seems that 
all three algorithms have one thing in common: 
the execution of jobs do not depend on the 
arrival time.  The jobs arriving late may execute 
before the other jobs that arrive before them, 
and hence, the algorithms are not fair.  In case 
of look-ahead, the waiting time depends upon 
the utilization value of the job at that particular 
instant in time.  The utilization value of each job 
is calculated by checking the number of 
requested processors and the number of 
available computing nodes at that time.  
 
Requested  Nodes  versus  Waiting  Time 

 
Figure 7 shows the waiting time of a job based 

on the number of compute nodes it needs.  In 
the basic aggressive algorithm, jobs that request 
more nodes wait longer than jobs that request 
fewer nodes.  For multiple queues, the jobs 
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requesting fewer nodes are executed before the 
jobs requesting more nodes in that queue.  This 
figure  suggests  that  the  look-ahead 
backfilling 

 

 
 

Figure 6:  Arrival Time versus Wait Time of 
the three algorithms. 
 

 
 

Figure 7:  Nodes Requested versus Waiting 
Time. 

 
algorithm provides better utilization.  Further, 
jobs in Multiple Queue algorithm wait longer 
than the jobs in the other two backfilling 
algorithms. 

 
Estimated  Time  versus  Waiting  Time 

 
Normally, jobs with shorter estimated time are 

executed before jobs with larger estimated 
times.  However, our results suggest that the 
look-ahead algorithm does not execute the jobs 
according to the estimated time of completion.  
In all three cases presented in our studies, 

Multiple Queue exhibits longer waiting time 
and look-ahead appears as a better choice.  
 
Gang  Scheduling  and  Backfilling 

 
A policy is evaluated by scheduling criteria 

which reflect user’s parameters of interest.  A 
fair and quick response time is desired.  
Completion time of the last job, or makespan, is 
used in report.  Figure 8 advocated that the 
Gang scheduling outperforms the backfill with 
look-ahead in terms of both makespan and the 
average response time.  Plotted against 
increasing number of jobs, the makespan for the 
backfill is always more than those for the Gang 
scheduling.  Within the Gang scheduling[14] 
(GS) category, the greedy approach seems 
superior to the backfilled one. Interestingly, GS 
with backfill tends to exhibit a behavior that is a 
compromise between backfill and GS with 
greedy approach.  For fewer jobs, the GS with 
backfill coalesces with GS with greedy 
approach.  This is because, as the number of 
jobs becomes smaller, time slots are readily 
available for most of them and neither the 
greedy nor the backfill policy effectively come 
into play.  As the number of jobs increases, they 
are queued and scheduling criteria are applied to 
pick the job to be scheduled.  The greedy GS 
tries to schedule as many jobs as it can without 
consideration for fairness or reservation for the 
first job in the wait queue as is done by GS with 
backfill.  It is not surprising that for a fairer 
scheduling policy the makespan is relatively 
worse but it is still better than the backfilling 
used with batch processing. 
 

As expected the average wait-time for the 
Gang scheduling is far less than that for the 
backfill as shown in Figure 8.  In the case of 
backfill, the average response time increases 
more rapidly making it unsuitable for interactive 
jobs.  The Gang scheduler performs better, as 
the response time does not show a rapid 
increase in average response time.  It also 
suggests that more jobs are getting completed 
making room for newer jobs to get scheduled.  
 

Performance of the Gang scheduling exhibits 
noticeable improvement when the number of 
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time slots increases from 1 to 15 as suggested 
by Figure 9.  With only one time slot, the Gang 
scheduler behaves like a batch scheduler.  
Further, as the number of time slots increases, 
the average wait time decreases significantly. 
As the system behaves like having virtual nodes 
equal to the number of slots multiply the 
number of actual nodes, more jobs can run 
without any delay, thus reducing the total and 
average wait time.   
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Figure 8: Makespan and Average Wait Time 

versus Number of Jobs 
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Figure 9: Makespan and Average Wait-Time 
versus Number of Time Slots. 
 

Future  Work 
 
Several potential extensions to the current 

work can be explored.  An exciting topic 
concerns the use of process migration, the 
second regards implicit scheduling, and third on 
the use of statistics based on real workload.  The 
scalability of the scheduling algorithms needs to 
be closely looked into as well. 

 
Migration appears to improve performance of 

the Gang scheduling[15].  It embodies moving a 
job in the Ousterhout matrix to a row in which 
there are enough free processors to execute that 
job.  This will allow the row from which the job 
got migrated to have more free nodes and can 
therefore be able to run jobs requesting large 
number of nodes. 

 
The workload was randomly generated in this 

study.  A real application could exhibit different 
result and hence impact the outcomes.  We need 
to look at this situation as well and run several 
benchmark processes to measure the outcome. 
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Concluding  Remarks 
 
In this paper we reported how a complex task 

such as scheduling in multiprocessor 
environment could be broken in manageable 
pieces and assigned to several students as term 
projects.  Our experiments suggest that students 
appreciate working with such challenging 
projects in the High Performance Computing 
field.  As pilot study, we targeted an advanced 
operating systems course which had sufficient 
components for students to work with a HPC 
project.   

 
Our obtained results from the scheduling case 

study suggest that this project can be extended 
even further to include more sophisticated 
scenarios such as process migration, load-
balancing of processor allocation, use of real 
tasks in the simulated scheduler instead of 
randomly generated payload, and scaling the 
number of processors.  Regarding the topic of 
scheduling, more studies are needed to analyze 
behavior of the backfilling schemes as well as 
Gang scheduling.         
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