
COMPUTERS IN EDUCATION JOURNAL 73

IMPROVING THE AFFECTIVE ELEMENT IN INTRODUCTORY
PROGRAMMING COURSEWORK FOR THE

 “NON PROGRAMMER” STUDENT

David M. Whittinghill, David B. Nelson, K. Andrew R. Richards, Charles A. Calahan
Computer Graphics Technology Department

Purdue University

Abstract

Over a period of several semesters, we
examined undergraduate students who were
enrolled in an introductory computer-
programming course. The goal of the study was
to observe the degree to which each student’s
feelings about the discipline of programming
were affected by their experience in this course.
The course attempted to encourage a learning
environment in which students who were
unfamiliar or intimidated by the discipline of
programming would be informed that the course
is explicitly oriented toward them, rather than
toward the more advanced students. The course
was designed to defer to the needs of low-skill
students such that content progression was slow,
thorough, and student centered. Students were
surveyed at the beginning of the semester on
measures of: self-identified programming skill,
years of previous programming experience, and
like or dislike of programming. Students were
then solicited at the end of semester and
surveyed on the degree to which they increased
or decreased their enjoyment of programming.
As the focus of this approach was oriented
toward students with low-positive feelings
toward programming, we grouped students into
groups of high-positive (HP) and low-positive
(LP), and then compared their individual change
of attitude toward programming at the end of the
semester. We observed that LP students
reported greater measures of positive affect
toward programming by the end of the semester.
These results indicate that approaches to
increasing interest in programming education
must be accompanied by a supportive, student-
centered learning environment that
acknowledges the difficulty of the subject
matter.

Introduction

Numerous studies have identified and

explored barriers to computer programing
education from elementary through post-
secondary schools. These studies have been
motivated in part by consistent calls from
government agencies to mediate an apparent
shortage of computer programmers or a
perceived lack of diversity in STEM fields like
programming [1, 2]. There is some evidence to
suggest that a shortage in an economic sense
does not exist, but rather the persistence of
unfilled posts in programming and IT fields
originates more from business hiring practices
and a perceived “skill deficit” among degree
holders and potential applicants [3,4].
Regardless of the veracity of the claims,
researchers have been working during the last
15 years to identify and overcome potential
barriers to careers and study in computer
science. Following recommendations from
national reports [5, 1], mediation efforts have
adroitly focused on K-12 education, measuring
potential bottlenecks in the pipeline for
programmers [6, 7]. These efforts have also
spurred novel solutions to increase interest and
skill in computer programming among students,
ranging from content-based solutions to
inventive graphical learning tools and
storyboard techniques [6, 8]. The field is
experiencing an increased emphasis on
programming concepts’ education in lieu of an
exclusive focus on syntax language learning [9,
10].

These innovative approaches and techniques

have also extended into research and practice at
the post-secondary level. Critiques of the
predominant “objects-first” approach encourage
a rethinking of the paradigmatic structure of

74 COMPUTERS IN EDUCATION JOURNAL

many introductory college programming courses
[11, 12]. Utilization of software packages
provides students with alternative structures to
learn and manipulate programming
environments outside of simple code syntax [13,
14, 15].

Extension of these tools to higher education
targets a higher-stakes environment for many
students. The abbreviated calendar of classes
and the significant weight of university grades
often creates a narrow window into which
students can become successful in a course [16,
17]. For programming in particular, early
failure to understand concepts in college courses
undermines students’ confidence and
competence [18]. Many of the learning
techniques in the literature target affective
resistance to programming as a way to increase
retention of these students. Approaches that
emphasize team-based learning and peer-
projects posit that a sense of belonging [19]
improved self-sufficiency and competence in
higher-order thinking skills [20] will strengthen
retention in programming.

There is a tenuous link in the literature
between novel learning approaches and
students’ affective attitudes towards
programming. Most explorations of effective
programming-education software are tied to
academic success or performance relative to
instructor criteria [13, 21]. Work on alternative
course-based structures in higher education has
more directly incorporated programming
attitudes and aptitudes into research [19, 20].
However the scope of most affective studies
remains within the confines of a particular
course, rather than exploring students’ attitudes
towards general programming and likelihood of
continued pursuit in the field.

In this paper, we suggest that significant value
lies in an examination of the learning
environment of college programming courses,
particularly introductory courses that are
populated with novice computer programmers.
Studies in both K-12 and post-secondary
programming education hint that an inclusive

and supportive learning environment can
improve student motivation and confidence
more than any particular pedagogical technique
or tool [8, 22, 15]. Studies in motivation and
self-determination support the value of
autonomy, competence and relatedness as
integral to academic success [23].

Class Environment and
Student Population

Our study was conducted over six academic

semesters of an introductory computer-
programming course at a large Midwestern
university from the spring 2011 semester
through fall 2013. The class is a required course
for majors in the department, and is the only
required programming course they will take.
Second-year students are the most dominant
demographic group in the course. Since the
major caters to many different vocations and
interests, students in the class may have had no
prior programing experience. Similarly, many
have expressed anxiety about their mathematical
and programming abilities. The curriculum of
the course has targeted explicitly these
beginning programmers. The instructor
emphasizes to students with extensive
programing experience that the course will not
advance their knowledge of the field but will
reinforce it. Thus, the course can accurately be
described as one that focuses on the success of
Low Experience/High Anxiety students.

Additionally, the sixth and most recent
semester of the course was redesigned in
tandem with a campus initiative to increase
student-centeredness and higher-order thinking
skill acquisition in foundational courses.
Accordingly, the fall 2013 semester
incorporated team-based learning into classroom
activities. Students worked with their peers to
analyze coding scenarios that were often beyond
the knowledge and experience of a novice
programmer. The teams were tasked with
exploring possible solutions and charting their
progress on large sheets of paper. The
instructor moved among the teams at their
various tables. Students were required to

COMPUTERS IN EDUCATION JOURNAL 75

explain their reasoning behind certain choices,
and any team member could be expected to
discuss the group progress with the instructor.
This allowed the students with limited
programming experience to explore coding in a
safe environment and receive feedback regularly
and consistently, while maintaining an
understanding of the programming techniques
that the group chose. Methods and material from
the coding challenges were then assessed
through in-class exams and weekly independent
labs.

Methodology

During six semesters, 203 students in the
introductory programming course completed
two surveys that solicited their attitude towards
programming. Surveys conducted in the first
weeks of the semester asked students to rate
their programming skills, quantify the number
of years of programming experience, indicate
whether they liked or disliked programming,
and identify whether they would have enrolled
in the course if it were not required of them. At
the conclusion of the course, students were
asked to reflect on the contribution of the course
to their enjoyment of programming. We used
this data to create a pre and post-score, where
like/dislike of programming was measured in
the beginning and end of the course.

We used this data to test four research
questions about attitudes toward programming:

1) Can an inclusive, supportive
environment that is catered to the non-
programmer lead to improved attitudes
about programming?

2) Can students with low-positive feelings
(LP) increase their confidence in
programming?

3) Does prior experience with

programming influence the degree of
attitudinal change?

4) Do specific pedagogical techniques and
practices in a redesigned course
influence attitudinal change?

Analysis

 Our paper proceeds under the assumption that
the introductory course represented an inclusive
and supportive environment. We did not use
any external evaluative protocols or measures to
reach this determination. Rather, as described
in the introduction, the course and its
assignments were designed to benefit the
students with high anxiety towards
programming. The course involved regular in-
class group work, providing students an
opportunity to practice various coding
challenges with immediate feedback from their
peers and the instructor. Practice, time on task,
and mistakes were all encouraged, with progress
being charted throughout the semester. Students
presented their work to one another, and each
group could be responsible for discussing their
conclusions with the class. This approach both
integrated students who might not otherwise
participate, and allowed them opportunity to
explore concepts and misunderstandings in safe
environments with their peers.

The beginning of semester survey questions
were as follows:

1. How would you rate your programming

skills?

a. 5-point Likert scale
b. Have never programmed before;

Below average; Average; Above
Average; Expert

2. How many years of programming
experience do you have?

a. 6-point Likert scale
b. None; < 1 year; 1-2 years; 2-3

years; 3-4 years; 4 or more years

3. How much do you like/dislike
programming?

a. 5-point Likert scale

76 COMPUTERS IN EDUCATION JOURNAL

b. Dislike Extremely; Dislike Very

Much; Neither Like nor Dislike;
Like Very Much; Like Extremely

4. Do you think that having some
programming skills can help you with
your particular career goals?

a. Yes or No

5. Would you take this course if it was not
required?

a. Yes or No

6. What job are you hoping your job in
XXX* will prepare you to do?

The end of semester survey questions were as

follows:

1. Given that XXX is an introductory
programming class, I felt the difficulty
of the material was:

a. 5-point Likert scale

b. Far too easy; A little too easy;
Just right; A little too hard; Far
too hard

2. I felt the difficulty progression from

easy to hard was:

a. 5-point Likert scale

b. Far too slow; A little too slow;
Just about right; A little too fast;
Far too fast

3. I am a better programmer because of this

class

a. 5-point Likert scale

b. Very much disagree; Somewhat
disagree; Neither agree nor
disagree; Somewhat agree; Very
much agree

4. Based on my experiences in this class, I
now enjoy programming:

a. I dislike programming a lot

b. I dislike programming a little

c. I neither like nor dislike
programming

d. I like programming a little

e. I like programming a lot

5. For my individual learning preference,

the ideal distribution between in-class
activities versus in-class lectures by the
professor would be:

a. (For 100% in-class activities,
select 10, for 100% in-class
lectures, select 0)

b. [Slider widget from 0 to 10]

6. I would like to take more programming
classes like this one

a. 5-point Likert

b. Strongly disagree; Somewhat

disagree; Neither agree nor
disagree; Somewhat agree;
Strongly agree

*The designation XXX was used to obscure
identifying information for the review process.

With this central assumption guiding the
research, we undertook four distinct, but related
analyses to answer our hypotheses. First, we
examined the possible effects of new
pedagogical techniques in the redesigned course
(fall 2013) to determine whether the responses
gathered should be evaluated distinctly from the
previous five. Independent-samples t-tests were
conducted on student responses to the
summative question, “Based on my experiences
in this class, I now enjoy programming.” While
students in the fall 2013 class reported slightly
greater degrees of post-course enjoyment, the
differences were not enough to be sufficient.
Despite the marked focus on team-based
activities in fall of 2013 in lieu of the lecture
format that had characterized coursework in
previous semesters, student attitudes towards

COMPUTERS IN EDUCATION JOURNAL 77

programming and the changes in those attitudes
remain nearly identical across all classes.

After we determined that we could analyze
data from all semesters in aggregate, we
examined the temporal element of student
attitudes towards programming. We compared
student responses to the initial attitudinal
question, “How much do you like/dislike
programming” the summative question, “Based
on my experiences in this class, I now enjoy
programming.” Using a paired-sample t-test to
measure if participants’ attitudes became more
positive from time one to time two. The test
statistic was significant (t(201)=7.98, p=<.001),
and is associated with a medium-effect size
(d=0.67). Students’ attitudes toward
programming were more positive at the end of
each semester than they were in the beginning.

As an isolated analysis, the change in student
attitudes is not particularly surprising. In most
programs of study, and in sufficiently large
sample sizes, one can generally find that
exposure to and familiarity with a subject
improves a student’s attitude, especially if the
student has not previously encountered the topic
or discipline. However, when we examined
these general conclusions along with other
variables, we can see that the particular
emphasis this course places on students with
high-dislike for programming results in
significant affective gains.

Since the multiple changes in activities and
lessons in the re-designed semester did not
foster a significantly different attitudinal
experience for the students enrolled, we are also
working on the assumption that the activities
and group-work themselves did not create an
improvement in attitude. Rather, the general
environment of the course was relatively
consistent throughout three years with the same
instructor, and was sufficiently inclusive and
supportive to improve attitudes for all students.
In order to trace the relative effectiveness of the
course environment upon those students with

high-dislike for programming, we incorporated
a student’s prior experience with programming
and their self-estimate of their programming
skill. These measures were both taken at the
beginning of each semester.

Our hypothesis initially supposed that
students’ prior experience with programming
and their subjective ratings of programming
skill would significantly predict their
programming enjoyment above and beyond
their initial enjoyment levels. To test this
hypothesis, we ran a hierarchical linear
regression analysis (See Table 1). This analysis
allowed us to control for the variance accounted
by the pre-semester enjoyment variable in
evaluating the impact of years of coding
experience and rating of programming skill on
the end of semester enjoyment rating. In the first
step, only the pre-score is entered as predictor.
We find that it is a significant predictor,
(F(1,201)=19.92, p<.001). The effect size is
small (R2=.09). In the second step, our goal was
to examine whether or not the past experience
and personal rating variables are useful in
predicting post-enjoyment scores above and
beyond that which was accounted for by the pre-
score. The omnibus F-Test was significant
(F(3,199)=7.76, p<.001), and associated with a
small effect size (R2=.11). However, the test for
change in R2 was not significant
(F(2,199)=1.62, p=.202). Indicating that the
additional variance accounted for by including
the new variables does not result in a significant
increase in the amount of variance explained.
Examination of the tests for individual
coefficients confirms that the pre-semester
enjoyment score is still significant (β=.33,
p<.001), but neither subjective rating of
programming skill (β=-.09, p=.448), nor years
of prior programming experience (β=-.04,
p=.747), were significant. Based on this
analysis, we concluded that neither variable
predicts the summative response beyond the
variance that is already accounted for in the pre-
survey “like/dislike” question.

78 COMPUTERS IN EDUCATION JOURNAL

Table 1. Summary of Hierarchical Multiple Regression Analysis.

Predictor Variables Step One Step Two
Pre-semester enjoyment .300**

(4.46)
.334**
(4.79)

Years of programming experience -.038NS
(-.323)

Perceived programming skill -.091NS
(-.760)

R2 .090 .105
Adjusted R2 .086 .091
N 203 203

Note: The dependent variable was post-semester programming enjoyment. Standardized regression
coefficients are reported and t-values are in parentheses. *Significant at α=.05, **Significant at the
α=.01 level, ***Significant at the α=.001 level, NS Not significant.

Through these combined analyses, we were
able to suggest with some certainty that the
course helped improve attitudes towards
programming for all students, regardless of each
student’s background and comfort with
programming. The specific modifications made
during the course redesign also appear to have a
negligible effect, though the sample size is
small, and analyses of future semester data
could complicate that picture further, especially
as the instructor becomes more familiar with
and confident about the new group-work and
assignments.

Nonetheless, our analyses did not provide a
satisfactory explanation for the assumption
inherent in the initial research question. While
all students seem to increase their positive
attitudes toward programming, were the
students, with an apprehension toward
programming, reaping any particular benefits of
a course tailored specifically to them?

In the pre-survey, students were asked to
indicate on a binary level whether they would
have taken the course if it were not required for
the plan of study (TakeCourse). This provides a
useable proxy for students with high
anxiety/high-dislike towards programming. We
ran a 2x2 (Time x TakeCourse) Mixed ANOVA
(See Table 2), examining both the change in
attitude and desire to take the course if not

required. Results indicate a significant main
effect for change in attitude over time,
(F(1,201)=65.72, p<.001), which is associated
with a large effect size (partial-η2=.246). There
was also a significant main effect for
TakeCourse (F(1,201)=8.98, p=.003), which
was associated with a small effect size (partial-
η2=.043). This indicates that the students who
would have taken the course if it had not been
required report greater enjoyment at both pre-
and post-semester. Both main effects were
qualified by a significant Time x TakeCourse
interaction effect (F(1,201)=4.68, p=.032),
which was associated with a small effect size
(partial-η2=.023). As demonstrated in the means
plot in Figure 1, students who report that they
would not have taken the class if it had not been
required begin the semester with lower
enjoyment scores, but catch up to their peers
who would have taken the course by the end of
the semester. On the means plot it appears as if
there are differences between the two groups of
students’ enjoyment scores on the pre-
assessment, but not on the post-assessment. In
order to test for this, we used an independent-
samples t-test to examine simple effects. Results
confirm that there was a statistically significant
difference between the students who would and
would not have taken the class if it were not
required on the pre-test (t(201)=4.65, p<.001).
This significant difference was associated with a
medium effect size (d=.74). While there was a

COMPUTERS IN EDUCATION JOURNAL 79

Table 2. ANOVA table for the enjoyment of programming at pre- and post-semester based on whether
or not the students would have taken the course if it had not been required.

Variable

Time
TakeCourse ANOVA Statistics

Yes
M(SD)

No
M(SD) Factor F P Partial-η2

Enjoyment Time** 65.72 <.001 .246
Pre 3.13(.69) 2.60(.77) TakeCourse* 8.98 .003 .043
Post 3.65(1.06) 3.49(1.03) Interaction* 4.68 .032 .023

Note: *p<.05, **p<.01, TakeCourse=whether or not the student would have taken the course if it had
not been required.

Figure 1. Means plot displaying enjoyment of programming at pre- and post-semester based
on whether or not students would have taken the class if it were not required.

significant difference at the beginning of the
semester, differences between the groups were
not significant at the end of the semester. This
provides evidence to support the assertion that
students who would not have taken the course if
not required start with a greater attitudinal
dislike for programming than their more
enthusiastic peers, but the gap closes almost
completely by the end of the course.

Conclusion and Discussion

Students in the introductory programming

course above reported significant positive
attitude changes regarding programming and
their respective skill in it. The course was
structured to emphasize the process of coding in
a forgiving learning environment. In lieu of
memorization of coding syntax or lecture on
specific characteristics of the coding language,

80 COMPUTERS IN EDUCATION JOURNAL

the course included group learning activities and
collective practice at coding challenges. These
measures provided students who might
otherwise be intimidated or daunted by the
prospect of computer programming to improve
their affect and confidence for programming
tasks. In an initial survey, students indicated
their programming skill, quantity of
programming experience, and attitude towards
programming. A second survey once again
measured the increase in their appreciation for
programing. Students who initially conveyed
anxiety or low-positive (LP) feelings toward
programming eventually matched their high-
positive (HP) peers’ feelings by the end of the
course. Variables such as years of programming
experience or confidence were not significant
factors in the positive change in attitude.
Despite the inclusion of an intentional course
redesign in the latest semester (fall 2013), the
degree and significance of positive change was
similar across all six courses. This suggests that
while specific techniques in a course may have
fostered different learning, the inclusive
environment that the instructor created may
have greater responsibility for student attitude
shifts than any team-based learning activities.

It should be noted that as a result of these
findings, changes in the way this course will be
taught in future semesters are being enacted.
Though the findings are encouraging,
improvements can always be made. Most
particularly students have advocated for less
passive lecture time and more time to work
hands-on with coding problems. To address this,
the course has been radically re-worked to
accommodate this recommendation. Future
studies will describe the effects of this change.
Also, students reported enjoying the opportunity
to work creatively on independent projects. This
aspect of the course is being strengthened and
broadened so that creativity can be a part of
regular assignments and not just the large
projects. Future studies are planned to
quantitatively assess the impact of these new
course evolutions.

Bibliography

1. National Science Foundation. (2000). Land
of plenty: Diversity as America’s
competitive edge in science, engineering and
technology. Washington, DC: US Congress

2. Office of Technology Policy. (1997).
America's New Deficit: The Shortage of
Information Technology Workers.
Washington, DC: U.S. Department of
Commerce.

3. Bailey, J., & Stefaniak G., IT skills portfolio
research in SIGCPR proceedings: Analaysis,
Synthesis, and Proposals. ACM SIGCPR
Conference Proceedings.

4. Cappelli, P. (2000). Is there a shortage of
Information Technology workers? A Report
to McKinsey and Company.

5. American Association of University
Women, Educational Foundation (2000).
Tech-savvy: Educating girls in the new
computer age.

6. Bruckman, A., Jenson, C., and DeBonte, A.
(2002). Gender and Programming
Achievement in a CSCL Environment.
Proceedings CSCL, 119-227.

7. Tucker, A., Deek, F., Jones, J., McCowan,
D., Stephenson, C., & Verno, A. (2003). A
model curriculum for K-12 computer
science: Final report of the ACM K-12 task
force curriculum committee. ACM, New
York

8. Kelleher, C., & Pausch, R. (2007). Using
storytelling to motivate programming.
Communications Of The ACM, 50(7), 58-64.

9. Maloney, J., Peppler, K., Kafai, Y.,

Resnick, M., Rusk, N. (2008). Programming
by choice: urban youth learning
programming with scratch." ACM SIGCSE
Bulletin 40(1), 367-371.

10. Powers, K., Ecott, S., Hirshfield, L. M
(2007). Through the looking glass: teaching
CS0 with Alice. ACM SIGSCE Bulletin,
39(1), 213-217.

COMPUTERS IN EDUCATION JOURNAL 81

11. Hu, C. (2004). Rethinking of Teaching
Objects-First. Education & Information
Technologies, 9(3), 209-218.

12. Mccracken, M., Almstrum, V., Diaz, D.,
Guzdial, M., Hagan, D., Kolikant, Y. B.,
Laxer, C., Thomas, L., Utting, I., Wilusz, T.
(2005). A multi-national, multi-institutional
study of assessment of programming skills
of first-year CS students. ACM SIGCSE
Bulletin, 33(4), 125-180

13. Kelleher, C., & Pausch, R. (2005). Lowering
the barriers to programming: A taxonomy of
programming environments and languages
for novice programmers. ACM Computing
Surveys, 37(2), 83-137

14. Li, L., Juarez, J., Yang, Y. (2012).
Programming concept visualization using
flash animation. ASEE Proceedings.

15. Swain, N. (2013). RAPTOR – A vehicle to
engage logical thinking. ASEE Proceedings.

16. Barefoot, B.O., Gardner, J.N., Cutright, M.,
Morris, L.V., Schroeder, C. C., Schwartz, S.
W., Siegel, M. J., Swing R. L., (2005).
Achieving and sustaining institutional
excellence for the first year of college.
Jossey-Bass, San Fransisco, CA.

17. Tinto, V. (2012). Moving from theory to
action: A model of institutional action for
student success. In A. Seidman, College
student retention: Formula for success
(pp.251-266). Lanham, UK: Rowmn &
Littlefield.

18. Chalk, P., Boyle, T., Pickard, P., Bradley,

C., Jones, R., Fisher, K. (2003). Improving
pass rates in introductory programming.
Proceedings of LTSN-ICS 2003, Galway
2003.

19. McKinney, D., Denton, L. (2005). Affective
assessment of team skills in agile CS1 labs:
the good, the bad, and the ugly. ACM
SIGCSE Bulletin, 37(1).

20. Williams, L., Wiebe, E., & Yang, K. (2002).
In support of pair programming in the
introductory computer science course.
Computer Science Education, 12(3), 197-21.

21. Scott, A. (2010). Using flowcharts, code
and animation for improved comprehension
and ability in novice programming
(Doctoral thesis, University of Glamorgan,
United Kingdom). Retrieved from http://
dspace1.isd.glam.ac.uk/dspace/bitstream/10
265/460/3/Dr%20Andrew%20Scott%20-
%20PhD%20Thesis.pdf.txt

22. Scaife, M. & Taylor, J. (1991). Graduated
learning environments for developing
computational concepts in 7-11 year old
children. Journal of Artificial Intelligence in
Education, 2, 31-41.

23. Deci, E. L. (2009). Large-scale school
reform as viewed from the self-
determination theory perspective. Theory
and Research in Education, 7, 244-252.

Biographical Information

David Whittinghill is an Assistant Professor of
Computer Graphics Technology and Computer and
Information Technology. His research focuses on
simulation, gaming and computer programming and
how these technologies can more effectively address
outstanding issues in health, education, and society
in general. He is the director of
www.gamesinnovation.org.

David B. Nelson is the Associate Director of the
Center for Instructional Excellence at Purdue
University. He has collaborated on research projects
in higher education and student learning across a
variety of disciplines. His current research interests
include pedagogical frameworks in higher education
and student motivation.

K. Andrew R. Richards is a Visiting Assistant

Professor in the Department of Kinesiology and
Physical Education at Northern Illinois University.
He received his Ph.D. in Health & Kinesiology from
Purdue University. His current research interests
include teacher education, role conflict and
motivation theory.

Charles A. Calahan is the Assistant Director for

Global Faculty Development in the Center for
Instructional Excellence at Purdue University. He
received his Ph.D. in Family Science from Kansas
State University. His current research interests
include intercultural competence.

