
 “LIONS AND TIGERS AND TESTING… OH MY!”

Steven F. Barrett1 and Daniel J. Pack2

1Department of Electrical and Computer Engineering

University of Wyoming

2Department of Electrical Engineering
United States Air Force Academy, Colorado

Abstract

The proper testing of a digital hardware and

software design is often considered a dry and
boring task for instructors to teach students.
Anecdotally, we found students also share this
perception of this important concept. A design,
however, is only as good as the test plan that
validates and supports it. We realize that entire
textbooks and courses have been devoted to this
topic, but, often, an engineering program does
not have room for a standalone course on this
topic. In our institutions, we elected to
emphasize and allow students to practice some
of the basic tenets and proper procedures of
testing and documentation in several senior and
graduate level design, microcontroller and
hardware descriptive language courses. In this
paper we will briefly review the basic tenets of
testing and documentation and present some
innovative methods of extracting test data from
a hardware/software based project often found
in a digital controller based system. We discuss
how these tenets and techniques were adopted in
several senior level courses and the overall
results.

Overview

In the classic movie “The Wizard of Oz”

Dorothy, the Tin Woodman, the Cowardly Lion,
and the Scarecrow are making their way through
a dark, dangerous forest. Around every turn
they are worried about what they might
encounter. There could be “Lions and Tigers
and Bears…oh my!” The proper testing and
documentation of a digital based system is also
fraught with a variety of “dangers.” Frequently
the subject of project testing, test plans, and

documentation is often treated as a dry and
boring task in academia. A tedious and
monotonous task of extracting system data from
a complex digital design such as an embedded
controller has contributed to this view.
However, we all know that it is one of the most
important concepts that must be taught in the
engineering discipline.

Our accreditation body, Accreditation Board

for Engineering and Technology, Incorporation,
Engineering Accreditation Commission
(ABET/EAC), recognizes the importance of
these concepts. In their “Criteria for
Accrediting Engineering Programs,” under the
Curricular Objectives section, we find “an
understanding of the engineer’s responsibility to
protect both occupational and public health and
safety.” According to ABET/EAC, the
definition of design includes testing and
evaluation of design. In addition, the
importance of instructing design safety is also
mentioned in several areas of the criteria.[1]

As future engineers, our students must

recognize the tremendous responsibility they
have designing devices, products, and projects
that will interact and be used by the public at
large, in some cases dealing directly with human
lives. Often testing is relegated to a requirement
that must be accomplished as part of a
laboratory assignment or for a software project.
A student, who will remain anonymous,
provided a seemingly typical feeling concerning
testing and test plans, “oh yeah, I have to do a
test plan for this project…I’ll throw something
together to satisfy the assignment.” Students
frequently view the test plan as a separate
assignment they must complete without

Computers in Education Journal 95

considering the system they are designing. We
believe this is a common feeling among
engineering students (and possibly some
faculty). Closely related to the concept of
testing is documentation. Often documentation
such as structure charts, Unified Modeling
Language (UML) activity diagrams, and
laboratory notebooks are completed when a
project is nearing completion rather than used as
powerful design tools at the start of the project.

To remedy such problems, we decided to

emphasize the basic tenets and practice of
testing and documentation in two senior elective
courses in digital design and in a senior design
capstone course. All students within our
discipline take one (or both) or more of these
courses. Our goal is to seamlessly integrate the
concepts of testing and documentation into the
fabric of these courses. It was done so that
students would view testing and documentation
as a natural portion of any design activity.

In this paper we provide background

information on the basic tenets of testing and
documentation along with method to extract test
data from complex digital systems. We then
provide several case studies where these
techniques were integrated into a senior level
Verilog hardware descriptive language course, a
senior/graduate level embedded systems design
course, and a senior design capstone course.

Background

Testing. System testing is an integral step in

the design process. A typical design flow is
illustrated in Figure 1. As shown in the figure,
system testing usually occurs late in system
development. At its most fundamental
definition, testing is simply verifying that a
system meets its intended requirements and
specifications. However, if the system will be
operated or interact with humans (as most of
them do), testing must ensure a system:

• will operate correctly when it is operated

properly,

• will not operate adversely when incorrectly
operated, and

• has the ability to recover from and operate
safely in the presence of faults.

Production
and

Operation

Maintenance

Problem Analysis

Requirements
and Specifications

Design

Implementation

Testing and
Verification

Does system
meet requirements,

specifications, and operate
correctly?

yes

no

Figure 1. The design process [adapted from 2].

This definition implies exhaustive system

testing. This concept may seem a bit
overwhelming at first to both educators and
students, but there are a few basic tenets of

96 Computers in Education Journal

testing that when followed will go a long ways
toward properly verifying the operation of a
system.

For completeness, we will briefly cover these

basic tenets of testing and also some techniques
to test a complex embedded system which has
significant hardware, software, and interface
components. It must be emphasized that this is
the barest of essential information that can be
readily inserted into a course. For additional
tutorial information on this topic, please see the
references.[2, 3]

Test Plan. The most fundamental component

of system testing is the test plan. The test plan
rigorously tests a system under a variety of
conditions to insure it meets specified
requirements and specifications and that it
operates correctly under anticipated operating
conditions. A test plan consists of a battery of
system tests with expected and actual results
documented.

Testing Approach. To thoroughly test a

system and to detect system malfunctions as
early as possible, an incremental approach is
usually employed. A top down, bottom up, or
hybrid approach may be used. In a top down
testing approach, the overall framework of the
system is first implemented and tested. Lower
level system functions are deferred until the
overall system framework has been tested and
verified. This approach is particularly useful for
a menu driven system. In this type of system a
user will select different functions for the
system to execute. The overall system
framework (the menu or user interface) is first
implemented and tested. Once this portion of
the system is operating correctly, the lower level
system modules could be added. For example,
if we were designing a controller for a gasoline
pump at a service station. We could design,
implement, and test the pump’s user interface
first before implementing the actual lower level
functions to operate the pumps, select the
appropriate grade of gasoline, etc.

In a bottom up testing approach, lower level
functions are first tested. These lower level
functions are then integrated with other system
lower level functions and an overall system is
integrated up from these low level components.
For example, if we were developing a robot
control system, we would want to implement
and test each robot subsystem first (vision,
sensing, movement, etc.) before integrating
them together. Many system designs lend
themselves to a hybrid testing approach. In this
case, top down and bottom up testing techniques
are employed simultaneously.

We have been very careful in our description

not to indicate whether it was hardware or
software undergoing testing. In an embedded
control system, implemented with an HDL or a
microcontroller based system, both hardware
and software are extensively used to implement
the system. The testing techniques described
are equally applicable to both.

Testing Techniques. Often a low cost

controller (HDL or microcontroller) is used to
control a complex, expensive hardware system.
For example, if we were designing a controller
for an industrial gate control application, we
would want to ensure the controller’s algorithm
was functioning properly before integrating the
controller with the expensive components. On
the other hand, how can we test the control
algorithm without connecting it to the hardware
it will control? To solve this dilemma, a low
cost system simulator may be constructed that
provides simulated controller inputs. In
response to these inputs, the system will
generate appropriate control signals that may be
measured and analyzed with external indicators
and test equipment to verify proper system
operation. Figure 2 illustrates a generic, low
cost hardware simulator. Debounced tact
switches are used to simulate user input. Also,
external analog voltages from trim
potentiometers, tact switches and DIP switches
input may be used to simulate external hardware
response. System output is provided to light
emitting diode (LED) indicators. In this
particular example, the pulse width modulated

Computers in Education Journal 97

signals generated at PD4 and PD5 by the
controller may be observed. Both signals (PD4
and PD5) are fed into an operational difference
amplifier so they might be simultaneously
viewed on a single recording channel for testing
purposes. By employing a low cost simulator a
control algorithm can be completely and
exhaustively tested prior to emplacement in an
expensive circuit.

Testing Tools. There are a number of readily

available test tools available to test a complex
digital system. A brief definition of each is
provided:

• Simulators/Testbench – There are a number

of very good software integrated tool
environments that allow for the design,
testing, and synthesis of an HDL based
controller. This allows a control algorithm
to be fully tested before interfacing to
external hardware.

Figure 2. Low cost hardware simulator. The simulator consists of low cost tact and DIP switches,
potentiometers, and LEDs to simulate expensive system components.

• Emulators – An emulator, as its name
implies, is a software tool that imitates the
operation of a microcontroller. The
emulator is hosted within a personal
computer. An interface adaptor with the
same profile of the embedded controller is
placed in the system in place of the
microcontroller. The emulator through the
socket adaptor processes inputs and issues
outputs to the target system.

• Oscilloscope – An oscilloscope is a good
tool to measure the analog output of a
microcontroller system. Oscilloscopes are
commonly available that may display four
analog outputs simultaneously.

• Logic analyzer – A logic analyzer is an
effective tool for simultaneously measuring
multiple channels (commonly 30+ channels)
of digital data.

98 Computers in Education Journal

An embedded system designer commonly uses
these tools to exhaustively test a system.
However, in most control systems a mixture of
analog and digital signals must be observed and
their relationship to one another. We also need
to extract the test data for a mixed mode system.
Furthermore, often there is a severe limit on the
number of microcontroller output pins available
to output test points in the control algorithm.
How do you do this?

In these cases, the simple “printf” statement

may be used to print out test data to a host PC or
possibly a liquid crystal display (LCD). These
statements may be effectively used to print out
code and data status. In very complex systems,
they may be used to provide a record path
through the executing code much like Hansel
and Gretel marked their path with white
pebbles. This allows the system designer to
observe the flow of the algorithm during testing.
The “printf” statement may require too much
time to execute in reference to the code being
tested and thus incorrectly influence test results.
Furthermore, certain microcontroller products
do not have the capability to “printf” back to the
host computer. An LCD may be used for the
“printf” instead but these are inherently slow
and would suffer the same disadvantage of the
“printf” statement.

To coax out tough internal status signals to

external test equipment some variation of the
circuit shown in Figure 3 may be employed.
This circuit at a minimum requires only two
microcontroller pins. One pin is used to shift
serial data out of the microcontroller while the
other required pin is a single bit control signal to
latch the data. With this circuit internal data or
progress points may be serially shifted out of the
controller and into a 74HC164 serial-to-parallel
converted. Once the data is finished shifting
out, the latch is enabled (74HC573) to hold the
data constant. If this circuit looks familiar, it is
because it’s the basic configuration of a serial
input analog-to-digital converter.

The digital data is converted to a unique

analog voltage for the digital pattern exported

from the microcontroller. The analog voltage
may then be displayed on an oscilloscope or
strip chart recorder for slower algorithms
typically found in industrial control
applications. A unique analog voltage is
associated with different points in the control
algorithm. These analog data points provide a
record path through the code.

serial

data in

8 parallel
bits out

latch
enable

74HC573
octal latch

8 parallel
bits out

MC1408P8
8-bit DAC

analog
data point

out

74HC164
serial-to-parallel converter

Figure 3. Auxiliary hardware to extract test data

from a microcontroller.

Documentation. To thoroughly document the

design, operation, and testing of a system; a
number of documentation tools should be
employed. Often these documentation methods
are viewed as additional paperwork that must be
completed after “the real” assignment, the code,
is complete. This could not be further from the
truth. Documentation tools should be used as
powerful design and implementation tools to
ease the transition of a system from a conceptual
idea to a finished product. Here is a brief
definition of each tool.

- Structure charts – a structure chart is the

graphical tool used to compartmentalize a
large complex project into hierarchical,
definable related functions and subsystem
black boxes.

- Pseudo code – pseudo code uses a “language
like” description to define the operation of
the black box. It provides an intermediate
step between a word description and actual
coding to conceptualize subsystem operation
and interfacing.

Computers in Education Journal 99

- UML Activity Diagrams – a UML activity
diagram is simply a UML compliant flow
chart. These are used to describe the flow of
an algorithm and its functions [4, 5, 6].

- Laboratory notebooks – laboratory
notebooks are used to document the daily
progress of a project. A well maintained
laboratory notebook should document the
who, what, when, where, why, and how of a
design. Its entry should be properly
documented in indelible ink with a
signature, date, and witness [7].

- Test plan – a test plan documents the test
results, insuring that a system meets its
requirements, specifications, and intended
operation.

Methods

The testing and documentation concepts

discussed in the previous section were
introduced into three different senior/graduate
level courses to improve the design and testing
skills of our electrical and computer engineering
students. In this section we provide a brief
description of each course and how the concepts
were introduced.

EE4490 Hardware Descriptive Language.

This is a senior level course in designing
complex digital systems using CAD tools which
target CPLD and FPGA devices. Prior to
implementation of the emphasis on testing and
documentation, the course is used to instruct
students complex hardware systems design
knowledge. The student designs were scored
against an instructor provided testing
benchmark. Although, this was a good method
of emphasizing sound design practices, students
did not have the opportunity to develop and use
their own test benches. To remedy this
situation, (1) students were provided several
lectures on structured design techniques and
testing, (2) students were required to develop
their own test bench to verify the proper
operation of their hardware systems for all
design assignments, (3) students were assigned
to conceptu alize, set requirements, design,
implement, and test a complex HDL based

design, and (4) students were required to
document their final project design with a
written report and a detailed test plan.

All projects were required to be stand-alone.

Projects ranged from commercial product
controllers (coffee pot, camera, clocks,
microwave oven, and elevators), to computer
subsystems, to combination locks, and VGA
controllers.

EE4590/EE5590 Real Time Embedded

Systems. This is a senior/graduate level course
in microcontroller systems design. This course
emphasizes a systems approach to real time
embedded systems. Students are expected to
apply methodical system design practices to
designing and implementing a microprocessor-
based real time embedded system. Students
employ a robot-based educational platform to
learn the intricacies of real time embedded
systems, distributed processing, and fuzzy logic.
Students also learn processor input/output
interfacing techniques Students use state-of-
the-art design and troubleshooting tools.

In the course the students are required to

complete a series of design exercises to equip a
robot platform with the ability to autonomously
navigate through a maze. To provide the
necessary design skills for the course, students
were provided formal instruction in structured
design, testing, and documentation techniques.

To exercise these skills, student teams were

required to design various subsystems for the
robot platform including a vision system, a drive
train system, and various operating systems to
link the vision to the drive system. Operating
systems based on polling techniques, interrupt
driven systems, hybrid systems (polling with
interrupts), and fuzzy based concepts were
designed, tested an implemented. To
emphasize structured design techniques,
students were required to develop UML activity
diagrams and structure charts for all laboratory
assignments. In all cases students were required
to document their design and results in their
laboratory notebooks using hardcopy traces

100 Computers in Education Journal

Figure 4. (left) Robot platform and (right) testing maze.

from appropriate test equipment. The robot
platform and maze are provided in Figure 4.

To interject competition into the course, each

student team (17 total) competed against one
another in the final laboratory exercise. Teams
competed against one another to have their
robot navigate through the maze as quickly as
possible with time penalties for each wall
collision. The winning teams received
recognition for their design (bags of M&M’s).

EE463/EE464 Senior Capstone Design. The

year-long course is designed to provide students
opportunities to design, implement, test, and
evaluate a complex interdisciplinary projects.
Throughout the process of completing a project,
students are required to make six formal
briefings accompanied by formal reports.
Students are given descriptions of projects with
a list of incomplete requirements for each
project at the start of the course. Students are
required to maintain and log their activities on
lab notebooks throughout the semester. While
the first semester is dedicated to complete
detailed software and hardware designs of a
project, students implement, test, and evaluate
the project during the second semester.

Students turn in a test and integration plan as a

part of the last formal briefing of the first
semester. In the plan, we require that the
document contains a detailed test plan which
includes subsystem test plans and how to

integrate subsystems together. At each level of
progression, as students integrate subsystems
together, we emphasize the importance of
thorough testing and test planning to students.

Case Studies. In all classes, course

instruction was supplemented with considerable
examples from real world practices. Both
authors have designed a wide variety of
complex control systems for high end audio
systems, commercial entry control systems, and
a host of robotic applications. The case studies
were used to emphasize the safety aspects and
testing of a project. Also, it emphasized the
structured design concepts taught in class. It is
a powerful message to demonstrate to your
students that you use the same design, testing,
and documentation techniques for design as you
teach in class.

Results

For the two elective courses, to measure how

well the concepts were internalized by the
students involved (4 courses, approximately 120
students), students were tested on the concepts
via traditional tests and final examinations.
Students performed well on describing key
components of the concepts and applying them
in design exercises. Students also did a good
job of properly documenting their work in
laboratory notebooks. Students were allowed to
use their laboratory notebooks during tests and
examinations. This was purposely done to

Computers in Education Journal 101

encourage them to employ sound documentation
techniques and also to emphasize the use of the
laboratory notebook as a tool.

The most exciting results were in the final

design projects in the Verilog HDL course and
the senior capstone course. Students were
required to complete an open ended, team
project of their choosing. They were required to
demonstrate they mastery of design and testing
concepts through the project. The senior design
projects were mentored by a team of faculty
members who rigorously monitored students’
progress to meet the course requirements which
include detailed testing plans and meticulous
documentation. The informal feedback from the
faculty members show that the frequent formal
report deadlines combined with a clear
presentation of the testing and documenting
process at the start of the semester were
effective. The prior project results were of the
highest caliber and demonstrated complex
design depth. We found the great differences
between teams that followed the strict
requirements of testing and documentation and
the ones that did not. Some of the projects that
were successful are a telemetry recording
system, cooperative mobile robots, and a
wireless network system. In retrospect the
students were motivated to pursue a project of
their own choosing.

Discussion and Summary

Due to the success of these efforts in the two

elective courses, the robot design project will be
included in the EE4490 Hardware Descriptive
Language course. Work is ongoing to develop a
series of laboratory exercises that will allow
students to develop a robot control system using
HDL design techniques. Since many students
take both courses, this will give them the
opportunity to compare and contrast design
procedures employing HDL versus a
microcontroller based design.

Overall, student critiques were quite favorable
for the courses that require testing and
documentation. We would like to believe that
all students understood the benefit of learning
and applying the concepts of testing and
documentation. Some student comments led us
to draw this conclusion:

 “Great course, parts of this class should be

taught in senior design.”

 “Introduced a lot of good real world

examples.”

 “Good case studies.”

On the other hand, some comments made it

clear that we have additional work to do:

 “Assignments seemed like busy work.”

 “Sometimes the homework seems like busy

work.”

Conclusions

We are encouraged by the overall results of

our initial work to seamlessly integrate the
concepts of testing and documentation in these
courses. However, we feel there is additional
work to do. We look forward to this challenge.
The most positive feedback received was from
students returning from a successful job
interview and those who worked in project
teams after graduation. The one with a job
interview indicated that he was heavily
questioned on the concepts emphasized in the
course. He felt he received a job offer because
of his demonstrated experience in this area.
Those who visit after graduation feel that the
course materials from these courses were most
beneficial and relevant to their past and current
jobs.

All material developed for these courses is

available for your use. Feel free to contact us at
steveb@uwyo.edu to obtain this material.

102 Computers in Education Journal

mailto:steveb@uwyo.edu

Acknowledgments

We would like to gratefully acknowledge the

gracious support of the Electrical and Computer
Engineering Department at the University of
Wyoming for providing the seed funds to
develop and build the educational robots and
maze used in the course work

References

1. “Criteria for Accrediting Engineering
Programs,” ABET Engineering
Accreditation Commission, December 19,
2005 (available at www.abet.org).

2. Barrett, Steven F. and Daniel J. Pack.

Embedded Systems Design and Applications
with the 68HC12 and HCS12. Upper Saddle
River: Prentice Hall, 2005.

3. Abramovici, Miron, Melvin A. , Arthur D.

Friedman. Digital Systems Testing and
Testable Design. Hoboken: Wiley, 1994.

4. McCormack, John B., Robert K. Morrow,

Harold F. Bare, Robert J. Burns, and James
L. Rasmussen. The Complementary Roles of
Laboratory Notebooks and Laboratory
Reports. Proceedings: 1990 American
Society for Engineering Educators Annual
Conference, June 1990, Toronto, Canada,
1990.

5. Kobryn, Chris. ``UML 2001,''

Communications of the ACM, October
1999, Volume 42, Number 10, pages 29-37

6. Fowler, Martin and Kendall Scott. UML

Distilled - A Brief Guide to the Standard
Object Modeling Language. Boston: 2nd ed.
Addison-Wesley, 2000.

7. Bruce Powel Douglass. Real-Time UML -

Developing Efficient Objects for Embedded
Systems. Boston: 2nd ed. Addison-Wesley,
2000.

Biographical Information

Steven F. Barrett received the BS Electronic
Engineering Technology from the University of
Nebraska at Omaha in 1979, the M.E.E.E. from the
University of Idaho at Moscow in 1986, and the
Ph.D. from The University of Texas at Austin in
1993. He was formally an active duty faculty
member with the United States Air Force Academy,
Colorado and is now an Associate Professor of
Electrical and Computer Engineering, University of
Wyoming. He is a member of IEEE (senior) and
Tau Beta Pi (chief faculty advisor). His research
interests include digital and analog image
processing, computer-assisted laser surgery, and
embedded controller systems. He is a registered
Professional Engineer in Wyoming and Colorado.
He co-wrote with Dr. Daniel Pack “68HC12
Microprocessor: Theory and Application,” Prentice-
Hall, 2002; “Embedded Systems Design and
Applications with the 68HC12 and HS12,” Prentice-
Hall, 2005; and “Microcontroller Fundamentals for
Engineers and Scientists,” Morgan-Claypool
Publishers, 2006. In 2004, Barrett was named
“Wyoming Professor of the Year” by the Carnegie
Foundation for the Advancement of Teaching.
Email: steveb@uwyo.edu

Daniel J. Pack is a Professor in the Department of

Electrical Engineering at the United States Air Force
Academy, CO. He received the Bachelor of Science
degree in Electrical Engineering in 1988, the Master
of Science degree in Engineering Sciences in 1990,
and the Ph.D. degree in Electrical Engineering in
1995 from Arizona State University, Harvard
University, and Purdue University, respectively. He
was a visiting scholar at Massachusetts Institute of
Technology-Lincoln Laboratory. He co-authored
two textbooks on microcontrollers and embedded
systems and authored over 70 journal and
conference papers. He is a member of Eta Kappa
Nu, Tau Beta Pi (faculty advisor), IEEE (senior),
and ASEE. He is a registered Professional Engineer
in Colorado. In 2005, Pack was named “Colorado
Professor of the Year” by the Carnegie Foundation
for the Advancement of Teaching. His research
interests include cooperative UAVs, intelligent
control, automatic target recognition, and robotics.
Email: daniel.pack@usafa.edu

Computers in Education Journal 103

http://www.abet.org/

	Abstract

