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Abstract 
 

   Computer modeling is an important skill for 
engineering and science students to acquire. 
Monte Carlo simulations of three dimensional 
solids provide an opportunity for students to 
develop their computer skills while deepening 
their knowledge of the behavior of materials.   

 
Introduction 

 
In a previous publication in this journal, 

Balady and Bishop [1] used Monte Carlo, MC, 
methods to simulate homogeneous three 
dimensional hard sphere fluids. Balady and 
Bishop [1] computed the equation of state from 
the pair correlation function [2].  In this work 
their simulations are extended to investigate 
hard sphere solids. The results are compared to 
other simulations and theory. 
 

A hard particle system is characterized by a 
few key parameters: the number of particles, N, 
the diameter of the particles, σ, and the system 
number density, ρ. The number density is given 
by 
 
                        ρ = N / (Lx Ly Lz)                   (1) 
 
Here, Lx, Ly, and Lz are the lengths of the sides 
of the simulation box. In all the current 
simulations, Lx = Ly = Lz = a. The systems are 
started in a face-centered cubic lattice [3], fcc, 
which has 4 particles per unit cell so N = 4n3.  
Here n is an integer. All of the current 
simulations employ 108 particles.  
    In three dimensions the packing fraction, η, is 
related to the number density, ρ, by  

 
                           η = ρ(π/6)σ3                          (2) 
 
   The equation of state [4] is given by the 
compressibility factor, Z = P/ρkBT, where P is 

the pressure, kB is Boltzmann's constant and T is 
the absolute temperature.  In an ideal gas the 
particles do not interact and then Z = 1. In the 
case of hard particles, Z is related [4] to the 
pair correlation function at contact by  

 
                    Z = 1 + ρ(2π /3)σ3G(σ)               (3) 
 
Here, σ is the contact diameter or the separation 
between the centers of particle i and particle j 
when touching. The pair correlation function at 
contact is G(σ).  A pair correlation function [2], 
G(R), measures the relative distribution of 
particles at a distance |R| from the center of a 
reference particle.  
 

Method 
 

     The details of our MC computer simulation 
are contained in the papers of Lasky and Bishop 
[5] and Merriman and Bishop [6]. The particles 
are started at positions in an fcc lattice and then 
moved by the standard Metropolis Monte Carlo 
method [7-11] until a random, equilibrated state 
is achieved. A move is rejected whenever a 
particle overlaps another particle; e.g. the 
separation between their centers becomes less 
than σ. If the new position is not accepted, the 
test particle remains at its current location and 
the next particle is selected for a test move. 
Once all N particles have been tested for 
movement, a single pass (or MC step) is 
complete. 
 

Results 
 

   The simulation has been developed by using 
the gnu C compiler on a PC with the Linux 
operating system. Production runs were 
generated for a total of 12,000,000 MC steps 
and the first 2,000,000 steps were discarded. 
The sampling interval was set at 2,000 steps so 
that there were 5,000 equilibrated samples for 
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averaging. The pair correlation function was 
computed by averaging over both the number of 
particles and the number of equilibrated 
samples. The details of the pair correlation 
function calculations are contained in the earlier 
paper by Lasky and Bishop [5]. 

 
  Figure 1 presents the pair correlation function 

at a solid, 1.15, and a fluid, 0.80, density.  These 
functions are very different; the higher density 
state displays distinct peaks which are 
characteristic of a solid whereas the lower 
density system has only a small second peak. 
 
     The integral of the pair correlation function, 
from R = 0 to Rcut, gives [4] the occupation 
number, ON, or the number of particles 
surrounding the reference one between R = 0 
and Rcut. 

                                 Rcut 
                ON = 4πρ ∫  G(R) R2 dR                 (4)   
                                0 
 
It is known [12] that an fcc crystal has 12 
particles in its first shell, 6 in its second shell, 
and 24 in its third shell.  Figure 2 presents the 
ON values obtained from the pair correlation 
functions shown in Figure 1. Numerical 
Simpson integration has been applied to perform 
the integral in Eq. 4. It is clear that the data at ρ 
= 1.15 have the distinct layers characteristic of a 
crystal.  Moreover, the ON values correspond to 
those expected in an fcc crystal: 12, 18 and 42. 
In contrast, the data at ρ = 0.80 have no 
indication of any distinct packing layers. 

 

 
 

 
 
 

Figure 1: The pair correlation function for ρ = 1.15 (solid line) and ρ = 0.80 (dotted line). 
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Figure 2: The occupancy number, ON, vs. the distance R from the center of the reference particle.  
The solid line is for ρ = 1.15 and the dotted line is for ρ = 0.80. The horizontal lines give the total 

numbers of particles in the fcc crystal structure layers: 12, 18 and 42. 
 

  The equation of state has been obtained by 
finding the value of the pair correlation 
functions at contact. This is determined by 
fitting a line to the first peak of the pair 
correlation function and then extrapolating to 
the appropriate contact value, as illustrated in 
Havlicek and Bishop [13]. Once the contact 
values have been determined, the equation of 
state is found from Eq. 3. The Z values for all 
the systems studied are contained in the Table. 
Zs are the theoretical values predicted by the 
Speedy equation of state [14] for hard spheres in 
the solid regime: 

 
Zs = 3 / (1 – ρ/ρ0) – 0.5921(ρ/ρ0 – 0.7072)   
                                         / (ρ/ρ0 – 0.601)        (5)                                                                        
                                        
Here, ρ0, is the maximum density at the closest 
packed crystalline state.   
 
                         ρ0  = 21/2 / σ3                          (6) 

    

 
Zcs are the predictions of the Carnahan and 
Starling equation of state [15] for hard sphere 
fluids; 
 

          Zcs = (1 + η + η2 – η3) / (1 – η)3          (7) 
 
Also listed in the Table are Zblw and Zahy 

which are the computer simulation values found 
via the Molecular Dynamics, MD, method 
employed by Bannerman, Lue and Woodcock 
[16] and Alder, Hoover and Young [17].  
Zmc108 are the new MC results for N = 108 
starting from an fcc lattice. In nearly all cases 
the simulation data are consistent with each 
other within 2%.  However, it is clear that there 
are large differences from Zcs and better 
agreement with Zs as the density gets larger. 

 
These facts are explained by Figure 3 which 

presents the equation of state, Z, as a function of 
the density. The vertical lines mark [16] the 
freezing density, ρ = 0.943, and the melting 
density, ρ = 1.041, respectively.   The first few
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Table: Equation of State. 
 

ρ Zs Zcs Zblw Zahy Zmc108 
0.800  7.750   7.738 
0.850  9.099 9.119  9.042 
0.900  10.746 10.763  10.598 
0.925  11.707 11.722   
0.950 9.436 12.775 12.791  10.641 
0.980 9.863 14.222 14.248   
0.995 10.141 15.021 15.063   
0.996 10.161 15.076  10.170  
1.000 10.243 15.299 10.249  10.233 
1.050 11.501 18.473   11.552 
1.052 11.561 18.617  11.542  
1.100 13.266 22.514 13.267  13.420 
1.131 14.705   14.720  
1.150 15.762    16.121 
1.179 17.716   17.680  
1.200 19.468  19.468   

 

 
Figure 3:  The equation of state, Z, as a function of the density. The solid line is the Speedy equation 
(Eq. 5) and the dotted line is the Carnahan and Starling equation (Eq. 7).  The two vertical lines mark the 
freezing 0.943, and melting densities, 1.041. The up triangles are the MD data of Bannerman, Lue and 
Woodcock [16] and the diamonds are the MD data of Alder, Hoover and Young [17]. The circles are the 
current MC data for N = 108 systems. 
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data points at densities below the freezing 
density    lie   on   the   Carnahan   and   Starling  
equation of state [15] but the computer data 
points between the freezing and melting 
densities which also follow the Carnahan and 
Starling equation of state are in the metastable 
condition. The computer results at somewhat 
higher density values agree very well with the 
Speedy equation of state [14] for hard sphere 
solids. 
 
    Another characteristic for monitoring phase 
transitions is the order parameter [18]. It is 
defined as 
 
                                        N 
                 ρ(k) =  (1/N)  ∑ exp(-ik · rj)         (8) 
                                       j=1 
 
Here, k is a reciprocal lattice vector, i is (-1)1/2 
and rj is the coordinate vector of the j-th 
particle. The quantity, |ρ(k)|, measures the 

presence of long ranged order.  In the case of an 
fcc lattice, k = (2π /a) (1, -1, 1), where a is the 
unit cell edge. If the system is fully ordered, 
|ρ(k)|  = 1.0 but in the fluid state, 
|ρ(k)|  ≈ O(N-1/2).     
   
     Figures 4A and 4B present |ρ(k)| at the 
densities of 0.80 and 1.15, respectively.  In both 
cases each MC step represents 108 attempted 
MC moves.  The horizontal line is drawn at the 
constant value of (108) - 1/2. 
 

In the ρ = 0.8 case the order parameter first 
decays very quickly and then fluctuates 
randomly around (108)- 1/2, as expected for hard 
spheres in the fluid phase. However, when ρ = 
1.15, the order parameter stabilizes at a much 
higher value which is the expected behavior in 
the solid regime. 

 
 

 

 
 

Figure 4A: The Order Parameter for ρ = 0.8.                       Figure 4B: The Order Parameter for ρ = 1.15. 
 
      

 
 

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

O
rd

e
r 

P
ar

am
et

er

Step

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000

O
rd

er
 P

ar
am

et
er

Step



 

COMPUTERS IN EDUCATION JOURNAL  81 

Conclusion 
 

Monte Carlo methods have been employed to 
investigate three dimensional hard sphere 
systems at higher densities. The equation of 
state has been computed from the pair 
correlation functions at contact.  At lower 
densities the hard spheres are in the fluid phase 
but a transition to the solid state takes place as 
the density is increased. This transition is also 
revealed by the behavior of the occupancy 
number. Distinct layers, with the characteristic 
fcc particle values are found. In addition, the 
order parameter further indicates the transition 
from the fluid to the solid phase as the density is 
increased. Modeling projects such as the one 
described here provide a clear demonstration of 
some aspects of the behavior of materials and 
thus strongly enhance student understanding and 
intuition. 

 
Appendix:  The  Manhattan  College 
Undergraduate  Research  Program 

 
Manhattan College has a long tradition of 

involving undergraduates in research and was 
one of the original members of the Oberlin 50. 
This is a group of undergraduate institutions 
whose students have produced many PhDs in 
engineering and science.  At Manhattan College, 
students can elect to take an independent study 
course for three credits during the academic 
year.  In addition, the College provides grant 
support to the students for ten weeks of work 
during the summer.  I have personally recruited 
the students from my junior level course in 
Systems Programming.  Previously published 
articles in this journal by Manhattan College 
student co-authors are a very effective 
recruitment tool.  The students have also 
presented their results at a variety of 
undergraduate research conferences including 
the Hudson River Undergraduate Mathematics 
Conference and the Spuyten Duyvil 
Undergraduate Mathematics Conference. 
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