

SYNERGIES OF TEACHING ASSEMBLY AND C
IN A JUNIOR MICROPROCESSORS COURSE

Arlen Planting and Sin Ming Loo

Electrical & Computer Engineering Department
Boise State University

Abstract

As part of an effort to update its core computer

engineering courses, Boise State University has
developed course material to effectively
transition students in a Microprocessors course
through both the assembly and C languages. It
was found that teaching both languages in the
same course provides benefits not found in
teaching them separately. The material has been
developed to promote both a thorough
understanding of microprocessors, and greater
productivity that allows students to do more
intriguing and relevant projects. The course
presents just enough C, at a very low level and
in a specific topic order, to enable the students
to better comprehend microprocessors and how
they can control a broad range of devices. The
updated Microprocessors course is currently in
its fourth iteration.

Introduction

The C programming language is increasingly

being utilized in development of embedded
systems and ultra-small microcontrollers that
were previously the domain of assembly
language-only programming. Teaching
assembly only in a Microprocessors course does
not provide students the skills they are likely to
need in the workplace [1], and the time required
to produce code for each new device in
assembly results in the course becoming more
software-oriented rather than focusing on the
hardware and devices. However, using the C
language only is not considered practical for
teaching microprocessors since assembly is the
language of the processor and thus is necessary
for understanding how the microprocessor
works. Simply rewriting device code in C
without applying software engineering
principles [2] yields poor quality code that is

difficult to maintain and cannot be readily
targeted to other platforms. However, by
selectively applying some of the object oriented
principles [3] that can be found in the Linux
kernel and device drivers, the C programming
language can provide an effective solution for
programming many of these small devices.
Principles of layering, data encapsulation and
abstraction can help make the code more
readable, maintainable and portable.

It should be noted that the intent is not to write

C code as translated assembly, which is hard to
read, hard to maintain and offers little benefit
over assembly code. By effectively utilizing the
facilities of the C language, many assembly
language routines can be reduced to very small
and elegant solutions. For students who lack the
insight into how to write assembly programs but
are proficient at C or Java, compiling a program
in C is a method of seeing how a program can
be written in C. Writing code at the lowest level
to access devices is generally very tedious in
either language, but by providing appropriate
abstractions this code can be isolated in layers to
allow the higher level more freedom to solve
problems with less consideration for hardware
details. This also provides for easier retargeting
to other platforms.

Consequently, Boise State University (BSU)

decided to update its junior level
Microprocessors course by incorporating the C
programming language in addition to assembly.
It was not practical - or necessary - to teach the
entire C programming language in order to
significantly enhance software skills beyond
what is achieved with the assembly language
alone. Following a heuristic approach, BSU
developed course material to transition students
in a Microprocessors course through both
assembly and C, and found that overlapping the

COMPUTERS IN EDUCATION JOURNAL 71

teaching of both languages in the same course is
more beneficial teaching them separately. The
course presents the C language at a very low
level, with selected topics presented in a specific
order to enhance understanding of
microprocessors and their ability to control a
wide range of devices.

Boise State University has an ABET-

accredited electrical engineering program with
computer engineering as an option. Both
electrical engineering and computer science
students take the Microprocessors course after
they have taken Introduction to Computer
Science (basic software skills and object
oriented programming with Java) and Digital
Systems (digital logic). The ECE 332/332L
Microprocessors course at BSU covers
microprocessor architecture, software
development tools, and hardware interfacing
with emphasis on 16- and 32-bit microprocessor
systems. Machine and assembly language
programming, instruction set, addressing modes,
programming techniques, memory systems, I/O
interfacing, and interrupt handling are among
the topics studied with practical applications in
data acquisition, control, and interfacing.

An experimental course addressing the usage

of the C programming language for embedded
applications was undertaken in Spring 2007 to
investigate methods of incorporating the C
language in the electrical engineering
curriculum. The experimental course approach
included an accelerated presentation of the C
language directed to specific course objectives,
and the use of object oriented principles with
low level languages. The teaching philosophy
demonstrated by this model was subsequently
used to update the Microprocessors course in
Fall 2007. Further refinements have been made
in two subsequent offerings of the course in
2008, and in the current semester.

Microprocessors Course Approach

In the ECE 332/332L Microprocessors course

at BSU, basic microprocessor concepts are first
explored with assembly language then revisited

and expanded upon using C. A modern
development platform consisting of an FPGA
and a soft core processor with a MIPS-like
design were selected to implement the teaching
of the C programming language in addition to
assembly in the updated Microprocessors
course. The use of FPGAs in place of
traditional instructional platforms has been an
important part of the process of updating the
computer engineering curriculum at BSU [4,5].
For the Microprocessors course, the FPGA is
used to instantiate a soft-core processor. The
reconfigurability of the FPGA with soft-core
processor allows the instructor to quickly create
different configurations for various labs and
projects.

The Altera DE2 was selected as the FPGA

development board for updating the
Microprocessors course, with the Nios II
processor used for software development on the
DE2. The Nios II microprocessor system
contains a processor (with a control unit and
general purpose registers) and attached external
memory. The Nios II processor has thirty-two
32-bit general purpose registers, twenty-two of
which are available for general use (the
remaining ten registers are reserved for a
specific purpose).

One of the desirable features of the Altera DE2

with Nios II processor is that it has a RISC
architecture closely approximating MIPS. A
RISC microprocessor provides several
educational advantages. The fixed length
instructions for RISC platforms are simpler to
learn than the variable-length instructions for
CISC platforms. Since many of the instructions
available with the CISC are not applicable to the
basic microprocessors course, the significantly
smaller set of instructions provided for a RISC
platform was considered more appropriate for
teaching basic microprocessor concepts. The
students will also use RISC in the senior level
Computer Architecture course.

The instruction set for the Nios II platform

used for the Microprocessors course is
comprised of just 84 instructions. To further

72 COMPUTERS IN EDUCATION JOURNAL

simplify the learning process these instructions
were categorized by task, which effectively
reduces the number of core instructions that the
students need to learn by about 75%. The
remaining instructions represent variations on
these core instructions. The instructions were
divided into four basic groups that address the
majority of all applications: instructions that
move data from memory to registers (MR),
operate on register values and place results back
into a register (RR), move data from registers to
memory (RM), and change the flow (FC) of the
instruction sequence.

Once the students have been familiarized with

registers, cache, memory, and instructions to
move and manipulate data in assembly
language, the course is transitioned to the C
language. Concepts from C such as data
structures, unions and bit fields provide
capabilities beyond what is available in
assembly. The classic text for C programmers
“The C Programming Language” (K&R) [6]
was adapted for use as a reference for this
portion of the course. Supplementary material
was necessary since much of the focus of K&R
is on algorithms, and instruction on algorithms
in this course is minimal because the focus is on
devices. Thus the concepts presented in K&R
were approached in the course from a data
viewpoint, e.g. pointers were treated as another
data type. Data types in C were compared to
equivalent data types in assembly.

The synergies from teaching the C language in

conjunction with assembly proceed from the use
of C at a low level. In the continuum of
programming languages, the C language can
span the gap between a high level language such
as Java and the lowest level (assembly)
language. This versatility can confound the
students if they do not grasp that the
Microprocessors course utilizes the C language
at a low level, just a layer above assembly.
Since all students taking Microprocessors have
previously had Java, many of them initially
believe there is nothing new to be learned with
C. Those who have also learned the C language
often have difficulty learning C concepts at the

lowest level. The challenge for these students is
to realize that knowledge of the C language as a
high level language does not necessarily
translate to a working knowledge of C at a low
level.

Bit manipulation is one concept that benefits

from the introduction of the C language. The
manipulation of bits is generally the realm of
hardware devices. The process of bit twiddling
using techniques such as bit shifting and
masking has traditionally been done in assembly
language, and moving that code to C does not
yield any benefits. However, this process is
reduced to fairly straightforward code in C with
the combined usage of bit structures and unions.
The introduction of the constructs of pointers,
structures and unions thus can reduce the tedium
of dealing with the signals of connected
hardware devices. Since bit structures can be
platform-dependent, their usage is best restricted
to lower platform-dependent layers.

Teaching C in addition to assembly provides

advantages that would not be provided by
simply replacing assembly language with C. In
either language, working at the device level
requires becoming familiar with the processor
and the address space. The concept of pointers
must also be learned in either case (though
pointers in assembly languages may not be
recognized as such in the same context as C).
Pointers are the most difficult concept to learn
in C. Teaching the concepts of pointers in
assembly first, observing the instructions
involved, and then translating that knowledge to
implementation in C simplifies understanding
the concept of pointers in C. Once pointers
have been learned in assembly, the only
differences that need to be learned in C are
syntactic. Pointers are the primary reason that C
can replace assembly language for device level
code.

Other synergies between the assembly and C

languages are observed in relation to
understanding registers, processor architecture,
and processor address space. In all processors,
data manipulation is accomplished at the

COMPUTERS IN EDUCATION JOURNAL 73

register level. That fact is completely apparent
in assembly, whereas the C language abstracts
away the concept of registers and makes it
appear that everything is done in memory.
Therefore, the introduction of the register
keyword in C is difficult to understand until one
becomes familiar with the concept of registers
in assembly. Doing low (device) level
microprocessor development in C is difficult to
do without a good understanding of the
processor architecture and the processor address
space (including the program, data, stack and
devices). It can be argued that understanding
the assembler for a processor before trying to do
work with C is a definite advantage, which is
why overlapping the instruction of both
assembly and C languages provides synergism.

Integration of Assembly and C

Teaching both assembly and C in the same

course can be effectively accomplished only by
integrating selected topics into a unified whole
directed toward achieving the course goals.
Choices must be made as to which topics to
present and in what context and order, and the
presentation needs to be coordinated to provide
a seamless transition between the two
languages. In order to accomplish this,
assembly is presented from a different
perspective than is traditionally used, with
emphasis on how to interface assembly and C.
Assembly is taught using an object oriented
approach focused more on utilizing the
instructions than on the details of the
instructions. The concept of abstraction is
introduced in assembly, and the C language is
subsequently presented as a means to further
abstract assembly. The subset of the C language
used in the course was selected for manipulating
bits in order to control devices found in small
microprocessor systems.

In addition to basic microprocessor concepts

typically covered in assembly (e.g. memory
usage, addressing, strings, etc.), several topics
more traditionally addressed in C are included
in the assembly portion of the course.
Modularization, usage of functions, and the

abstraction process are foundational concepts
that are introduced early in the course. Though
one may question the need for these advanced
concepts in assembly, learning them at an early
stage provides the framework for development
of well-designed code that is appropriately
layered with meaningful abstractions and
appropriate usage of data encapsulation.

When the Microprocessors course was first

updated, pointers were introduced after basics of
the C programming language had been
presented. As the course has evolved, teaching
of the concept of pointers has been moved
progressively earlier in the course until now it is
introduced early in the assembly portion. The
word ‘pointers’ is purposely used when
discussing addresses to familiarize the students
with the underlying mechanism for how a
pointer is utilized by addressing. Early and
repeated exposure to pointers reinforces
understanding of the concept so the students are
more comfortable with pointers when they
appear in the C language portion of the course.

On the other hand, introduction of several

topics was considered more suitable for the C
language. Though structures can be taught
using assembly, they are much easier to
understand and utilize in C. For that reason,
structures, unions and bit fields are not
introduced until the C portion of the course.
The C compiler can be considered as the
ultimate macro processor, providing
abstractions beyond what can be easily done by
macros and functions in assembly. The
compiler will generate the code for bit fields in
assembly, eliminating the need for the students
to hand write the code. The culmination of
these topics involves combining bit fields and
unions to easily manipulate the signals of
externally attached devices.

Supplementary Examples

Some of the primary course materials

developed for the Microprocessors course
involve examples to help students understand
the workings of the processor in the transition

74 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 75

from assembly to C. The Nios II incorporates a
compiler that internally translates C code to
assembly, in either an un-optimized or
optimized format. The un-optimized assembler
code generated is most useful for debugging
purposes, while the optimized code provides an
example of efficient coding. During the
learning process, the optimization feature should
be turned off since the effects on the code when
working with optimizing compilers can easily
confuse novices. If a programmer needs to
produce highly optimized code, starting from
scratch in assembly can be daunting; it is better
to start with C, look at the optimized assembly,
and proceed from there.

Several examples of classic cases provided to

the students are included in this section,
including 1) sum of integer array, 2) call by
value methodology, 3) bit manipulation, and 4)
pointers. The examples illustrate that compiled
C, if optimized, can be virtually the same as
efficient code written in assembly.
Understanding assembly and seeing the results
of the compiler optimization of C code can
ultimately help the students develop better
solutions that result in a significant reduction in
code.

Sum of Integer Array

To facilitate the comparison between C and

assembly, we start with a relatively simple
algorithm that can be easily coded in both
languages. The problem chosen is to write a
function that is passed an array of integers and a
count of numbers passed, and returns the sum of
those integers. Figure 1 shows a high-level
routine written in C that will call the sum
function. We then write the code to solve this
problem separately in C and assembly, and
compare the code produced by the C compiler to
the code written in assembly. The results
illustrate how the C compiler deals with
registers and memory. To get a better feel for
how the C compiler abstracts the concept of
registers, the generated machine code is first
done without optimization followed by

observing the code generated when
optimizations are enabled.

#include <stdio.h>
#include "sum.h"

int main()
{
 int Values[] = {3,2,7,9,4};
 int nbr;

 nbr = sum(sizeof(Values)/sizeof
 (Values[0]), Values);

 printf("Sum: %d\n", nbr);

 return 0;
}

Figure 1. Calling sum routine in C.

Figure 2 shows efficient assembly language

code to solve the problem. Note that this
solution allocates no memory; the only memory
it accesses is the array of integers passed. Since
the memory access is minimal, the assembly
code is highly efficient. Figure 3 displays the
resulting code from the view of the debugger
that is disassembling the machine code.

Code is then written in C (Figure 4) to solve
the same problem. (Note the usage of register
hints to the compiler.) Figure 5 displays the
resulting un-optimized assembly code produced
by the debugger’s disassembler. Because the
un-optimized compilation is an abstraction of
variables, the variable values are associated with
memory rather than registers. This results in a
large number of data movements between
memory and registers. When optimization is
enabled (Figure 6), virtually all extraneous
movement of data between registers and
memory is eliminated. Optimization reduces
the code by approximately 65% in this case.

Register hints and optimizations provide
students first-hand experience in how coding
techniques in C affect the underlying generation
of assembly/machine code. By comparing
optimized and un-optimized code, the various
abstractions of variables become apparent. In
the un-optimized case, variables are always

sum.s

.text

Register usage:

r2: sum (return value)
r3: temp value
r4: passed count
r5: passed pointer to values

.global sum
sum:

 mov r2,r0 # initialize sum

 for:

 beq r4,r0,for_end
 ldw r3,0(r5) # get next value
 add r2,r2,r3 # add to sum
 addi r5,r5,4 # position to next value
 subi r4,r4,1 # decrement count
 br for

 for_end:

 ret # return with sum in r2

.data

.end

Figure 2. Implementation of sum routine in assembly.

0x00020270 <sum>: mov r2,zero

0x00020274 <for>: beq r4,zero,0x2028c <for_end>
0x00020278 <for+4>: ldw r3,0(r5)
0x0002027c <for+8>: add r2,r2,r3
0x00020280 <for+12>: addi r5,r5,4
0x00020284 <for+16>: addi r4,r4,-1
0x00020288 <for+20>: br 0x20274 <for>

0x0002028c <for_end>: ret

Figure 3. Disassembled memory snapshot for sum.s.

#include "sum.h"

int sum(int count, int *values)
{
 register int i;
 register int sum = 0;

 for (i=0; i<count; i++)
 sum+=values[i];

 return sum;
}

Figure 4. Implementation of sum routine in C.

76 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 77

{
0x00020270 <sum>: addi sp,sp,-20
0x00020274 <sum+4>: stw fp,16(sp)
0x00020278 <sum+8>: mov fp,sp
0x0002027c <sum+12>: stw r4,0(fp)
0x00020280 <sum+16>: stw r5,4(fp)
 register int i;
 register int sum = 0;
0x00020284 <sum+20>: stw zero,12(fp)

 for (i=0; i<count; i++)
0x00020288 <sum+24>: stw zero,8(fp)
0x0002028c <sum+28>: ldw r2,0(fp)
0x00020290 <sum+32>: ldw r3,8(fp)
0x00020294 <sum+36>: bge r3,r2,0x202c8 <sum+88>
0x00020298 <sum+40>: ldw r2,8(fp)

0x0002029c <sum+44>: muli r3,r2,4
0x000202a0 <sum+48>: ldw r2,4(fp)
0x000202a4 <sum+52>: add r2,r3,r2
0x000202a8 <sum+56>: ldw r2,0(r2)
0x000202ac <sum+60>: ldw r3,12(fp)
0x000202b0 <sum+64>: add r3,r3,r2
0x000202b4 <sum+68>: stw r3,12(fp)

0x000202b8 <sum+72>: ldw r2,8(fp)
0x000202bc <sum+76>: addi r2,r2,1
0x000202c0 <sum+80>: stw r2,8(fp)
0x000202c4 <sum+84>: br 0x2028c <sum+28>
 sum+=values[i];

 return sum;
0x000202c8 <sum+88>: ldw r2,12(fp)
}
0x000202cc <sum+92>: ldw fp,16(sp)
0x000202d0 <sum+96>: addi sp,sp,20
0x000202d4 <sum+100>: ret

Figure 5. Compiled sum.c (un-optimized).

{
 register int i;
 register int sum = 0;
0x00020278 <sum>: mov r3,zero

 for (i=0; i<count; i++)

0x0002027c <sum+4>: bge zero,r4,0x20294 <sum+28>
0x00020280 <sum+8>: ldw r2,0(r5)
0x00020284 <sum+12>: addi r4,r4,-1
0x00020288 <sum+16>: addi r5,r5,4

 sum+=values[i];

0x0002028c <sum+20>: add r3,r3,r2
0x00020290 <sum+24>: bne r4,zero,0x20280 <sum+8>

 return sum;
}

0x00020294 <sum+28>: mov r2,r3
0x00020298 <sum+32>: ret

Figure 6. Compiled sum.c (optimized).

backed by memory whereas optimization
typically removes the backing of memory and
leaves much of the solution to be accomplished
in registers. For students accustomed to a high
level language such as Java, observing the
assembly code generated by an efficient
compiler can be an effective method of
transitioning from a highly abstracted
environment and refocusing on handling details

at a low level where few abstractions are
provided.

Call By Value Methodology

Another issue that is difficult for students to

understand is how parameters are passed to
functions. Seeing and understanding the
resulting assembly code underlying C can shed

some light on how C sets up parameters to be
sent to a function. Since C is a call by value
language, the question might arise as to how to
pass literal values vs. variables to the same
function. In the case where literals are passed,
the literal value is moved directly into the
calling register. In the case of a call that
references a variable, the content of the variable
is copied into the calling register. The called
routine (Figure 7) does not see the two calls
differently. All of the work to accommodate the
different call types is done by the compiler at
compile time.

Figure 7. C language add_c.c routine.

Figure 8 shows code produced for the add_c

function (un-optimized). Note the different
handling of the variables x (type int) and y (type
char) when processed by machine instructions
(<add_c+24> and <add_c+20>, respectively).
The optimized code is shown in Figure 9.

{
0x00020214 <add_c>: addi sp,sp,-12
0x00020218 <add_c+4>: stw fp,8(sp)
0x0002021c <add_c+8>: mov fp,sp
0x00020220 <add_c+12>: stw r4,0(fp)
0x00020224 <add_c+16>: stb r5,4(fp)
 return x + y;
0x00020228 <add_c+20>: ldbu r2,4(fp)
0x0002022c <add_c+24>: ldw r3,0(fp)
0x00020230 <add_c+28>: add r2,r2,r3
}
0x00020234 <add_c+32>: ldw fp,8(sp)
0x00020238 <add_c+36>: addi sp,sp,12
0x0002023c <add_c+40>: ret

Figure 8. add_c function (un-optimized).

Comparing the two different methods of

calling this function (Figures 10 and 11) clearly
illustrates the call by value feature of the C
programming language. When the called
function is called, it expects that the passed
values are contained in the calling registers.

{
 return x + y;
0x00020214 <add_c>: andi r2,r5,255
}
0x00020218 <add_c+4>: add r2,r2,r4
0x0002021c <add_c+8>: ret

Figure 9. add_c function (optimized).

Figure 10. Calling add_c function

with literal values.

Figure 11. Calling add_c function

with variable arguments.

Bit Manipulation

The ability to manipulate data at the bit level

(for controlling and pulling data off devices) for
low level coding is very important when dealing
with hardware devices. Setting a bit can turn an
LED (or any other electronic device) on or off;
getting a bit can determine whether a switch is
on or off. Being able to manipulate individual
bits within a hardware register (bit fields) is a
useful concept. Assembly is used to understand
the low level process of manipulating bits
within a word.

To illustrate working with assembly and C for

bit manipulations, we create functions that are
passed a 32-bit word and a bit value that is to be
set in bit 5 of the 32 bits. (Note that this code
has been simplified by eliminating all
movement of data to/from hardware devices; its
only purpose is to illustrate bit manipulation
techniques.) Figure 12 represents a C function
that accomplishes this task utilizing traditional
C function bit manipulation techniques; the

int add_c(int x, char y)
{
 return x + y;
}

 c = add_c(12, 34);
0x0002025c <main+28>: movi r4,12
0x00020260 <main+32>: movi r5,34
0x00020264 <main+36>: call 0x20214 <add_c>
0x00020268 <main+40>: stw r2,0(fp)

c = add_c(a, b);
0x00020298 <test+24>: ldbu r5,4(fp)
0x0002029c <test+28>: ldw r4,0(fp)
0x000202a0 <test+32>: call 0x20214 <add_c>
0x000202a4 <test+36>: stw r2,8(fp)

78 COMPUTERS IN EDUCATION JOURNAL

COMPUTERS IN EDUCATION JOURNAL 79

resulting generated assembly code is shown in
Figure 13. Though the traditional C function bit
manipulation takes just one line of code in C,
learning how to develop this single line is not a
straightforward process; it is more of an art that
is acquired over time.

For this type of function, the students often

find it easier to develop assembly code. Figures
14 and 15 represent the same solution written in
assembly language.

Yet another approach is to use the facility in

the C programming language known as bit
fields. This technique is demonstrated in Figures
16 and 17. On the surface this solution appears
to be more complex than traditional C bit
manipulation techniques, but it is more easily
reproducible and thus more usable. (It is

interesting to note that all three solutions
generate the same machine code.)

typedef unsigned int uint

uint set_bit5(uint word, uint bit)
{
 return (word & ~(1<<5)) | ((bit&0x1)<<5);
}

Figure 12. set_bit5.c (C language) source code.

{
 return (word & ~(1<<5)) | ((bit&0x1)<< 5);
0x00020288 <set_bit5>: andi r6,r5,1
0x0002028c <set_bit5+4>: slli r2,r6,5
0x00020290 <set_bit5+8>: movi r3,-33
0x00020294 <set_bit5+12>: and r4,r4,r3
}
0x00020298 <set_bit5+16>: or r2,r4,r2
0x0002029c <set_bit5+20>: ret

Figure 13. set_bit5.c memory image.

.text

.global et_bit5 s
set_bit5:
 andi r6,r5,1 # isolate passed bit
 slli r2,r6,5 # move to ACTIVE position
 movi r3,~(1<<5) # movi r5,~(0x20) ==> -33
 and r4,r4,r3 # zero ACTIVE position
 or r2,r4,r2 # merge new bit value

ret

.end

Figure 14. set_bit5.s (Assembly language) source code.

0x00020214 <set_bit5>: andi r6,r5,1
0x00020218 <set_bit5+4>: slli r2,r6,5
0x0002021c <set_bit5+8>: movi r3,-33
0x00020220 <set_bit5+12>: and r4,r4,r3
0x00020224 <set_bit5+16>: or r2,r4,r2
0x00020228 <set_bit5+20>: ret

Figure 15. set_bit5.s memory image.

unsigned int set_bit5(unsigned int word, unsigned int bit)
{
 union {
 unsigned int word;
 struct {
 unsigned int fill_1 : 5;
 unsigned int bit5 : 1;
 unsigned int fill_2 : 26;
 } bits;
 } data;

 data.word = word;

 data.bits.bit5 = bit;

 return data.word;
}

Figure 16. set_bit5_fields.c (C language) source code.

{
 union {
 unsigned int word;
 struct {
 unsigned int fill_1 : 5;
 unsigned int bit5 : 1;
 unsigned int fill_2 : 26;
 } bits;
 } data;

 data.word = word;

 data.bits.bit5 = bit;
0x00020288 <set_bit5>: andi r6,r5,1
0x0002028c <set_bit5+4>: slli r2,r6,5
0x00020290 <set_bit5+8>: movi r3,-33
0x00020294 <set_bit5+12>: and r4,r4,r3

 return data.word;
}
0x00020298 <set_bit5+16>: or r2,r4,r2
0x0002029c <set_bit5+20>: ret

Figure 17. set_bit5_fields.c memory image.

Pointers

Because pointers are difficult to learn in C, we

start out by teaching the concept of pointers in
assembly (register containing address of item to
be accessed). By the time the students get to C,
the only difference is syntax.

The classic strcpy routine presented in K&R

(pg 105) to copy a string from one location to
another is shown in Figure 18. By observing the
optimized assembly code (Figure 19), it is clear

what the function is doing at the machine level
to accomplish the task. This clearly shows that
registers r5 and r4 are pointers to the string
source and target in their usage of the ldbu and
stb assembly language instructions. Also the
increment operations on both are performed
after first accessing the data pointed to by those
pointer variables. Sometimes students are
mystified by precedence of the operators in this
example. Does the increment operator
increment the value pointed at or the pointer

80 COMPUTERS IN EDUCATION JOURNAL

itself? The resulting assembly code makes it
perfectly clear what is happening.

/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)
{
 while ((*s++ = *t++) != '\0')
 ;
}

Figure 18. strcpy routine introduced in k&r.

{
 while ((*s++ = *t++) != '\0')
0x0002027c <strcpy>: ldbu r2,0(r5)
0x00020280 <strcpy+4>: addi r5,r5,1
0x00020284 <strcpy+8>: stb r2,0(r4)
0x00020288 <strcpy+12>: addi r4,r4,1
0x0002028c <strcpy+16>: bne r2,zero,0x2027c
 <strcpy>
0x00020290 <strcpy+20>: ret

Figure 19. Resulting assembly language

results of strcpy.

Summary

The updated core Microprocessors course at

BSU is in the process of being taught for the
fourth time, and continues to evolve. For
example, the coverage of C programming
language concepts has been abridged to target
the most central microprocessor concepts. The
order of presentation of topics has been revised
to facilitate the transition from assembly
language to C, by presenting pointers,
structures, unions and bit structures at the
beginning of the C language portion of the
course rather than toward the end. The concept
of addresses in assembly is tied to the concept
of pointers in C. Supplementary examples have
been prepared for both the assembly and C
portions of the course to narrow the scope of
and further clarify the concepts the students are
expected to assimilate.

The assembly language is taught first in the
course to provide a foundational understanding
of processors and platforms that will accelerate
the process of teaching C. Assembly language
is the best way to understand and learn the
foundations of microprocessors, since it is the
language of the processor. The C language is
added to provide a higher level view of the same
processor concepts, further reinforcing the
knowledge provided by learning assembly.
Assembly helps to interpret what is going on at
the processor level when the students are
working with C, and C increases productivity
for solutions to more complex problems. Rather
than the students concentrating on learning the
idiosyncrasies of the language specific to a
particular platform, the focus of the course is on
problem-solving.

The success of the course approach is gauged

by student feedback, evaluation of student
comprehension of concepts, and observations of
student capabilities in ensuing courses.
Apparent weaknesses are addressed by
adjustments as the semester is progressing, and
by further improvements in the next semester.
Student feedback was especially helpful for
refining the scope and methodology when the
updated course was initially taught. During the
course, the level of student comprehension of
various microprocessor concepts is continually
evaluated by means of homework, quizzes and
exams.

The final exam is considered one measure of

overall student understanding. Most of the
students in Fall 2008 appeared to understand
basic assembly, with 94% of the students
scoring 70% or more on a final exam question
requiring assembly language encoding. The
questions on the final exam addressing students’
comprehension of assembly/C relationships
(half of the problems) had mixed results. The
percentage of students scoring 70% or more on
each of those questions was as follows:

COMPUTERS IN EDUCATION JOURNAL 81

82 COMPUTERS IN EDUCATION JOURNAL

Question Concept(s) % Scoring ≥ 70%
Write ASM function to be called by C
(provided)

Passing parameters between languages
How C and assembly utilize memory

62.5%

Write C code to call ASM function
(provided)

Passing parameters between languages
How C and assembly utilize memory

75%

Correlate assembly instructions with
resulting memory image of machine
instructions

Address relocation 75%

Utilize assembly instructions and
memory/register information to trace
execution path of code

Interaction of code and data, where data resides
in registers and memory

94%

Determine memory image after executing
sequence of C instructions

How C utilizes memory with relation to basic
data types and structures

50%

Based on these results, adjustments have been

made to the current course offering. Additional
homework and examples have been developed
to facilitate student learning of the key concepts,
and improvements have been noted in the
current semester.

Observation of student capabilities in ensuing

courses has provided the most encouraging
measure of success. Several students who had
previously learned the C language indicated that
they finally understood pointers for the first
time after taking this course. With each
refinement of the course, students have been
able to master the concepts with fewer
reiterations. We also found that students who
have been through the updated course can be
productive more quickly than those who haven’t
taken the course or who have just recently
transferred into our program. The improved
skills of students who have taken the updated
Microprocessors course are making a difference
in subsequent courses such as Embedded
Systems. In the Embedded Systems course,
students are able to do more complex projects
earlier in the semester than was previously
possible due in part to the expanded language
skills from the updated Microprocessors course.

An ultra-light menu system for embedded

applications that was originally assigned in
Week 7 of the experimental course previously
mentioned is now a beginning project in the
Embedded Systems and Portable Computing
course. Students who have had the updated

Microprocessors course are able to develop this
small efficient menu without further instruction.
Students are utilizing techniques learned in the
updated Microprocessors course to produce
well-designed code that is easier to maintain and
is also portable to other platforms.

Conclusion

A combination of assembly and C language

was used to teach the basics of microprocessor
programming in the updated Microprocessors
course at BSU, using a modern development
environment (a soft processor instantiated on an
FPGA with classic RISC architecture).
Overlapping the teaching of both languages had
a synergistic effect on educating the students
about microprocessors. In addition to learning
how microprocessors work and control a broad
range of devices, the students learned problem-
solving skills and practiced these skills with
realistic laboratory assignments and projects.
Materials developed to teach the updated
Microprocessors course are continuing to be
expanded and refined.

References

1. B.E. Dunne, A.J. Blausch, and A. Sterian,
“The Case for Computer Programming
Instructions for ALL Engineering
Disciplines,” Proceedings of the 2005 ASEE
Annual Conference,Portland, OR June 12-
15, 2005.

2. G. Skelton, “Introducing Software
Engineering to Computer Engineering
Students,” Proceedings of the 2006
Southeast Conference, 0-4244-0169-
0/062006 IEEE.

3. M. Curreri, “Object-Oriented C: Creating

Foundation Classes Part 1,” Available:
http://www.embedded.com, Embedded
Systems Design, 9/10/03.

4. S. M. Loo, “On the Use of a Soft Processor

Core in Computer Engineering Education,”
Proceedings of 2006 ASEE Annual
Conference, Chicago, IL, June 18-21, 2006.

5. S.M. Loo and C.A. Planting, “Use of

Discrete and Soft Processors in Introductory
Microprocessors and Embedded Systems
Curriculum,” Proceedings of the 2008
Workshop on Embedded Systems Education
(WESE), Atlanta, GA, October 23-24, 2008.

6. B.W. Kernighan and D.M. Ritchie, 1988.

The C Programming Language, 2nd ed.
Upper Saddle River, NJ: Prentice Hall.

Biographical Information

 C. Arlen Planting is with the Electrical and
Computer Engineering Department, Boise State
University, Boise, ID 83725, USA. Arlen
Planting received his B.S. degree in
Mathematics and his M.S. degree in Electrical
Engineering from Boise State University.

Sin Ming Loo is with the Electrical and
Computer Engineering Department, Boise State
University, Boise, ID 83725, USA. Sin Ming
Loo received his B.S. degree in electrical
engineering and M.S. degree in computer
engineering from the University of Alabama in
Huntsville, and his Ph.D. in computer
engineering from University of Alabama at
Birmingham and the University of Alabama in
Huntsville. He joined Boise State University in
2003.

ASEE MEMBERS

How To Join Computers in
Education Division (CoED)

1) Check ASEE annual dues statement
 for CoED Membership and add $7.00
 to ASEE dues payment.

2) Complete this form and send to
 American Society for Engineering
 Education, 1818 N. Street, N.W.,
 Suite 600, Washington, DC 20036.

I wish to join CoED. Enclosed is my check for
$7.00 for annual membership (make check
payable to ASEE).

 PLEASE PRINT

NAME:

MAILING
ADDRESS:

CITY:

STATE:

ZIP CODE:

COMPUTERS IN EDUCATION JOURNAL 83

http://www.embedded.com/

