
A FAILURE-BASED SOFTWARE ENGINEERING PROJECT

Antonio M. Lopez, Jr.
Computer Sciences and Computer Engineering Department

Xavier University of Louisiana
New Orleans, LA 70125

tlopez@xula.edu

ABSTRACT

Software engineering is difficult to do in the
real world, so teaching it to computer science
undergraduates in an academic setting is a real
challenge. Many software engineering
instructors, especially those at small, liberal arts
colleges or universities, are limited to a one
semester course where they seek to use a “real
world”, term-long, team-developed project to
give their students a desired mixture of theory
and practice. The project is selected for a
variety of reasons – availability of a real client,
complexity of the problem, ability of students to
have a “running” software product at the end of
the term, and others. This paper presents the
rationale for a challenging software engineering
project that relies upon the instructor’s “real
world”, supports failure as a learning
mechanism, and involves the instructor in
guiding the team and evaluating each of its
individual members.

INTRODUCTION

Teaching a software engineering course is a

labor-intensive activity requiring, on the part of
the instructor, both technical skills and
managerial control in order to provide students
with a well-crafted mix of theory and practice.
To avoid having the course become simply one
of theory (i.e., terms and concepts), instructors
have taken a variety of approaches to teaching
the subject matter to undergraduate computer
science majors. Popular among these is the use
of a “real world”, term-long, medium-size, and
team-developed software project [5]. However,
the use of such a project is often problematic in
itself.

The first problem is answering the question:
Whose “real world” is it? Some educators seek
real clients -- people (in- or out-of- house) or
organizations (especially nonprofits) -- that need
software written for their own purposes [15].
Sometimes educators are approached by people
seeking “senior project students” to write
software for them and in so doing to receive
college credit in a software engineering course
[21]. Both these situations raise the ethical
question that the instructor must answer: Are
people or organizations taking advantage of the
students? For this and other reasons, some
educators see real customers as unfeasible.
Another reason is uncertainty with regard to a
customer’s commitment to the software
development project. Sometimes a real
customer begins with a high-level of resolve to
get a software product delivered, but within the
semester timeframe the customer’s commitment
to the project migrates to other business
concerns. The customer does not return phone
calls and/or the customer misses critical
meetings with the students. Some educators
develop lists of projects ranging from
graphically oriented games to web projects with
database back-ends, which simulate “real
world” conditions [7]. Consequently, the first
problem that the instructor must address is the
“real world” domain for the project.

The second problem that the instructor must

consider is the “goodness of time-fit” that the
selected real world conundrum offers to the
students. In over twenty-five years of software
teaching and consulting experience, the author
has never seen a team of 5 ± 2 people having
little or no prior experience working together to
develop and implement a real world, medium-
size, software system in four months -- the

COMPUTERS IN EDUCATION JOURNAL 98

approximate time in an academic semester (i.e.,
term-long). Inherent in this observation are two
facts: (1) Only complex software systems need
to be engineered, and (2) Software developers
rarely have the luxury of deciding the problem
for which they will develop software. Typically
in the real world after being assigned a project,
the software engineer’s first stop is the library
where more can be learned about the problem
scenario. This takes a great deal of time. So in
order to make sufficient progress on a term-long
software development project, instructors must
have the ability to revise the real world problem,
especially if they want students to have some
level of success in the allotted amount of time
[20]. Time constraints limit the amount of real
world conditions in any academic software
project worthy of being engineered. So, the
second problem that the instructor must face is
the instructor’s own ability to adjust the project
“on-the-fly”, if need be due to the experiences
of the team and the available time.

The third problem that the instructor must take

into consideration is the evaluation of the
individuals on the team as well as the team
itself. In the first two or three semesters of the
undergraduate computer science curriculum, the
students are being taught the “programming
craft” and being evaluated on their own
performance. They are given well-defined,
small-sized problem scenarios having software
solutions that a single individual can write in a
week or two. Such assignments do not require
software engineering. Furthermore, in the zeal
to get students to learn the programming craft,
some instructors allow these simple
programming assignments to be turned in late,
usually deducting points according to how late it
is. Academia allows for numerous individual
excuses: “I had a Math test.” “My 20-page
English paper was due.” Granted students are
not employees subject to workdays that are
focused on meeting a software deliverable
deadline. Although, when a student drops the
course and leaves the remainder of the team
with additional work to do, the instructor can
claim a simulated real world death or an
employee going to a new job. Nonetheless,

most of this is counter to the software
engineering culture. Many undergraduates,
especially those who tend to be procrastinators
or hackers, have difficulty transitioning to a
team effort. They have difficulty operating
under fixed timelines and meeting deadlines.
They do not comprehend sequenced project
components (created by others) that are
interdependent and necessary for achieving
milestones. Hence the instructor must have an
evaluation methodology in mind prior to
beginning the project.

This paper presents the method the author used

to address the aforementioned software
engineering project problems. The focus is on
the instructor’s “real world”, a view that failure
is a learning mechanism, and the need for active
instructor leadership – guiding the student team
and evaluating each of the individuals on the
team.

THE REAL WORLD

Software engineering has its roots in the

Department of Defense (DoD), beginning in
1968 with the coining of the term at a NATO
conference and continuing with the
establishment of prestigious organizations such
as the Software Engineering Institute at
Carnegie Mellon University. The defense
software community deserves credit for
pioneering software process assessment and
process improvement technologies [13]. The
DoD software engineering work continues today
because of the complexity of the problems that
safety-critical software systems must solve.
Nonetheless, there are only a few ways to
increase the probability that the software will
operate properly (i.e., to the customer’s
specifications), but there are thousands of ways
to cause a software system to fail.

Pick up one of today’s software engineering

textbooks [16, 10, 18] and the reader will
probably find some level of coverage of the
software failure that destroyed the Ariane-5
rocket in 1996. In 1999, the story appeared in a
computer science education journal[1] and it
was reprinted with permission in yet another

COMPUTERS IN EDUCATION JOURNAL 99

computer science education journal just two
years later [2]. Obviously, this was an event
worthy of note. The next generation of software
engineering texts might highlight the $125
million loss of the NASA’s Mars Climate
Orbiter in 1999. According to Arthur
Stephenson, chairman of the Mars Climate
Orbiter Mission Failure Investigation Board
[12]: “The ‘root cause’ of the loss of the
spacecraft was the failed translation of English
units into metric units in a segment of ground-
based, navigation-related mission software … .”
Dr. Edward Weiler, NASA’s Associate
Administrator for Space Science, was quoted as
saying [11]: “People sometimes make errors.
The problem here was not the error, it was the
failure of NASA’s systems engineering, and the
checks and balances in our process to detect the
error.” Few would disagree that these are real
world examples of failures that software
engineering practices were supposed to prevent.
So software developers learn from these kinds
of failures and produce better practices and
procedures that will help them avoid the same
kinds of software failures in the future.

The Missile Defense Agency (MDA) has

several challenging real world problems that
software must solve. Although the idea of
“hitting a bullet with a bullet” is both politically
and technologically controversial [9], the
problem domain is worthy of software
engineering. Like the civilian rocket programs
previously mentioned, MDA has had its share of
failures. The most recent failure occurred in
June 2003 and though still under investigation
the performance of the solid divert and attitude
control system of the interceptor is suspect [8].
Not only must software engineers develop the
right software, they must get the software right.

The author is among four faculty members at

Xavier University of Louisiana doing research
in the missile defense domain. Xavier is a
Historically Black College and University, and
one of the goals stated in its cooperative
agreement with MDA is to encourage African
American computer science and computer
engineering majors to pursue careers in DoD

research and development after they graduate
from college. Faculty members are trying to
accomplish this goal through involvement of
students in undergraduate research [14].
However, since the agreement financially
supports only one undergraduate researcher per
faculty member, the progress is slow. In Spring
2003, the author was given the software
engineering course to teach. To increase the
number of undergraduate computer science
majors being exposed to the missile defense
domain, the author decided to adapt a small
problem segment from his real world as the term
project for the course. The experiences of the
instructor in the problem domain and with the
software engineering process set the stage for
the context of the project.

As is typical with real world software

engineering projects, the instructor began the
development process with a rough sketch (See
Figure 1) and a vague statement of the problem:

The Problem Scenario The customer
wants a software system that will run on their
UNIX platform to project and track the
trajectory of a missile that has been launched.
The launch will be marked when a sensor
provides latitude and longitude (lat & long)
coordinates of the launch site at time zero.
Initially, the software will determine projected
lat & long ground position coordinates along
with a projected altitude for 20 seconds into the
future flight of the missile. Then at 20 second

Latitude & Longitude

Azimuth

Altitude

Latitude & Longitude

Azimuth

Altitude

Figure 1. A missile’s ascent.

Missile
Trajectory

COMPUTERS IN EDUCATION JOURNAL 100

intervals, sensors will provide the actual lat &
long ground position coordinates and altitude of
the missile. Before the next interval’s data are
received the software system will
“rethink/correct” its previous projection then
calculate and display on the computer screen
new projected lat & long coordinates and
altitude for the expected future position of the
missile. The purpose of the system is to use
sensor data to make increasingly better
projections as to the where the missile is going.
The software system is concerned only with the
“boost phase” of the missile; this is
approximately the first three minutes of ascent
before the missile leaves the earth’s atmosphere.
All measurements of altitude and distance will
be in metric units.

This simple problem scenario was so

intimidating that most students were basically in
shock. There was no rush to code; the students
do not even know what questions to ask of the
instructor. Thus, the problem scenario forced
the students to focus on requirements and
specifications, and to visit the library to find out
more about missiles and their trajectories. In
this medium-sized, complex software
engineering project, there are literally hundreds
of questions to be asked, for example: Given
just the lat & long of the launch site how can
one predict with any kind of certainty the
azimuth of the flight? Do all missiles have the
same launch velocity? How many types of
missiles are there? What countries have what
types of missiles? The students were the
software developers who had to know enough
about the problem domain to form the questions
properly. The instructor was the customer who
could answer the questions. In the instructor’s
real world, software engineers spend a great
deal of their time eliciting requirements and
specifications. The students had to learn this
difficult lesson.

The students had many conversations with the

instructor; they wrote and rewrote the
requirements document several times. After
finally grasping the magnitude of the
requirements, the student team recognized the

need for a specifications document and so had to
continue the dialogue. The specifications
document was written and rewritten several
times as well. The instructor’s approach placed
the emphasis where it belonged, the
requirements analysis phase of the software
development life cycle. This approach also
served to emphasize a key component of
software development – the communication
between customer and developer; if it fails so
will the system [16].

FAILURE-BASED

Software engineering students must truly

understand four interrelated and important
concepts – risk, faults, failure, and testing. The
following are adapted from Pfleeger’s text [16]:
Risk is an unwanted event that has negative
consequences. When a software engineer
makes a mistake, the human error results in a
fault in the software. A failure is the departure
of a software system from its required behavior.
Testing must be viewed as a discovery process
and the development of the test for each
requirement begins during the requirements
analysis phase. Risk is naturally embedded in
the software development life cycle. Software
engineers make mistakes that create software
faults, which can lead to failure. In an academic
software engineering project some of the
enablers of risk are the talent of the students on
the team, students dropping the course in mid-
project, and the time available. Testing is
critical in the discovery of faults and can help
reduce risk especially if testing is continuous
throughout the entire software development life
cycle. In-progress reviews and rapid
prototyping can be used to test understanding of
requirements and specifications as well as the
designs.

It has been the author’s experience that real

world software engineering projects are fraught
with risks and faults, which can lead to failures.
Testing can discover software system failure
before delivery; after delivery, failure might be
fatal and final. So, why should educators want
academic software engineering projects that will
insure student success? Many published papers

COMPUTERS IN EDUCATION JOURNAL 101

have described “successful” projects that have
been implemented in software engineering
courses, but not with all the required
functionality or necessary testing. By real world
standards, such projects are failures. So why
not accept failure as a mechanism for true
learning? In other words, the project in the
software engineering course might not get fully
implemented, but the students recognize the
failure and learn from it.

Roger Schank[17] coined the phrase

“expectation failure” to describe what happens
when a human expects something to occur yet it
fails to occur. For example, when a software
development team expects a program module
(e.g., reusability in the Araine-5 case) to simply
be integrated into the system being developed
and to work properly with other program
components but it does not, the team has
experienced expectation failure. Schank and
others believe that expectation failure is
necessary in order for learning to take place. In
fact, they believe that people remember best
what they feel the most. Thus when people
experience expectation failure, their minds
create “a reminder and a remedy.” In other
words, in the future they remember the
circumstances surrounding this failure and avoid
this type of failure by following their remedy
procedure. The key idea here is that students
must feel the need to internalize a reminder and
a remedy. Educators can tell and show students
remedies that will prevent failures; students can
memorize them for a test in a course; but until a
student feels the pain of failure, they will not
internalize the reminder and remedy. An old
adage puts it as: Seeing is believing, but feeling
is real. Learning software engineering must be
real. This author defines a failure-based
software engineering project as one that
facilitates expectation failure.

The Spiral Model[4] (see Figure 2 in

Additional Readings and Notes section) is most
appropriate for failure-based software
engineering. First, it acknowledges the iterative
nature of software development. Students felt
this initially when they failed to get the

requirements and specifications documents to an
acceptable level for the project to progress, thus
having to rewrite both documents several times.
Second, the model highlights risks, constraints,
alternatives, and prototyping. Starting with the
initial problem scenario and sketch, students
become engaged in the project realizing the
unreliability of their teammates to persist in the
course, their own limitations (i.e., knowledge of
the problem domain, how much time they are
willing to invest in the course, etc.), and the
need for various courses of action that can solve
the problem. A vocalized student concern was
“What happens if half the team drops the
course?” The instructor responded, “What can
you accomplish with fewer people?” Again,
educators can talk about the need to divide a
complex problem into manageable sub-
problems, but students must feel the need to do
so. Having people drop the course or
anticipating that people will drop the course
creates the need to focus on the critical
components of the software. The instructor’s
emphasis on prototyping various aspects of the
development was very useful in getting students
to divide the problem up and develop separate
courses of action.

The instructor assigned rapid prototyping

programs for the students to do individually.
For example, the first prototype program was to
accept a lat & long and verify that they were
valid. In the real world, sensor data is usually
noisy, which results in bad data composition.
The noise problem with a sensor can be detected
and a request for retransmission initiated. Most
of the students in the instructor’s class did not
know what constituted a valid lat & long. This
rapid prototype gave the instructor an excellent
opportunity to reify a couple of software
engineering activities. First, software engineers
often go to the library to learn about their
assigned problem domain. Second, talking
about data being normal, interdependent or
creating an exception is one thing, but knowing
what that means is quite another and this
knowledge comes from testing the prototype.
All the student prototypes validated normal lat
& long data. Some of the student prototypes got

COMPUTERS IN EDUCATION JOURNAL 102

all the exceptions. But none of the student
prototypes got the interdependency; the input of
90 degrees, 1 minute, 0 seconds, South for a
latitude was not identified as invalid. The South
Pole is at latitude 90 degrees, 0 minute, 0
seconds, South; this latitude cannot be exceeded
not even by one second let alone one minute.
Besides being able to create moments of
individual expectation failure, the rapid
prototyping assignments gave the instructor an
instrument that he used to evaluate the
individuals on the team. A moment of team
expectation failure came at an in-progress
review when the lat & long validation module,
which had been corrected, was coupled with the
module that read the radar altitude data and the
system failed.

In order to insure expectation failure, which is

the basis for failure-based software engineering,
a software engineering project must be in a
sufficiently complex problem domain. It is also
helpful if the problem domain is outside the
student’s normal scope of personal knowledge.
Finally, the instructor must provide numerous
individual and team opportunities for failure to
occur.

GUIDING AND EVALUATING

In order to guide the students appropriately, an

instructor must have a reasonable idea of the
abilities of each. This could be difficult at a
large institution, but it did not pose a problem at
a small one like the author’s. By the time a
student is in the second year at the university,
the faculty member has a pretty reliable feel as
to the individual’s strengths in mathematics,
programming, and more. Using this knowledge,
the instructor must be able to adjust the
difficulty level of the project.

From the start, the instructor stressed the

importance of a requirements document and
pushed for its development. The instructor
wanted to force the student team to deal with
what they did not know. Eventually a student
asked, “Given the lat & long of the launch, how
do you determine the country that launched the
missile?” The instructor gave a little more

information: “There is a country repository that
describes the border of each country via a
polygon constructed by connecting sequentially
stored lat & long coordinates with straight
lines.” If the instructor wanted to start with a
simpler construct, the polygon for all the
countries can be a rectangle, with the top left
hand vertex being the first lat & long and the
bottom right hand vertex being the second lat &
long. Determining the country that launched the
missile was another rapid prototyping
opportunity. The instructor underscored the
importance of the elicitation process, pointing
out that the existence of the country repository
was not in the problem scenario.

The trajectory model for the missile is also

scalable, depending on the team’s mathematics
knowledge. If the team has weak mathematics
skills, then the classical projectile model[6] (p.
343 ff) can be used. However, if the team has
good mathematics skills, then a flat earth rocket
trajectory[3] (p. 231 ff) would be more
appropriate, and if the skills are exceptional then
the solution for a round, rotating earth[3] (p. 234
ff) is the more realistic model. A rapid
prototype assignment demonstrated the
student’s ability to use one of these models.

Regardless of the trajectory model used, the

team needed to know an initial velocity for the
missile. This caused a student to inquire about
the different types of missiles each country
might have. The instructor’s response to this
inquiry was to reveal the existence of a missile
repository that contained initial velocities,
ranges, payloads, and the countries that had
each type of missile. Furthermore, for each
missile and country there was another data
repository containing the countries at risk. For
example, Iran has the Scud B (Shahab-1) a short
range ballistic missile and the countries at risk
from that missile being launched from Iran are:
Azerbaijan, Turkey, Pakistan, Georgia, Iraq,
Kuwait, and Saudi Arabia. The instructor
created these repositories based on published
unclassified information [19]. Again, rapid
prototyping was used to demonstrate student
understanding and use of these data repositories.

COMPUTERS IN EDUCATION JOURNAL 103

The instructor’s evaluation of the students,
individually and collectively, was ongoing
throughout the project. However, another
important software engineering concept (found
in the Capability Maturity Model; see Figure 3
in Additional Readings and Notes section) that
students needed to experience is the evaluation
of their team members. Early in the project,
students were provided with an evaluation form
(Table 1). The form attempted to get an
“insider’s view” of the team mechanics. The
form was used in conjunction with individual
“exit interviews” that the instructor conducted
after the team presented the project deliverables
in class. The instructor used the peer evaluation
forms to ask very specific questions. This was a
very useful tool in determining the grade for the
project that each student would get. Based upon
team consensus, it was obvious who the leader
was and it was also obvious that the other
students contributed to the best of their abilities.
Perhaps knowing that this type of evaluation
was going to take place, prompted students to
contribute to the overall project instead of just
being carried by the stronger members of the
team. The last entry on the evaluation form was
particularly poignant to the students.

CONCLUSION

Originally, there were six students in the

software engineering course, and they worked
together as one software development team.
One student dropped the course shortly after the
problem scenario was articulated. The
remaining students “suffered” through to the
end, learned a great deal, and were not at all
surprised that the software could not achieve all
the requirements. However, they knew which
requirements had been met. Furthermore, the
requirements document led nicely into the
specification document, which rolled into the
various levels of design with each requirement
actually being traceable throughout.

The experiences of only five students do little

to prove any point; however, the author believes
that the project (i.e., practice) actually improved
student knowledge of theory. The final grades
were 1 A, 2 Bs, and 2 Cs. But the more

interesting aftereffect was that the B students
wanted to do undergraduate research in the
missile defense domain. In sum, the author
believes that failure-based software engineering
projects such as the one presented in this paper
demonstrate a valuable approach to teaching
software engineering and prepare computer
science graduates to deal with software
development when things do not go according
to plan due to risk, faults, and failure.

REFERENCES

1. Ben-Ari, M. (1999) The Bug That

Destroyed a Rocket. Journal of Computer
Science Education, 13, 2, 15-16.

2. Ben-Ari, M. (2001) The Bug That

Destroyed a Rocket. SIGCSE Bulletin -
inroads, 33, 2, 58-59.

3. Bennett, W. (1976) Scientific and

Engineering Problem-solving with the
Computer. Prentice-Hall, Inc.: Englewood
Cliffs, NJ.

4. Boehm, B. (1988) A Spiral Model for

Software Development and Enhancement.
IEEE Computer, 21, 5, 61-72.

5. Bracken, B. (2003) Progressing from

Student to Professional: The Importance
and Challenges of Teaching Software
Engineering. Journal of Computing
Sciences in Colleges, 19, 2, 358-368.

6. Cruse, A. and Granberg, M. (1971) Lectures

on Freshman Calculus. Addison Wesley
Publishing, Inc.: Reading, MA.

7. Dooley, J. (2003) Software Engineering in

the Liberal Arts: Combining Theory and
Practice. ACM SIGCSE Bulletin – inroads,
35, 2, 48-51.

8. Gertz, B. (2003) Failed Missile-defense

Test Probed. The Washington Times (June
20) http://www.washingtontimes.com.

9. Graham, B. (2001) Hit to Kill. Public

Affairs: New York, NY.

COMPUTERS IN EDUCATION JOURNAL 104

Table 1. Form for Peer Evaluation

Evaluation submitted by: ________________ Date:

Evaluation of: _____________________________________

On the back of this sheet of paper, comment freely on any and all matters regarding the evaluation of the above
named individual.

Using the Requirements Specification document as a point of reference, list the specific test data that the
individual developed in whole or in part for what required functionality.

Using the Technical Design document as a point of reference, list the specific components that the individual
designed in whole or in part.

Using the Program Design document as a point of reference, list the specific modules that the individual
programmed in whole or in part.

The scoring scale is: Unacceptable Poor Fair Good Very Good

 1 2 3 4 5

Evaluate the individual’s:
knowledge of the application ______

knowledge of the C++ programming language ______

knowledge of the tools being used (e.g., UNIX, X-windows, etc.) ______

ability to communicate with others (e.g., has an attitude, listens, gives clear instructions) ______

ability to share responsibility with others (e.g., blames others, has integrity, exhibits fairness) ______

work ethic (e.g., not reliable, has to be told to do everything, must be supervised, self-starter) ______

NOT including yourself, rank order ALL the members of your team in overall performance and contributions
to this project (1 is the best, 2 is the second best, etc.). NO TIES ALLOWED.

Based upon the individual’s performance on this project, select ONE:

_____ Promote _____ Keep on team _____ Terminate

COMPUTERS IN EDUCATION JOURNAL 105

10. Hamlet, D. and Maybee, J. (2001) The
Engineering of Software: Technical
Foundations for the Individual. Addison
Wesley Longman, Inc.: Boston, MA.

11. Isbell, D., Hardin, M., and Underwood, J.

(1999) Mars Climate Orbiter Team Finds
Likely Cause of Loss. NASA Headquarters,
Washington, DC Release 99-113 (September
30) http://mars.jp1.nasa.gov/msp98/news/
mco990930..

12. Isbell, D. and Savage, D. (1999) Mars

Climate Orbiter Failure Board Releases
Report, Numerous NASA Actions
Underway in Response. NASA
Headquarters, Washington, DC Release 99-
134 (November 10, 1999)
http://mars.jpl.nasa.gov/msp98/news/mco99
1110.html.

13. Jones, C. (2002) Defense Software

Development in Evolution. CrossTalk: The
Journal of Defense Software Engineering
(November)
http://www.stsc.hill.af.mil/crosstalk/2002/11
/jones.html.

14. Lopez, A. (2003) Increasing African

American Participation in Department of
Defense Research. Proceedings of ADMI
2003 Conference, Washington, DC, 16-23.

15. Polack-Wahl, J. (2003) Software

Engineering: A New Approach for Small
Departments. Journal of Computing
Sciences in Colleges, 18, 3, 26-31.

16. Pfleeger, S. (2001) Software Engineering:

Theory and Practice (2nd Edition). Prentice
Hall, Inc.: Upper Saddle River, NJ.

17. Schank, R. (1997) Virtual Learning.

McGraw-Hill: New York, NY.

18. Sommerville, I. (2001) Software

Engineering (6th Edition). Pearson
Education Limited: Harlow, England.

19. Spencer, J. (2000) Ballistic Missile Threat
Handbook. The Heritage Foundation:
Washington, DC.

20. Stiller, E. and LeBlanc, C. (2002) Effective

Software Engineering Pedagogy. Journal of
Computing Sciences in Colleges, 17, 6, 124-
134.

21. Villarreal, E. and Butler, D. (1998) Giving

Computer Science Students a Real-World
Experience. ACM SIGCSE Bulletin –
inroads, 30, 1, 40-44.

ADDITIONAL READINGS AND NOTES

Andriole, S. (1993) Rapid Application

Prototyping: The Storyboard Approach to User
Requirements Analysis. John Wiley: New
York, NY.

Davis, A. (1995) 201 Principles of Software

Development. McGraw-Hill: New York, NY.

Pressman, R. (1997) Software Engineering: A

Practioner’s Approach (4th Edition). McGraw-
Hill: New York, NY.

Saiedan, H. and Kuzara, R. (1995) SEI

Capability Maturity Model’s Impact on
Contractors. IEEE Computer, 28, 1, 16-26.

Thomas, B. and Duggins, S. (2002) The

Internationalization of Software Engineering
Education. Proceedings of the 2002 American
Society for Engineering Education Annual
Conference & Exposition, Session 2260.

Wasserman, A. (1996) Toward a Discipline

of Software Engineering. IEEE Software, 13, 6,
23-31.

BIOGRAPHICAL INFORMATION

Antonio M. Lopez, Jr. has held the Conrad N.
Hilton Endowed Chair in Computer Science at
Xavier University of Louisiana since July 1,
2000. During the 2000-2001 academic year, he
also held the Chair in Artificial Intelligence at
the United States Army War College, Carlisle,
PA in the Center for Strategic Leadership. He

COMPUTERS IN EDUCATION JOURNAL 106

http://mars.jp1.nasa.gov/msp98/news/

was recognized for his work there with the
Department of the Army Superior Civilian
Service Award, and he continued in dual status
as Visiting Professor in Artificial Intelligence
until July 2003. At Xavier he has taught a
variety of upper-level undergraduate computer
engineering and computer science courses
including software engineering. Lopez received

his ph.D. in Mathematical Sciences from
Clemson University in 1976. His current
research areas are: intelligent agents,
knowledge-based systems, ontology
development, and knowledge management.
Email: tlopez@xula.edu. WebPages:
www.xula.edu/~tlopez.

Level 5
Optimizing
Level 5
OptimizingEvaluate Evaluate

Figure 2. The Spiral Model

The graphic presented in Figure 2 above is

adapted from Pfleeger’s text (2001). The Spiral
Model shows that the process of software
engineering is iterative. The instructor used four
spiral bands because students had about four
months to develop their software product. The
model also underscores two very important
concepts -- risk and rapid prototyping. Finally,
the model depicts change, with new constraints
and alternatives being introduced in each spiral
band. The students in the course were not
required to develop or adhere to a budget, but
the model clearly shows that a real world
application must have a budget review in each
spiral band.

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

start budget1bu
dg

et
4

bu
dg

et
3

bud
get

2

prototype1

prototype
4

prototype
3

prototype
2

alternative1

alternative
2

alterna
tive

3
alter

nativ
e
4

constraints1

constraints2

constraints3

constraints4

risk1

risk2

risk3

risk4

Requirements,
life-cycle plan

Concept of
operation

Validate
d

requirem
ents

Sof
twa

re

req
uire

me
nts

Sof
twa

re

des
ign

Validate
d,

verified
design

Development planIntegration
and test plan

Implementation
plan

Acceptance
test

Syste
m

test

Unit
test

Code

De
tai
led

de
sig
n

Plan

Determine Goals,
Alternatives, and
Constraints

Alternatives
and Risks

Develop
and Test

start budget1bu
dg

et
4

bu
dg

et
3

bud
get

2

prototype1

prototype
4

prototype
3

prototype
2

alternative1

alternative
2

alterna
tive

3
alter

nativ
e
4

constraints1

constraints2

constraints3

constraints4

risk1

risk2

risk3

risk4

Requirements,
life-cycle plan

Concept of
operation

Validate
d

requirem
ents

Sof
twa

re

req
uire

me
nts

Sof
twa

re

des
ign

Validate
d,

verified
design

Development planIntegration
and test plan

Implementation
plan

Acceptance
test

Syste
m

test

Unit
test

Code

De
tai
led

de
sig
n

Plan

Determine Goals,
Alternatives, and
Constraints

Alternatives
and Risks

Develop
and Test

Figure 3. The Capability Maturity Model.

The graphic presented in Figure 3 above is
adapted from Hamlet and Maybee’s text (2001).
The Software Engineering Institute (SEI) at
Carnegie Mellon University developed the
Capability Maturity Model (CMM) to assist the
Department of Defense in assessing the quality
of its contractors. Evaluation and reflection are
key components in moving from one CMM
level to another. Corporations at CMM level 5
have optimized the software engineering
process whereas corporations at the CMM level
1 have not yet evaluated their procedures nor
reflected upon how to go about improving them
to the point that the successes are repeatable.

For more information on SEI and CMM see:

www.sei.cmu.edu/cmm/cmms/cmms.html.

COMPUTERS IN EDUCATION JOURNAL 107

mailto:tlopez@xula.edu

	ABSTRACT
	REFERENCES
	ADDITIONAL READINGS AND NOTES

