
TEACHING STATE MACHINE DESIGN THROUGH A PRACTICAL
HANDS-ON EXPERIENCE

Wayne Lu

Department of Electrical Engineering and Computer Science

University of Portland
Portland, OR 97203

Abstract

 State machines are the central control unit of
autonomous digital systems much like that of the
microprocessors to the personal computers,
therefore, state machine design has been a major
topic covered in every digital design course.
Most textbook examples used to illustrate state
machine design involve a single state machine,
whereas practical applications normally require
multiple state machines working together in a
synchronized order. To fill this gap, this paper
presents a design example involving multiple state
machines working as a system. The most unique
feature is that this design is an all-digital
autonomous system which can be easily
implemented by seven PLDs (programmable logic
devices) and fitted on a mid-sized breadboard.
These PLDs can be easily consolidated into a
single CPLD (complex PLD). By implementing
the design, students not only can learn how a state
machine works, but also can gain hands-on digital
systems design and debugging skills. They will
also gain experience in consolidating a multi-chip
design into a single device.

Introduction

 This paper presents an interesting example for
teaching practical state machine design. State
machines provide control functions for
autonomous digital systems much like that of the
microprocessor to a personal computer, therefore,
state machine design has been a major topic
covered in every digital design course. Normally,
the state machine design is taught by first
introducing the Moore and Mealy machine
structures and then discussing the design
procedure using examples ranging from simple

counters, automobile tail lights flashing, to
sophisticated vending machines [1], [2], [3].
These design examples are straightforward and
valuable for illustrating basic state machine
concept and design procedure. However, these
examples consist of only a single state machine.
Whereas in practical applications such as MP3
player design [4], the main control state machine
consists of many lower-level supporting state
machines. To help students learn how multiple
state machines can work together in a
synchronized order, this paper presents a
simplified 4-story elevator controller design
example consisting of three state machines.

 Although the design task might sound very
difficult, however the entire system can be
implemented by seven PLDs (programmable logic
devices) and fitted on a mid-sized breadboard.
Designing and implementing such a system not
only can help students learn how a practical state
machine works, but also provides an opportunity
to exercise the top-down digital system design
methodology which is to systematically
decompose a complex design into simpler
functional units. The limited resource of the
popular PLDs such as GAL16V8, GAL20V8, and
GAL22V10 also imposes a design constraint in
implementing a complex design so that students
can learn how to manage the device resources.

 This design example also is an excellent example
for teaching how to consolidate a multi-chip
design into a single-chip design using a CPLD
(complex PLD). The procedure of merging these
seven ABEL programs into a single program
targeted for an XILINX XC9572 CPLD is
presented. The program can also be easily
converted into the popular Verilog or VHDL

93 COMPUTERS IN EDUCATION JOURNAL

hardware description language. To gain more
advanced design experience, the 4-story elevator
controller can be extended to handle more floors
and/or multiple sets of elevator cars.

Operations Of The 4-Story
Elevator Controller

 This 4-story elevator design example consists of
three state machines and multiple control logic
circuits to handle service requests, elevator
motion controls, doors opening/pausing/closing
operations, floor arrival signal generations, and
elevator status displays in an autonomous and
synchronized order.

 The elevator system consists of a wall-mounted
call button on each floor and six buttons inside the
elevator: four buttons marked as 1, 2, 3, 4 for
specifying the destination floor, an OPEN button
for opening the doors, and a CLOSE button for
closing the doors. The display inside the elevator
includes a 7-segment display showing which floor
the elevator is currently on and four red LEDs
showing the up and down arrows. While the
elevator is moving toward a destination floor, the
7-segment display flashes the next arriving floor.

 The purpose of the controller is to interface with
the buttons, to control the elevator operations, and
to display the status of the elevator. The elevator
travels between the first and fourth floors. When
arriving at a floor, the elevator:

1. opens its doors (this doors’ opening
movement takes 4 seconds),

2. pauses for 8 seconds (when the OPEN
button inside the elevator is pressed, the
door will be kept open), then

3. the doors close automatically (the doors’
closing movement takes 4 seconds).

 If a wall-mounted button on a floor is pushed, an
LED next to it is lit up and stays lit until the
elevator arrives at the floor. It takes 8 seconds to
travel from one floor to the next floor. A counting
state machine keeps track of the elevator travel
time and informs the controller whenever the
elevator has arrived at a floor. When the elevator

arrives at a requesting floor to discharge
passengers, it opens its doors, pauses to let the
passengers in and out, closes its doors, and moves
toward the next requesting floor. If there is no
requesting floor, the elevator rests at the floor it
last stopped. If there is a call for service later, the
elevator then moves toward the requesting floor.
If the requesting call is from the floor that the
elevator is resting, the elevator simply opens its
doors.

 To make this design example an all-digital
autonomous system, the mechanical movements
such as the doors closing and opening movements
and the sensors for detecting the elevator’s arrival
are simulated by digital logic. The doors’
movements are simulated by an HLMP-2350 4-
LED bar: when all the LEDs are on, the doors are
closed; when all the LEDs are off, the doors are
open; when the doors are closing or opening, one
LED is turned on/off on each side of the LED bar
at a time to simulate the doors’ movement. The
elevator’s traveling is simulated by two cascaded
HLMP-2350 forming an 8-LED bars: one LED is
turned on sequentially at a time in an upward or
downward pattern for a second to simulate the
elevator’s movement between two adjacent floors.
 A 1 Hz clock is used to control the elevator’s
operations such as opening the doors, keeping the
doors open, closing the doors, and traveling
between floors.

Implementation Of The
Elevator Controller

 The wall-mounted buttons and the buttons inside
the elevator are implemented by normally-open,
momentarily-on pushbuttons. Each button, except
OPEN and CLOSE, has an accompanying red
LED which lights up when a call is pending. The
elevator controller described above can be
implemented by seven PLDs as shown in the
system functional block diagram (Fig. 1). The
function of each PLD is detailed below:

• U1 (GAL16V8/PALCE16V8) for interfacing

with the wall-mounted buttons.
• U2 (GAL16V8) for interfacing with the

COMPUTERS IN EDUCATION JOURNAL 94

buttons inside the elevator except the OPEN
button.

• U3 (GAL22V10/PALCE22V10) for the
elevator main control state machine and a
timing control state machine.

• U4 (GAL20V8) for the doors control state
machine and arrival signals.

• U5 (GAL16V8) for simulating elevator travel
movements between floors.

• U6 (GAL16V8) for controlling the 7-segment
display.

• U7 (GAL16V8) for controlling the up and
down arrows inside the elevator.

ABEL [1] is a very easy to learn language and
students can comfortably learn ABEL
programming within a few hours. The ABEL
source files for each PLD can be downloaded
from the author’s website at
www.egr.up.edu/contribu/lu. The theory of
operations for each ABEL source file is described
below.

• Wallbtns.abl (U1) implements four SR-latches

for latching the wall-mounted buttons. Each
time a button is pressed, it asserts the Q output

• which flags a request to the elevator control
state machine and also turns on its
accompanying red LED. The red LED stays
lit until resets by the floor arrival signal.

• Ebuttons.abl (U2) also implements four SR-

latches for latching the floor buttons inside the
elevator. When a button is pressed, it flags a
request to the elevator control state machine
and turns on its accompanying red LED. The
red LED stays lit until resets by the floor
arrival signal. These red LEDs are
independent of the floor LEDs.

• Mainctl.abl (U3) implements the main control

state machine and an 8-second timing control
state machine. The main control state
machine consists of six D flip-flops that are
divided into three groups of two bits each.
One group controls the doors’ movements:
closing, opening, closed, or open. The second

 group controls the elevator’s moving up or
down direction. The third group indicates the
floor number. The state machine consists of
22 states defining the doors opening, doors
open, doors closing, and doors closed states at

95 COMPUTERS IN EDUCATION JOURNAL

http://www.egr.up.edu/contribu/u /

 each floor. The requests from the wall-
mounted buttons, buttons inside the elevator,
and elevator’s arrival signals effect the
elevator’s operations. If there are multiple
pending requests, the state machine will stop
at each requesting floor sequentially until the
highest requesting floor is serviced. If there
are requests from the lower floors just
serviced, the elevator will continue its trip to
the highest floor before traveling down. The
8-second timing control state machine
consists of three D flip-flops for timing the
doors’ opening and closing movements,
elevator travel movements, and the open call
button inside the elevator. The controller state
machine is reset to the initial state of resting at
the first floor by a power-on RC reset circuit.

• Doors.abl (U4) implements the elevator doors

control state machine and arrival signal
generation unit. The elevator doors control
state machine consists of four D flip-flops for
simulating the doors closing and opening
mechanical movements. The arrival signal
generation unit provides arrival signals to the
main control state machine to trigger state
transitions.

• Etravel.abl (U5) implements the logic of

simulating elevator mechanical travel
movements and moving direction.

• Display.abl (U6) controls the 7-segment

displays. The floor number flashes the next
arriving floor number when the elevator is
moving toward the destination floor and
displays a steady floor number when the
elevator stops at a floor.

• Arrow.abl (U7) controls the up and down

arrows when the elevator is moving. No
arrow is displayed when the elevator is not
moving. It also combines the corresponding
floor requests from wall-mounted and in-
elevator buttons into a single floor request to
the main control state machine.

 The entire system consisting of the elevator
controller and user interface can be fitted on a

6.9” x 5.8” breadboard as shown in Fig. 2 and the
detailed schematics are shown in Fig. 3.

Implementing the design using multiple
components not only allows students to
individually field test each state machine and
subsystem, but also lets them experience the
process of porting a multi-chip design to a more
complicated device architecture.

Consolidating Multiple PLDS Into
a Single CPLD

The above seven ABEL programs and PLDs can

be easily consolidated into a single program
targeted for a single CPLD in less than an hour by
some simple cut-and-paste editing operations as
detailed in the following steps.

1. Copy all the seven files into a single file.
2. Keep the first module, title, and the last end

statements. Delete all the other intermediate
module, title, and end statements.

3. Move all input signals from each earlier
PLD to the beginning of the file and delete
their pin numbers.

4. Move all output signals from each earlier
PLD after the input signals and delete their
pin numbers.

5. Comment out the input signals which are the
outputs from an earlier PLD.

6. Relocate all the intermediate equations from
each earlier PLD after the output signals in
an order based on the signal dependency.

7. Rename conflicted signal names such as
state definitions and intermediate signals.

8. Define intermediate equations to link
different connected input and output signals.

9. Relocate the equations and state- diagram
statements in an order based on signal
dependency.

10. Compile the new consolidated program
and fix any overlooked signal names or
order.

COMPUTERS IN EDUCATION JOURNAL 96

Fig. 2 The completed elevator controller and user interface circuits.

97 COMPUTERS IN EDUCATION JOURNAL

Fig.3 Schematics of the elevator controller and user interface.

COMPUTERS IN EDUCATION JOURNAL 98

 The merged program (elevator.abl) retains the
original design methodology. By using a
synthesis tool such as XILINX ISE, the program
can be synthesized and fitted to an XILINX
XC9572 CPLD. The I/O signals are
automatically assigned by the ISE tool. The
completed circuit using a single XC9572 CPLD is
shown in Fig. 4. All the above ABEL programs
can be downloaded form the author’s website at
www.egr.up.edu/contribu/lu.

Conclusion

 This simplified elevator controller design
example not only can provide students an
interesting hands-on state machine design
experience, but also can provide them the hands-
on experience in implementing a design using
different device architectures. After power-up, it
will be waiting at the first floor for service calls.
In responding to a request call, it will open and
then close the doors, travel to the target floor,
flash the next arriving floor, and stop at the
desired floor, just like a real-world elevator will
do. It is quite a satisfaction and sense of
accomplishment watching the autonomous
elevator system operates exactly as designed.

 This 4-story design example can be extended to
8- or 16-story elevator controller or multiple-car
elevator controller. Students not only can learn
state machine design, but also complicated digital
system design ability through such an interesting
and challenging hands-on design experience.

References

1. John F. Wakerly, “Digital Design Principles

and Practices”, Third Edition Updated,
Prentice-Hall, 2001.

2. M. Morris Mano, “Digital Design”, Third

Edition, Prentice-Hall, 2002.

3. Michael D. Ciletti, “Advanced Digital Design

with the Verilog HDL”, Prentice-Hall, 2003.

4. XAPP328, “Design of an MP3 Portable Player
Using a CoolRunner CPLD”, Xilinx, 2000.

Biographical Information

Wayne Lu received the Ph.D. degree in

Electrical Engineering form the University of
Oklahoma in 1989. He has been with the
University of Portland since 1988 and currently is
an associate professor of Electrical Engineering.
Dr. Lu’s primary research interests are ASIC
design & prototyping, real-time image processing,
and dynamic scene analysis.

99 COMPUTERS IN EDUCATION JOURNAL

http://www.egr.up.edu/contribu/u /

Fig. 4 The elevator system implemented using a CPLD.

COMPUTERS IN EDUCATION JOURNAL 100

