

IMPLEMENTING A PARALLEL COMPUTING LABORATORY
FOR UNDERGRADUATE TEACHING AND RESEARCH

Michael Fontenot, Kendrick Aung

Department of Mechanical Engineering

Lamar University, Beaumont, Texas 77710

Abstract

Rapid advances in the computer technology

and widespread availability of computers have
made it possible for many engineering schools
to incorporate high performance computing
laboratories for undergraduate teaching and
research. Many employers now require
undergraduate engineering training to include
hands-on experience with modern engineering
software such as 3-D solid modeling and finite
element analysis. Many core and elective
courses in the mechanical engineering
curriculum require use of engineering software
such as AutoDesk Inventor, Working Model,
Pro/Engineer, Pro/Mechanica, Nastran, and
CFX. In order to meet the increasing demands
of computing power, the department has
decided to implement a parallel computing
laboratory to be used for undergraduate teaching
and research activities. This paper describes the
development and implementation of a parallel
computing laboratory in the Department of
Mechanical Engineering at Lamar University.
The paper presents implementation of the
laboratory including detailed descriptions on
hardware, software, networking, testing, and
benchmarking.

Introduction

Rapid advances in the computer technology

and widespread availability of computers have
made it possible for many engineering schools
to incorporate high performance computing
laboratories for undergraduate teaching and
research. Many employers now require
undergraduate engineering training to include
hands-on experience with computational tools
and software packages dealing with 3-D solid
modeling, finite element analysis, and fluid

flows[1, 2]. To address this issue, the students
in the Department of Mechanical Engineering at
Lamar University need to use engineering
software packages for many of their courses.
For example, students use Pro/Engineer and
Pro/Mechanica software programs in the
mechanical design classes and computational
fluid dynamics (CFD) software, CFX, in the
computational fluid dynamic course[3]. In order
to meet the increasing demands of computing
power for course work and research, the
department has decided to implement a parallel
computing laboratory to be used for
undergraduate teaching and research activities.
The paper presents design and implementation
of the laboratory including detailed descriptions
on hardware, software, networking, testing, and
benchmarking.

Parallel Computing

Higher processing speed and large memory are

essential for investigation and analysis of
complex physical problems such as prediction
of weather, design of a spacecraft, etc. Parallel
computing provides an affordable and cost
effective means of developing high performance
computing platforms using commodity
workstations and PCs. Parallel computing is
simultaneous computations of a problem on
multiple processors. Most parallel computing
can be achieved by using either massively
parallel processors (MPP) or a cluster of
commodity machines. A cluster is a group of
independent computers and thus forms a
loosely-coupled multiprocessor system[4]. Each
machine in a cluster is referred to as a node.
Each machine may have its own memory or
memory is shared among many nodes or
machines. A network is used to provide
communications between machines. The

 107 COMPUTERS IN EDUCATION JOURNAL

computation on a cluster is done by developing
a parallel program that distributes data and
processing to multiple nodes. The most common
way to distribute the program and data is by
message passing. There are two common ways
for controlling and managing parallel processing
among many machines: Parallel Virtual
Machine (PVM) and Message Passing Interface
(MPI). Parallel Virtual Machine (PVM) is a
subroutine library developed at Oak Ridge
National Laboratory that allows a programmer
to create and access a concurrent computing
system made from networks of loosely coupled
processing elements[5]. PVM allows the cluster
to be composed of different platforms,
hardware, architecture, and processing power to
be networked together and work as parallel
machines. Message Passing Interface (MPI) is a
standard Application Programming Interface
(API) that can be used to create parallel
applications. Since PVM is built around the
concept of a virtual machine, it has the
advantage over MPI when the application is
going to run over a networked collection of
machines particularly if the machines are
heterogeneous. However, MPI has the
advantage if the application is going to be
developed and executed on a single MPP[6].

Implementation of the Parallel

Computing Laboratory

The main objectives of this project are to

design and develop a small cluster for parallel
computing, and to develop a parallel program to
test and benchmark the cluster computing
ability. The main goal in developing the lab is to
achieve high computing power with a limited
budget. The most cost effective way of
achieving this goal is to develop the cluster with
commodity PCs and gradually increase the
number of nodes in the cluster over time. One of
the key metrics based on IEEE for measuring
cluster performance is $/GFLOPs, where a
GFLOPs is defined as 1E9 floating point
operations per second. For example, at the 2000
High Performance Networking and Computing
Conference, the Gordon Bell prize for the
highest price/performance went to a group

achieving $920/GFLOPS[7]. As time
progresses, due to Moore’s Law, now (in 2004)
even better price/performance ratios are
possible. In addition, utilizing existing or
donated hardware can keep the out-of-pocket
cost down further. According to the Netlib
Repository at Oak Ridge National Laboratory
(http://performance.netlib.org), a single Intel
Pentium 4 at 2.53 GHz can achieve
approximately 1 to 5 GFLOPs depending upon
certain criteria. However, other factors such as
bus speed and network connection type (i.e.,
hubs vs. switches vs. fiber) do play an important
role in cluster hardware configuration. In the
present project, no evaluations regarding
network connections and speed have been
considered as the main purpose is to gradually
build a coarse-grained cluster and increase its
capabilities in order to gain more hands-on
experience with the system.

Hardware and Software

The computers were obtained from the

IBEXPC company (www.ibexpc.com) with the
following specifications:

Processor: Single AMD Athlon 2.4 GHz
Memory: 521 MB DDR RAM
Hard Drive: 40 GB
CD-ROM: CD-RW drive
Video: 32 MB AGP
OS: RedHat Linux 9.0

There are many problems commonly

encountered in developing a parallel application
on a cluster. The main issues are load balancing,
bad communications (starvation and deadlock),
scheduling of data and process distribution and
sequential bottleneck. Therefore, it is necessary
to test on a small cluster before implementing
the laboratory that will have 16 nodes. Thus, a
cluster of 4 machines was used as a test system.
Each machine costs about $400 for the
specifications given above. The machines are
networked using a 10/100 Ethernet hub and
CAT 5 cabling. The total cost of the test system
is about $1800. One important thing to note is
that there is no linear scale up with 100%
efficiency as the machines are networked but a

COMPUTERS IN EDUCATION JOURNAL 108

http://www.ibexpc.com/

small cluster is an excellent and economical
way to start experimenting with clusters.

The operating system chosen for the cluster

must be inexpensive, robust, and geared towards
networking. Red Hat Linux 9.0 was chosen
because of its long history and successes in
implementing and operating PC clusters. In
addition, Red Hat Linux distribution comes with
a large amount of software including GNU
compilers for C and Fortran languages and
message passing libraries, PVM (Parallel
Virtual Machine) and MPI (Message Passing
Interface), for building parallel applications.

It is also necessary to keep the learning curve

as flat as possible since there are already many
aspects to deal with when implementing the
cluster. As always, there are tradeoffs involved.
It is possible to learn a new data-parallel
language and avoid problems such as
synchronization but the current trend seems to
be to use explicit message passing libraries to
maximize generality while still having a basic
language (C or FORTRAN) to build
applications from. As mentioned before, two
most popular libraries for message passing are
PVM and MPI. For the present implementation,
PVM (http://www.csm.ornl.gov/pvm/pvm_
home.html) was chosen because of its ability to
handle heterogeneous computers in a very
general way. Similar implementations can be
found in other universities and laboratories. For
example, the University of Kentucky is using
Linux/Fortran/MPI for CFD with turbulence
(large eddy) simulations on clusters of PCs with
(16) 2.4 Ghz Pentium 4 nodes (Kentucky Fluid
Cluster 3).

Cluster Configuration and Initial

Programming

Once the machines were obtained, the network

needs to be setup and PVM needs to be
configured. Only a few publications can be
found to the authors’ knowledge on parallel
computing using PVM[5, 8-10]. Some helpful
documents available on the Internet are the
tutorial from California Institute of
Technology’s Center for Advanced Computing

Research website (http://www.cacr.caltech.edu)
and SCL Cluster Cookbook
(www.scl.ameslab.gov). Basic network
configuration for a cluster requires designating
one machine to be a server and the others as
clients. Then, Network File System (NFS) was
used to create directories that were mirrored on
all machines. Authorization for remote
accessing needs to be enabled so that remote
login, remote shell, and remote file copying are
allowed. At present, the cluster is not connected
to the university network as it is still in beta
testing phase.

In order to use PVM, a remote hosts file needs

to be created and a script file which handles
compiling needs to be modified for the
particular hardware architecture and directory
structure. Ganglia is the software tool used for
this project to manage the nodes in the cluster. It
is a scalable distributed monitoring system for
high-performance computing systems such as
clusters and grids. It is based on a hierarchical
design targeted at federations of clusters. It
relies on a multicast-based listen/announce
protocol to monitor state within clusters and
uses a tree of point-to-point connection amongst
representative cluster nodes to federate clusters
and aggregate their state. It leverages widely
used technologies such as XML for data
representation, XDR for compact, portable data
transport, and RRDtool for data storage and
visualization. It uses carefully engineered data
structures and algorithms to achieve very low
per-node overheads and high concurrency. The
implementation is robust, has been ported to an
extensive set of operating systems and processor
architectures, and is currently in use on over 500
clusters around the world. It has been used to
link clusters across university campuses and
around the world and can scale to handle
clusters with 2000 nodes[11].

Once PVM is up and running, it is time to

develop a parallel program for an engineering
application for benchmarking and testing
purposes. The first step in developing a parallel
code was to run some examples given in the
PVM User’s Guide. No problems were

 109 COMPUTERS IN EDUCATION JOURNAL

http://www.csm.ornl.gov/pvm/pvm_
http://www.cacr.caltech.edu/
http://www.scl.ameslab.gov/

encountered in running the example codes.
Thus, a series of code was written that did
nothing but pass and alter messages back and
forth and write output to files. For example, the
first just spawned new tasks. The second printed
messages to independent files while altering
variables specific to its portion. Since the test
cluster is coarse-grained, a parent-child
paradigm similar to MPI, instead of a master-
slave paradigm where one of the nodes did
nothing other than organize communication,
was used.

Instead of attempting to write a full-scale

parallel code, a simple serial code was written to
test out the system. Then, the parallel
counterpart of the simple code was written and
tested. The plan is to increase code complexity
and testing, as well as increase the number of
nodes in the cluster in an iterative manner, as
more hands-on experience with the system has
been gained. The goal is then to calculate
speedups (single processor compute time
/cluster compute time) and refine
hardware/software as needed. This phase has
been completed without any problems for
executing and completing both serial and
parallel codes.

For benchmarking, a one-dimensional

transient diffusion algorithm[12] was chosen as
a test problem for which there are numerical
examples to benchmark against. The test
program was written in C language utilizing the
algorithmic framework (the SIMPLE finite
volume method) and language suitable for the
ultimate goal of developing a multidimensional
combustion code. An example using a finite-
difference transient diffusion problem given in
the PVM User’s Guide was used as a model for
the test code. Writing the serial code was
extremely straightforward and quick. Gauss-
Siedel scheme was used as the iterative equation
solver for the test program. It was decided to use
Gauss-Siedel with block (row strip) partitioning
for the equation solver. This step turned out to
be problematic because the message calls back
and forth had to be organized and timed
carefully to prevent deadlock. (Deadlock is a

state where the program will not terminate
because some nodes are waiting for messages
from other nodes.) It took some time to resolve
the deadlock issue. A search on the Internet
found that this was not uncommon, by far. As a
matter of fact, papers have been written and
parallel programming courses teach sections on
deadlock and synchronization. It should be
noted that debugging a parallel program was
much more difficult than debugging a serial
program. Therefore, it is very wise to employ
an incremental, iterative approach. It was noted
that in many other applications, the issue of
deadlock never arose because the program was
trivial or the message passing portions were
trivial. In general, however, this is not the case.
For explicit message passing, the programmer
has total responsibility for preventing deadlock.
The tentative solution for the deadlock problem
was to create a crude barrier using sleep-type
functions. Improvements can be made on the
current scheme by exploring the PVM barrier
function or by creating more sophisticated
barriers.

Future Plans

In one semester, a cluster of 4 nodes have been

acquired and networked. PVM was installed
successfully and a simple serial and parallel
code was written and tested gaining hands-on
experience in parallel code development. Future
plans are to improve the barrier solution and
then proceed to expand the code to include
convection and multi-dimensionality. The
ultimate goal is to develop a parallel application
program to simulate the flow and combustion
inside an industrial low NOx burner. Physical
models for chemistry and turbulence will be
added to the one-dimensional transient code for
the diffusion problem. In addition, there are
plans to incorporate multi-grid and TVD
features to improve numerical robustness. At
the same time, benchmark for accuracy and
speed on the modified code will be conducted.
Once all testings have been done, the cluster
will be expanded to 16 nodes. The 16-node
cluster will be used for undergraduate teaching
and research for the department. For example,

COMPUTERS IN EDUCATION JOURNAL 110

CFX CFD code will be running on the cluster to
provide high-performance computing laboratory
for students. In addition, the laboratory will be
developed further for interdepartmental and
interdisciplinary cluster usage.

Conclusions

The price/performance for clusters based on

commodity PCs has never been better, continues
to improve at an amazing rate. The first costs
for entering into parallel computing based on
clusters are low and the return on these systems
can be extremely beneficial to students as very
powerful computing tools are made available to
them. Main disadvantages for implementing
these systems with limited budgets are lack of
standards and technical supports. However, the
advantages of building and using such a system
from scratch are great and extremely
educational in terms of depth of understanding
and hands-on learning.

Bibliography

1. Navaz, H. K., Henderson, B. S., and
Mukkilmarudhur, R. G., “Bringing Research and
New Technology into the Undergraduate
Curriculum: A Course in Computational Fluid
Dynamics,” Proceedings of the 1998 ASEE
Annual Meeting & Exposition, 1998.

2. Hailey, C. E., and Spall, R. E., “An Introduction

of CFD into the Undergraduate Engineering
Program,” Proceedings of the 2000 ASEE
Annual Meeting & Exposition, 2000

3. Aung, K., “Design and Implementation of

Undergraduate Computational Fluid Dynamics
(CFD) Course,” Proceedings of the 2003 ASEE
Annual Meeting & Exposition, Nashville,
Tennessee, June 2003.

4. SCL Cluster Cookbook, www.scl.ameslab.gov

5. Breshears, C., “A Beginner’s Guide to PVM-

Parallel Virtual Machine,” Joint Institute for
Computational Science, Knoxville, Tennessee.

6. Geist, G. A., Kohl, J. A., and Papadopoulos, P.

M., “PVM and MPI: a Comparison of Features,”
Calculateurs Paralleles, Vol. 8 No. 2, 1996.

7. Aberdeen, D., Baxter, J., and Edwards, R.,
“92cents/MFlops/s, Ultra-Large-Scale Neural-
Network Training on a PIII Cluster,”
Proceedings of the High Performance
Networking and Computing Conference
(SC2000), ACM Press and IEEE Computer
Society Press, November 2000.

8. Dongarra, J., “PVM: Parallel Virtual Machine -

A Users’ Guide and Tutorial for Networked
Parallel Computing,” MIT Press, 1994.

9. Wilkinson, B., and Allen, C. M., “Parallel

Programming: Techniques and Applications
Using Networked Workstations and Parallel
Computers,” Prentice Hall, 1999.

10. Bertsekas, D. P., and Tsitsiklis, J. N., “Parallel

and Distributed Computation: Numerical
Methods,” Athena Scientific, 1997

11. Ganglia, ganglia.source.forge.net

12. Versteeg, H. K., and Malalasekera, W., “An

Introduction to Computational Fluid Dynamics:
The Finite Volume Method,” Prentice Hall,
1995.

Biographical Information

Michael Fontenot is a licensed mechanical

engineer and a doctoral student in the
Department of Mechanical Engineering at
Lamar University. He is working on his
dissertation developing a parallel program to
simulate the performance of low NOx industrial
burners.

Kendrick Aung is an assistant professor in the

Department of Mechanical Engineering at
Lamar University. He received his Ph.D. degree
in Aerospace Engineering from University of
Michigan in 1996. He is an active member of
ASEE, ASME, AIAA and Combustion Institute.
He has published over 50 technical papers and
presented several papers at national and
international conferences.

 111 COMPUTERS IN EDUCATION JOURNAL

http://www.scl.ameslab.gov/

	Michael Fontenot, Kendrick Aung
	Cluster Configuration and Initial Programming
	Future Plans

	Conclusions
	Bibliography

