
USING MATLAB WITH EXTERNAL DATA FILES

William H. Jermann
Department of Electrical and Computer Engineering

The University of Memphis
Memphis, Tennessee 38152

Abstract

Using MATLAB with external data files can
be awkward. This paper cites potential
difficulties and provides remedies. An
illustrative classroom example is given.

 Introduction

Since the early days of computer networking,
the use of more than a single resource in seeking
a problem solution has been suggested. Data
can be streamed from one computer to another.
However, it is often more practical to write
output data into a text file. Then another
resource can open the text file, and continue
addressing the problem. Even if the computers
or resources are operating in different
environments, this method is practical. Using
File Transfer Protocol or FTP programs, text
files can easily be transferred among different
environments. [1]

MATLAB is a valuable resource for a wide

range of computational problems. In many
applications it is the only tool needed.
Intermediate results of computations may be
stored in text files. At a later date, these results
may be read into a MATLAB interpreter for
additional processing. However, since data can
be transferred to text files, other resources may
be used in seeking a solution to a particular
problem.

We have observed that some MATLAB users

who have no difficulty storing and retrieving
data from a MATLAB environment may

encounter difficulties when transferred text files
between MATLAB and other resources. For
example, sometimes when a large file produced
by MATLAB is entered into the workspace of a
text editor, it appears to be just one long line
containing non-conventional characters. Also,
sometimes when a matrix produced by an
external resource is entered into a MATLAB
environment, it appears to become a different
matrix. Problems such as these are relatively
easy to avoid or to solve. However, if they are
not addressed, it may become impractical to
transfer data between MATLAB and other
resources. These potential difficulties and
appropriate remedies are addressed in the
subsequent section of this paper.

In a text file, there is generally a one-to-one

correspondence between visible characters and
their ASCII codes. From the perspective of a
programmer, a text file may be viewed as a file
of lines. Each line consists of a sequence of
ASCII codes terminated by a new-line code.
Input data is not read directly from a file, but
generally read from a file input buffer that
contains a line.

However, the way in which the lines of a text

file are stored differs among operating systems.
Figure 1 illustrates how the bytes of a two-line
text file are stored in three different operating
systems.

The ASCII representation for “dog” is the

sequence of base-10 codes, 100, 111, and 103,
while “cat” is represented as 99, 97, and 116. In
a Windows environment the end-of-line

 27 COMPUTERS IN EDUCATION JOURNAL

Storing a 2-line Text File:
dog
cat

Windows Environment:

 100 111 103 13 10 99 97 116 13 10

 Number of bytes is 10

Unix Environment:

 100 111 103 10 99 97 116 10

 Number of bytes is 8

VMS Environment

 100 111 103 99 97 116
 Number of bytes is 6

Figure 1. Storing a Two-line Text File in
Different Environments

information is stored using two bytes, the
carriage-return code and the line-feed code. In a
Unix environment only one byte is used, and in
a VMS environment no additional bytes are
stored to represent end-of-line. The VMS mode
of storage is possible since storage of a byte of
information generally involves saving more than
eight bits. One of the extra bits may be asserted
when a character is the last character in a line of
a text file.

In any environment, text files are generally

read by retrieving characters from a file input
buffer containing a line of the file. The last
character of the line in the input buffer is
generally the ASCII representation of the line-
feed or new-line character. Thus, if the text file
described in Figure 1 is opened as a text file,
and if the characters are read one at a time and
counted, the total count would be eight. This
count is independent of the environment in
which the characters are actually stored.

The information contained in Figure 1 was
obtained by storing the lines of a text file,
closing the file, and then opening the file as a
binary file and reading the bytes. The source
code for the corresponding program can be
downloaded from the author’s home page.
Generally there is no need to know the details of
text-file storage. FTP software can be used to
transfer a text file between two different
environments, and the modifications are
generally transparent to the user.

Using Text Files With MATLAB

MATLAB users may store data in text files or

read data from text files using commands that
are very similar to the use of standard C
functions. A major difference is that a file-read
or file-write command applies to each element
of a matrix rather than to just a single scalar. To
open a file for writing, the following MATLAB
command may be given.

 x = fopen(‘filename’,’w’) (1)

This appears to be almost identical to
invoking the C function “fopen”, except that
single quotes rather than double quotes are used
with the arguments. However, this function is
more closely related to a lower-level Unix
function in that it returns a file descriptor rather
than a pointer to a FILE-type structure. A file
descriptor is an integer that generally has a
value between 3 and 20 if the file is successfully
opened. This file descriptor is then used to
identify the file in which data is to be read from
or written to.

Suppose a MATLAB user in a Windows

environment creates the following square
matrix:

 a = [1 2 (2)

3 4]

If an output file has been opened as shown in
(1), the data may be stored in a text file in a
manner similar to using the C function, fprintf.

COMPUTERS IN EDUCATION JOURNAL 28

 That is,

 fprintf(x,’%f\n’,a) (3)

Execution of this command causes each

number in the matrix to be stored in the file.
The numbers are stored “column-wise”; that is,
the numbers in the first column are stored,
followed by the numbers in the next column,
etc. However, there is a major difference
between execution of the MATLAB function
and invoking the corresponding C function.
Invoking the MATLAB command with the
specified format string will produce a text file in
Unix format, whereas invoking the
corresponding C function will produce a text
file in the native environment. [2]

A Windows text file produced by execution of

the command given in (3) should appear as,

 1.000000 (4)
 3.000000
 2.000000
 4.000000

However, if a file produced by this command

is printed by a routine that prints each stored
character, the following output will be printed:

 1.000000 (5)
 3.000000
 2.000000
 4.000000

Furthermore, if this file is opened using

Notepad, just a single line containing non-
conventional characters will appear on the
screen.

This difficulty is avoided if the MATLAB

function that is called to store the matrix uses a
format designator that explicitly stores both the
return character and the new line character at the
end of each line. That is,

 fprintf(x,’%f\r\n’,a) (6)

If a Unix-type text file has been created in a
Windows environment, there are several ways
to convert it to a proper Windows text file.

1. If MATLAB is available, read the file into
the MATLAB workspace, and then save it
employing the proper format designator as
shown in (6).

2. If the user has access to a Unix account, use
FTP and send the file as a binary file to the Unix
environment, and then retrieve it as an ASCII
file.
NOTE: If the file is both sent and retrieved as
an ASCII file, it will still be properly converted
to a Windows file. When transmitted to a Unix
setting, FTP just deletes the return characters,
none of which exist in the source file.

3. Run a user-friendly program that converts a
Unix file to a Windows file, or vice versa.
Source code for such a program can be
downloaded from the author’s home page.

Use of the fscanf function for reading data
from a text file is less sensitive since all leading
white space is skipped before characters are
read. However, a user should be aware that
when matrix values are read into a MATLAB
environment using the format string '%f", they
are read by column; that is, the numbers entered
are assigned to the first column of a matrix, then
to the second column etc. Suppose a matrix is
stored in a text file as shown below:

1.0 2.0
3.0 4.0

If the fscanf function is invoked to read this

data into a 2 by 2 matrix, the matrix in the
MATLAB environment will be the transpose of
the above matrix.

Related Classroom Activities

A required course in both our Electrical

Engineering program and our Computer
Engineering program is a junior-level course,
Matrix Computer Methods in Electrical

 29 COMPUTERS IN EDUCATION JOURNAL

Engineering. In addition to providing students
with knowledge of basic concepts of linear
algebra, the course is intended to provide
students with better understanding of both
procedural programming techniques and object-
oriented techniques.

This course includes 10 required computer

assignments. Six involve procedural techniques,
and four require the use of object-oriented
techniques. The C programming language is
used initially to develop sets of elementary
matrix functions. Then a Matrix class is defined
as well as two derived classes, Square and
Diagonal. The functions that have already been
written are recompiled in C++ and used as basic
building blocks for the related class methods.
The operators + and * are overloaded so that
Matrix objects can be added or multiplied
without explicitly invoking class methods. [3]

The Matrix class includes class methods that

perform several elementary matrix operations.
The Square class inherits the attributes of the
Matrix class. Its class methods include a
method that returns the determinant of a Square
object as well as a method that returns the
inverse of a nonsingular matrix. The prototype
of another Square class method is shown below.

 Square funct(ftp,char *file_name, int flag=0) ;
 (7)

This class method returns a function of a

square matrix. Recall that a function of a matrix
may be defined using the MacLaurin series
corresponding to the function, and that the
function is specified exactly by evaluating a
remainder polynomial. Further recall that a
function of a matrix can be computed by
evaluating the product,

 M times f(D) times M-1 . (8)

In the above expression, D is a spectral matrix

of the source matrix, f is a function of diagonal
matrix D, and M is a modal matrix
corresponding to D. Clearly the computational
method specified in (8) is valid only if the

source matrix has a complete set of independent
eigenvectors.

Refer to the class method prototype shown in

(7). The data type “ftp” has been previously
defined by a type definition statement as a
pointer to a function with one argument, a
double, that returns the value of a double. The
method “funct” computes the specified function
by performing the computation shown in (8),
and returns the value of the resulting matrix.

The Square class that has been defined does

not include resources for finding eigenvalues or
eigenvectors of a matrix. These must be
obtained from some other resource, such as
MATLAB, and stored in a text file. A string
containing the name of this text file is carried
into file_name. This text file must contain the
values of the source matrix, a normalized modal
matrix, and its corresponding spectral matrix.
Figure 2 shows a program that uses Square
objects and the “funct” class method to compute
functions of a square matrix, and Figure 3
shows the results when the program is run using
two different external data files.

The statement identified as Line a in Figure 2
causes the source code for all class methods to
be included. A programmer who is not a novice
would probably separately compile the file
called matrix7.cpp, and then link with the object
code for the main module. The class definitions
would have to be defined in each module using
the statement, #include "matrix7.h". In the
statement identified as Line b, the 4 by 4 square
object x invokes the class method called funct,
the specified function is computed, and the
resulting matrix is returned and assigned to y. It
is not necessary to define the values of the
source matrix prior to invoking funct since they
are contained in the file called file1.txt. In
addition to computing the specified function,
funct assigns values of the source matrix to the
object that invokes funct. In the lines identified
as Line d and Line e, two other functions of the
source matrix are computed and printed. The
results are shown in Figure 3.

COMPUTERS IN EDUCATION JOURNAL 30

#include "matrix7.cpp" // Line a
#include <math.h>
double what(double x) { return 2 * x; }

int main()
{ Square x(4); Matrix y; printf("\n Matrix x is: ");
 y = x.funct(what,"file1.txt"); x.print(); // Line b
 printf("\n 2 * x is:"); y.prin // Line c t();
 printf("\n exp(x) is:"); y = x.funct(exp,"file1.txt"); y.print(); // Line d
 printf("\n cos(x) is:"); y = x.funct(cos,"file1.txt"); y.print(); // Line e
 /* Find a function of a matrix that is not symmetric */
 Square z(2); y = z.funct(sqrt,"file2.txt",NOT_SYMM); // Line f
 printf("\n Matrix z is: "); z.print(); // Line g
 printf("\n y = square root of matrix z is:"); y.pri t(); // Line h n
 printf("\n y squared is"); y = y*y; y.pri t(); return 0;} n

Figure 2. A Program That Finds Functions of a Square Matrix

Matrix x is:

 1.000 2.500 0.000 -1.000
 2.500 0.500 1.000 2.000
 0.000 1.000 1.500 -0.500
 -1.000 2.000 -0.500 2.000

 2 * x is:

 2.000 5.000 0.000 -2.000
 5.000 1.000 2.000 4.000
 0.000 2.000 3.000 -1.000
 -2.000 4.000 -1.000 4.000

exp(x) is:

 14.845 15.197 5.608 3.286
 15.197 22.340 6.713 14.157
 5.608 6.713 7.107 0.424
 3.286 14.157 0.424 19.362

 cos(x) is:

 -0.697 0.077 -0.427 -0.034
 0.077 -0.889 -0.005 0.054
 -0.427 -0.005 -0.064 0.106
 -0.034 0.054 0.106 -0.896

 Matrix z is:

 5.000 4.000
 1.000 8.000

 y = square root of matrix z is:

 2.200 0.800
 0.200 2.800

 y squared is

 5.000 4.000
 1.000 8.000
Figure 3. Output of Program Shown in Figure 2

The class method called funct was originally

written to find functions of symmetric matrices.
It can also be used to compute functions of
asymmetric matrices that have real eigenvalues
and a complete set of independent eigenvectors.
Refer to Line h. To find functions of an
asymmetric matrix, a third argument must be
carried into funct. This argument can be any
non-zero integer. The statement identified as
Line h returns the square root of the 2 by 2
matrix stored in "file2.txt". The last line of the
program is used to demonstrate that the matrix
returned by funct really is a square root of the
source matrix.

MATLAB is used to produce the required text

files. First, a text editor is used to store the
values of a 4 by 4 matrix in file1.txt. If this is
done outside a Windows environment, an FTP
program can be used to transfer the ASCII file
to a Windows environment. Then a MATLAB
interpreter is opened, the commands shown in
Figure 4 are entered, and the desired text file is
produced. If the C++ program identified in
Figure 2 is run in some other environment, FTP
can be used to transfer this ASCII file. [4]

 31 COMPUTERS IN EDUCATION JOURNAL

 y = fopen('file1.txt','r')
 a = fscanf(y, '%f',[4,4])
 fclose(y)
 y = fopen('file1.txt','a')
 [x d] = eig(a)
 fprintf(y,'%f\r\n',x)
 fprintf(y,'%f\r\n',d)

Figure 4. MATLAB Commands that Produce
the Required Text File

Students are given an assignment in which they
must find functions of two matrices. A portion
of the assignment includes using MATLAB
with external data files. Since many of our
students execute C++ in either a Unix or a VMS
environment, the assignment also requires
transporting text files between different
environments.

Conclusions

We believe students benefited from activities

discussed in this paper. Perhaps for the first
time, they were required to use more than one
computer resource to obtain a computational
solution to a problem. Furthermore, we believe
they developed better understanding of data file
storage in various environments.

All software discussed in this paper as well as

the related student assignment can be
downloaded from the author’s home page:
www.people.memphis.edu/~wjermann/jermann.
htm

References

1. Douglas E. Comer, Computer Networks
And Internets, second edition, Prentice Hall,
1999.

2. Brian Kernighan and Dennis Ritchie, The C

programming Language, second edition,
Prentice Hall, 1989.

3. W. H. Jermann, "Reinforcing Basic Concepts

With Class Definitions, Computers in
Journal, Vol. XIV, No. 2, April-June,2004,
pp 8-12.

4. MATLAB Reference Guide, The Math

Works, Inc., Natick MA, 1992.

Biographical Information

Dr. Jermann has been teaching engineering
subjects for over 40 years. He has written 3
textbooks, and has received several teaching
awards.

COMPUTERS IN EDUCATION JOURNAL 32

http://www.people.memphis.edu/~wjermann/jermann.htm
http://www.people.memphis.edu/~wjermann/jermann.htm

