
A Versatile LabVIEW™ Environment for Communicating with
Dallas-Maxim 1-Wire™ Devices

Dale H. Litwhiler

Penn State Berks-Lehigh Valley College

Abstract

This paper presents a set of software tools
using LabVIEW to communicate with the 1-
Wire family of integrated circuit devices
produced by Dallas-Maxim. These tools have
many applications in engineering and science
education where a simple computer interface is
needed to make some physical measurements
and/or control some physical actions.
LabVIEW software is well known in the field
and provides an excellent graphical
programming environment that runs on both
IBM-Compatible (PC) and Macintosh (Mac)
computer platforms.[1] The 1-Wire family of
devices includes temperature sensors, A/D
converters, digital I/O, counters, and digital
potentiometers. Multiple devices can be
simultaneously connected to the host computer
using only two-conductor wire (one wire for
data/power and one wire for ground). Each
device contains a unique identification number
that allows it to be individually addressed and
controlled.[2] The software tools presented here
are completely self-contained within LabVIEW
with no external code or libraries. This allows
them to be used with any LabVIEW version
(tested on 3.1 through 6.1 and student 6i) or
platform (PC or Mac). The software is also
structured such that many 1-Wire device
applications can be run simultaneously without
collision. An overview of the hardware is
provided and examples of communicating with
the devices using LabVIEW are given.

Introduction

In engineering and science education, there are

many instances where a computer can be used to
make physical measurements then analyze and
display the results. These measurements might
then be used to control certain actions and
processes. In many cases, the number of

parameters measured and/or controlled is very
few and does not justify the use of an expensive
data acquisition system. There are also
applications where automated measurement and
control capability can be embedded into existing
equipment. In these circumstances, the 1-Wire
family of devices produced by Dallas-Maxim
provides a very attractive solution.

The 1-Wire family of integrated circuit devices

include temperature sensors, analog-to-digital
(A/D) converters, digital input/output (I/O)
devices, event counters, and digital
potentiometers. Communication data as well as
device power is transmitted via a two conductor
connection. One conductor carries the
communication signal and power while the
other conductor is the ground connection (thus
the name 1-Wire). Many devices can be
connected to the host computer using the same
pair of conductors to form a bus, or
MicroLAN.[3] Each device has a unique
factory-programmed serial identification
number. This number is used to address and
communicate with individual devices. Each
device also includes a Cyclic Redundancy
Check (CRC) generator to help ensure data
integrity.

All communication on the MicroLAN is

controlled by the bus master which is typically
the host processor. The master pulls up the bus
to a nominal +5V through a resistance of a few
thousand ohms. This pulled-up “high” state is
the quiescent state of the bus. All signaling is
performed by pulling the bus low for specified
durations (time slots). For example, to write a
logic one to a 1-Wire device, the master pulls
the bus low and holds it for 15 microseconds or
less. To write a logic zero, the master pulls the
bus low and holds it for at least 60
microseconds. A system clock is not required
as each 1-Wire device is self clocked by its own

33 COMPUTERS IN EDUCATION JOURNAL

internal oscillator. The master can also perform
a bus reset by holding the bus low for at least
480 microseconds.[4]

Power for each 1-Wire device is obtained by

“stealing” it from the data signal. Each device
contains a half-wave rectifier circuit. Whenever
the data line is pulled high by the bus, the diode
in the half-wave rectifier circuit turns on and
charges an internal 800pF capacitor. The
energy stored on this capacitor powers the
device through the times when the bus is pulled
low. This form of powering the 1-Wire devices
is referred to as “parasite power.”[4]

Figure 1 shows a typical MicroLAN layout.

The bus master (computer) and slave devices
can be connected anywhere along the two-
conductor bus. Wiring between the master and
slave devices can be done with simple telephone
wire for short runs (<30m). For longer runs (up
to 300m), category 5 (CAT5) data
communication wire is recommended.[4]

The MicroLAN communication signaling

protocol was designed to allow bus control via a
single pin of a microcontroller. The required bit
writing and reading time slots are not as easily
handled on a personal computer (PC or Mac).
To allow the MicroLAN to be controlled using a
personal computer, Dallas-Maxim offers the
DS9097U Universal 1-Wire COM port Adapter.
Using this adapter, the host software simply

Figure 1. Typical MicroLAN Layout

writes and reads bytes to and from the
computer’s serial port. The DS9097U controls
the MicroLAN timing, slew rates, and many
other advanced functions that are beyond the
scope of this paper. Figure 2 shows an electrical
schematic and assembly drawing of the
DS9097U adapter.

1-Wire Serial Driver

The philosophy behind the software is to

create a programming environment in which
commands obtained from device datasheets can
be easily translated into useable applications.
LabVIEW was chosen because of its ease of
application development, familiarity among
students, and the ability to run its student
version on both PC and Mac computers.
LabVIEW also contains the serial port routines
necessary to communicate with the DS9097U
adapter.

Because it is possible to have many types of

devices simultaneously connected to the
MicroLAN, the software must be capable of
running several applications at once without
interference. To accomplish this, the following
methodology was used: One virtual instrument
(VI) called “1-Wire Serial Driver” was
developed through which all serial port
communication must pass. A command syntax
was designed such that text scripts could be
written and passed to the 1-Wire Serial Driver

COMPUTERS IN EDUCATION JOURNAL 34

Figure 2. DS9097U Schematic and Assembly

Drawing

VI for processing. The command syntax allows
packets of concatenated command strings to be
formed and sent to the serial port to help reduce
latency in the communication process. The
scripts contain the device commands as well as
details about waiting for bus responses and
inserting delays to wait for device operations to
complete. The entire script for a particular
device is executed without interruption. In this
way, many devices can be “Served” without
danger of fragmented command/response sets.

The DS9097U adapter contains the DS2480B

serial to 1-Wire bridge device. The DS2480B
converts serial port bytes to 1-Wire bus data and
vice versa. The DS2480B contains a one-byte
buffer to store incoming bytes from the serial
port. Care must be taken not to send bytes to
the DS2480B too quickly or data will be lost in
buffer overflow. At 9600 baud, buffer overflow
is not a concern unless a bus reset command is
issued. When a bus reset command is issued,
the software must wait for a response from the
DS2480B before more commands can be sent.
A reset command is therefore a final byte in
many of the command string packets. While
most command bytes have corresponding
response bytes, some commands do not. These

conditions must also be included in the syntax.
Proper handling of the response bytes is critical
because the CRC error checking algorithm
depends upon the sequence of responses. The
syntax for a single script command line is as
follows:

<command byte>,<response expected?>,<wait

for response?>,<flush?>,<delay after
command>

The command byte is a hexadecimal

command from the device data sheets. If a
response is expected for that particular
command, a 1 is placed after the comma else a 0
is used. If the software should wait for the
response before continuing, a 1 is placed after
the next comma. If the software should read
and discard (flush) the contents of the response
array, a 1 is placed after the next comma.
Finally, if the software should wait to allow a
device operation to complete after sending the
command, the delay duration in milliseconds (in
hexadecimal) is placed after the last comma.
When a packet of strings is written to the serial
port, the computer tick counter value is read and
added to an array. These tick counter values
may then be used by the calling VI for timing
calculations. Figure 3 shows the front panel of
the 1-Wire Serial Driver VI. The 1-Wire Serial
Driver VI diagram is shown for reference in
Appendix A.

The DS2480B has two primary modes of

operation; command mode, and data mode. In
command mode, the DS2480B interprets all
incoming bytes from the serial port as
commands for itself. In data mode, incoming
bytes are passed on to the 1-Wire bus as
commands for other devices. Switching
between modes is handled by reserved hex
codes E1 and E3.

Table 1 shows a script of command strings for

obtaining a temperature reading from a DS1820
temperature sensor. A detailed explanation of
each line is also given. This script is passed as
input to the 1-Wire Serial Driver VI. Each line
of the script is parsed by the VI to determine

35 COMPUTERS IN EDUCATION JOURNAL

Figure 3. 1-Wire Serial Driver VI Front Panel

what byte to send to theserial port and what to
do after the byte is sent. By using this script
language, 1-Wire device applications can more
easily be developed in LabVIEW.

As shown in Table 1, the script begins with a

1-Wire bus reset. This tells all of the devices on
the bus to get ready for a new round of
commands. Next, the DS2480B is switched to
data mode to allow commands to be sent out
directly to the 1-Wire bus. The 55h “Match
ROM” command tells the devices on the bus to
check the bytes that follow for a match of their
own unique ROM ID number. Next the eight
bytes of the ROM ID are sent. After these eight
bytes are sent, there will be only one device still
listening on the bus. The 44h “Convert
Temperature” command tells the remaining
device (DS1820 temperature sensor) to start a
temperature conversion procedure. This process
takes about 750ms to complete during which no
other 1-Wire bus activity is allowed as the
DS1820 needs to be continuously powered from
the bus high state. A delay of 1000ms is used to
ensure that enough time is allowed for the
temperature conversion to complete. The
DS1820 places the result of the measurement
into its scratchpad memory area. To retrieve the
measurement, the bus must be reset and the
device match ROM ID procedure repeated. The
BEh “Read Scratchpad” command then prepares

the device to transmit the contents of its scratch
pad memory over the bus. This is done by
sending one FFh read byte for each desired
scratchpad byte starting with byte zero. The
response bytes received for each FFh byte sent
correspond to the data for that scratchpad
location. All kept response bytes are passed as
output from the 1-Wire Serial Driver VI as an
array. This array contains one byte for each
command that has a response that was issued
after the last flush. In this example, the
response byte array contains 20 elements. The
appropriate elements must then be selected and
processed to determine the temperature.
(Element selection and processing can be seen
in the LabVIEW diagram shown later in Figure
4.)

1-Wire Device Virtual Instruments

Virtual instruments have been developed for
many of the devices in the 1-Wire family. Each
of these VIs contain scripts written with device-
specific algorithms to perform particular
functions for that device as shown in Table 1 for
the DS1820 temperature sensor. Various front
panel control inputs are used and properly
formatted into the script syntax to be sent to the
1-Wire Serial Driver VI. The response bytes
from the 1-Wire Serial Driver VI are then
decoded to extract the desired information.

COMPUTERS IN EDUCATION JOURNAL 36

Command
Script String

Command Line
Function

Response
Expected?

Wait for
Response?

Flush?

Delay

 C5,1,1,1,0 Reset 1-Wire Bus Yes Yes Yes 0

E1,0,0,0,0 Switch to Data Mode No No No 0
55,1,0,0,0 Match ROM ID Yes No No 0
10,1,0,0,0 ROM ID byte 0 Yes No No 0
A8,1,0,0,0 ROM ID byte 1 Yes No No 0
24,1,0,0,0 ROM ID byte 2 Yes No No 0
05,1,0,0,0 ROM ID byte 3 Yes No No 0
00,1,0,0,0 ROM ID byte 4 Yes No No 0
08,1,0,0,0 ROM ID byte 5 Yes No No 0
00,1,0,0,0 ROM ID byte 6 Yes No No 0
16,1,0,0,0 ROM ID byte 7 Yes No No 0
44,1,0,0,3E8 Convert Temperature Yes No No 1000ms
E3,0,0,0,0 Switch to Command Mode No No No 0
C5,1,1,1,0 Reset 1-Wire Bus Yes Yes Yes 0
E1,0,0,0,0 Switch to Data Mode No No No 0
55,1,0,0,0 Match ROM ID Yes No No 0
10,1,0,0,0 ROM ID byte 0 Yes No No 0
A8,1,0,0,0 ROM ID byte 1 Yes No No 0
24,1,0,0,0 ROM ID byte 2 Yes No No 0
05,1,0,0,0 ROM ID byte 3 Yes No No 0
00,1,0,0,0 ROM ID byte 4 Yes No No 0
08,1,0,0,0 ROM ID byte 5 Yes No No 0
00,1,0,0,0 ROM ID byte 6 Yes No No 0
16,1,0,0,0 ROM ID byte 7 Yes No No 0
BE,1,0,0,0 Read Scratchpad Yes No No 0
FF,1,0,0,0 Read Byte 0 Yes No No 0
FF,1,0,0,0 Read Byte 1 Yes No No 0
FF,1,0,0,0 Read Byte 2 Yes No No 0
FF,1,0,0,0 Read Byte 3 Yes No No 0
FF,1,0,0,0 Read Byte 4 Yes No No 0
FF,1,0,0,0 Read Byte 5 Yes No No 0
FF,1,0,0,0 Read Byte 6 Yes No No 0
FF,1,0,0,0 Read Byte 7 Yes No No 0
FF,1,0,0,0 Read Byte 8 Yes No No 0
E3,0,0,0,0 Switch to Command Mode No No No 0
C5,1,1,0,0 Reset 1-Wire Bus Yes Yes No 0

Table 1. DS1820 Example Command Script

Figure 4 shows the diagram of the VI

developed for the DS1820 temperature sensor.
The command script is that shown in Table 1
but here the device ROM ID is a string input
that is then properly formatted and placed into
the script at the appropriate locations. The
entire script string is then passed to the 1-Wire
Serial Driver VI. The output of the 1-Wire
Serial Driver VI is the response byte array.
The appropriate elements of this array are
then selected to determine the temperature

measurement and to perform a CRC data
check.[5] The process is repeated if an error is
detected. CRC8 and CRC16 Vis have been
developed for use where needed in the various
device VIs. Figure 5 shows the LabVIEW front
panel for the DS1820 temperature sensor VI.

As another example, Figure 6 shows the

LabVIEW diagram of the DS2406/7 addressable
FET switch VI. This VI can be used with either
the newer DS2406 or the obsolete DS2407

37 COMPUTERS IN EDUCATION JOURNAL

Figure 4. DS1820 Temperature Sensor VI Diagram

Figure 5. DS1820 Temperature Sensor LabVIEW VI Front Panel

devices. Here the state of the front panel
Boolean switches is used to format a command
byte in the script. With this device, the response
byte data is verified by performing a CRC16
error detection algorithm. Table 2 details line-
for-line the commands used to communicate
with the device. Figure 6 shows the LabVIEW
front panel for the DS2406/7 VI.

DS9097U Initialization

Prior to sending the first commands on the

1-Wire bus, the DS9097U must be properly
initialized. Power for the DS9097U electronics
is derived from the RTS and DTR serial port
signals being set high. Various other parameters
of the DS2480B must also be configured at this
time (1-Wire bus slew rates, timing, etc.). This
initialization is performed by a separate VI
writing command bytes directly to the serial
port as indicated in the DS2480B application
note.[6]

COMPUTERS IN EDUCATION JOURNAL 38

Figure 6. DS2406/7 LabVIEW Diagram

Figure 7. DS2406/7 LabVIEW Front Panel

Searching for Devices

Before a device can be used, its ROM ID must

be determined. This is done by connecting the
device to the bus and performing a ROM search
algorithm.[7] The search algorithm was
implemented in LabVIEW to be compatible

with the philosophy of this programming
environment. Running the 1-Wire Search VI
algorithm.[7] The search algorithm was
implemented in LabVIEW to be compatible
with the philosophy of this programming
environment. Running the 1-Wire Search VI.

39 COMPUTERS IN EDUCATION JOURNAL

Command
Script
String

Command Line
Function

Response
Expected?

Wait for
Response?

Flush?

Delay

C5,1,1,1,0 Reset 1-Wire Bus Yes Yes Yes 0
E1,0,0,0,0 Switch to Data Mode No No No 0
55,1,0,0,0 Match ROM ID Yes No No 0
12,1,0,0,0 ROM ID byte 0 Yes No No 0
D6,1,0,0,0 ROM ID byte 1 Yes No No 0
BC,1,0,0,0 ROM ID byte 2 Yes No No 0
0A,1,0,0,0 ROM ID byte 3 Yes No No 0
00,1,0,0,0 ROM ID byte 4 Yes No No 0
00,1,0,0,0 ROM ID byte 5 Yes No No 0
00,1,0,0,0 ROM ID byte 6 Yes No No 0
82,1,0,0,0 ROM ID byte 7 Yes No No 0
55,1,0,0,0 Write Status Function Yes No No 0
07,1,0,0,0 Memory Address Lower Byte Yes No No 0
00,1,0,0,0 Memory Address Upper Byte Yes No No 0
xF,1,0,0,0 Byte to write to memory:

x=7, both switches OFF
x=5, A ON, B OFF
x=3, A OFF, B ON
x=1, both switches ON

Yes No No 0

FF,1,0,0,0 Read CRC Byte 0 Yes No No 0
FF,1,0,0,0 Read CRC Byte 1 Yes No No 0
FF,1,0,0,0 “Dummy” write to SRAM Yes No No 0
FF,1,0,0,0 Read SRAM Status Byte Yes No No 0
E3,0,0,0,0 Switch to Command Mode No No No 0
C5,1,1,0,0 Reset 1-Wire Bus Yes Yes No 0

Table 2. DS2406/7 Example Command Script

Figure 8. 1-Wire Search VI Front Panel

COMPUTERS IN EDUCATION JOURNAL 40

Running on a Macintosh Computer

As stated earlier, it is desirable to have the

ability to run the 1-Wire device applications on
Macintosh computers as well as IBM
compatible PCs. The student version of
LabVIEW can be installed on either type of
computer and some students prefer to use Macs.
The Macintosh serial port (GeoPort) is not an
RS232 standard port. The GeoPort contains
differential transmit and receive lines and does
not have the RTS and DTR handshaking lines
found in RS232 serial ports. Figure 9 shows a
schematic of an adapter cable that can be used
to emulate the required serial port for DS9097U
use. In this adapter, the differential receive line
is ground referenced and an external 12V power
supply (a simple wall-mounted transformer
power supply) is connected to provide power to
the DS9097U via the usual RTS pin. The same
DS9097U initialization described earlier must
be performed however setting RTS and DTR
high is omitted as it has no meaning and is not
available on the Mac version of LabVIEW.
Because all of the 1-Wire device VIs and the
ROM ID search VI are written entirely within
LabVIEW without external DLLs or
components, they are identical for PC and Mac.

Figure 9. Mac GeoPort to Serial Port Adapter Schematic

Example Application

The 1-Wire device VIs are written to allow
their use as subroutines (subVIs) in higher level
applications. As an example, consider the
simple application of a thermostat. The
temperature of a given space is to be controlled
by cycling a heater on and off. The temperature
of the space is measured with a DS1820
temperature sensor. Power to the heater is
controlled by energizing a relay with a DS2406
FET switch. Figure 10 shows the LabVIEW VI
diagram for this thermostat example. The
desired temperature and allowable temperature
swing are entered on the front panel user
interface shown in Figure 11. The present
measured temperature and heater status are also
displayed.

Conclusions

The LabVIEW programming tools for 1-Wire
devices presented here provides students and
instructors with a familiar environment in which
to quickly develop sophisticated applications.
When the 1-Wire device-level VIs are written as
functional blocks, their usage is more intuitive
and they can easily be incorporated into higher
level software designs.

41 COMPUTERS IN EDUCATION JOURNAL

Figure 10. Thermostat Example LabVIEW VI Diagram

Figure 11. Thermostat Example LabVIEW VI Front Panel

Because the code necessary to communicate

with the 1-Wire devices is written entirely in
LabVIEW, the VIs presented here can be run on
either a PC or Mac platform. Also, because
only fundamental functions are used, these VIs
can be implemented on very early versions of
LabVIEW and relatively slow processors.
These are key features necessary for deploying
useful 1-Wire device applications on heritage or

otherwise obsolete educational laboratory
equipment.

 LabVIEW virtual instruments for

communicating with 1-Wire devices can be
obtained from the author by contacting him at
dhl10@psu.edu.

COMPUTERS IN EDUCATION JOURNAL 42

Appendix A. 1-Wire Serial
Driver VI Diagram

43 COMPUTERS IN EDUCATION JOURNAL

References

1. National Instruments website.
http://www.ni.com

2. Dallas Semiconductor / Maxim IC website.

http://www.maxim-ic.com

3. Awtrey, D., “Transmitting Data and Power

over a One-Wire Bus,” February 1997,
Sensors, Vol. 14, No. 2.

4. Awtry, D., “MicroLAN Design Guide.”

(Also called the “1-Wire Net Design
Guide”)
http://www.maxim-
ic.com/appnotes.cfm/appnote_number/570/l
n/en

5. Application Note 27: Understanding and

Using Cyclic Redundancy Checks with
Dallas Semiconductor iButton™ Products.
http://www.maxim-
ic.com/appnotes.cfm/appnote_number/542/l
n/en

6. Application Note 192: Using the DS2480B

Serial 1-Wire Line Driver.
http://www.maxim-
ic.com/appnotes.cfm/appnote_number/990/l
n/en

7. Application Note 187: 1-Wire Search

Algorithm.
http://www.maxim-
ic.com/appnotes.cfm/appnote_number/950/l
n/en

Biographical Information

Dale H. Litwhiler is an Assistant Professor at

Penn State Berks-Lehigh Valley College in
Reading, PA. He received his B.S. from Penn
State University (1984), his M.S. from Syracuse
University (1989) and his Ph.D. from Lehigh
University (2000) all in electrical engineering.
Prior to beginning his academic career in 2002,
he worked with IBM Federal Systems and
Lockheed Martin Commercial Space Systems as
a hardware and software design engineer. He is
a licensed professional electrical engineer in
Pennsylvania, USA and his research interests
include data acquisition and analysis and sensor
technology.

COMPUTERS IN EDUCATION JOURNAL 44

http://www.ni.com/
http://www.maxim-ic.com/

