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ABSTRACT 

 
Database projects typically weave database-

specific activities (such as Enterprise Data 
Modeling, Conceptual Data Modeling, Logical 
Database Design, and Physical Database 
Design) into standard development 
methodologies. This enhances methodologies 
such as the traditional SDLC (Waterfall Model), 
Rapid Application Development (RAD), and the 
newer Object-Oriented development 
methodologies to accommodate data-centric 
projects. In all cases, an abstract model of the 
relevant data requirements must be developed 
and documented during Conceptual Data 
Modeling, the output of which can take several 
forms, such as ER diagrams (ERD), Enhanced 
ER diagrams, or UML Class diagrams. The 
Logical Database Design phase then transforms 
the Conceptual Data Model into a set of 
relational table structures which can be 
implemented using a commercial DBMS. Prior 
to physical design and implementation, 
however, the table structures are typically 
analyzed and improved through a process called 
normalization. This step is appropriate 
regardless of whether traditional (ERD, EERD) 
or OO (UML Class diagram) modeling has been 
used, thus making good normalization skills 
highly desirable for all database project teams. 
However, such skills are not always easy to 
come by. Many introductory texts present 
normalization solely through examples, an 
approach that does not scale well to real 
projects. Advanced texts present formal 
mathematics that is not readily assimilated by 
undergraduates and practicing professionals. 
This paper presents algorithms for converting 
improper relations to 3NF in a formal manner 
that is nevertheless accessible to undergraduates  

and database professionals alike. The algorithms 
depend only on the concepts of primary key, 
candidate key, and functional dependency which 
are defined herein. The paper begins with basic 
concepts and definitions, gives two equivalent 
algorithms for putting an improper relation into 
1NF, and ends with a discussion of algorithms 
for 2NF and 3NF. The relationship between 
3NF and BCNF is also briefly discussed. These 
results should prove useful in both the 
classroom and corporate environments. The 
paper assumes that the reader is already familiar 
with database development methodologies, data 
modeling, normal forms, and basic 
normalization concepts. 

 
INTRODUCTION 

 
Current database development methodologies 

all produce a Conceptual Data Model of 
relevant data requirements and business rules 
that is independent of any particular technology, 
hardware/software platform, etc [1]. Although 
conceptual modeling tools may differ, the 
activity of modeling remains constant across 
methodologies. For example, the traditional 
SDLC (Waterfall model), Information 
Engineering (IE), and Rapid Application 
Development (RAD) methodologies may 
employ Entity-Relationship Diagrams (ERD’s) 
or Enhanced Entity-Relationship Diagrams 
(EERD’s) for Conceptual Modeling [2], while 
Object-Oriented development methodologies 
may employ UML Class Diagrams for the same 
purpose [5]. 

 
After a Conceptual Data Model has been 

developed, it must ultimately be transformed 
into a format that is suitable for implementation 
with a  particular  database  technology.    At the  
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current time, this involves converting the 
Conceptual Data Model into relational table 
structures [3] or Object-Oriented class 
definitions [7] in a process usually called 
Logical Database Design [4]. 

 
Outputs from Logical Design in turn become 

the inputs to the process of Physical Design in 
which the Logical Design specifications are 
translated into the format required for 
implementation on a specific DBMS [8]. Prior 
to releasing the logical design to the physical 
design process, however, the table or class 
structures are typically put through a process 
called normalization. Normalization detects and 
corrects several problems whose root cause is 
data redundancy, i.e., storing the same 
information in more than one place in the 
database [6]. 

 
Problems related to data redundancy include 

the following: 
 
• Wasted storage space: Duplicate copies 

of the same data values wastes space. 
 

• Update anomalies: An update anomaly 
occurs when changing a given data value 
in the database requires multiple updates 
because that value occurs in multiple 
copies. For example, if Fred’s telephone 
number occurs at five different places 
within the database and needs to be 
changed, all five copies must be updated. 
This wastes computer time (both 
processor and I/O), and can also result in 
data inconsistency if for some reason all 
five copies of the phone number are not 
updated identically. 

 
• Insertion anomalies: An insertion 

anomaly occurs when it is not possible 
to store (i.e., add) a given piece of 
information without also storing some 
other, unrelated piece of information as 
well. For example, it may be desired to 
insert Fred’s student id into the database,  

 

but the database design requires that in 
order to do so a course number for a 
course that Fred is taking must also be 
inserted. If Fred hasn’t yet enrolled in 
any courses, this creates an obvious 
problem. Although there are 
workarounds for this situation (e.g., 
entering a “dummy” course number or a 
null value), the workarounds create 
serious problems of their own [4]. Like 
update anomalies, insertion anomalies 
are undesirable in a database design. 
 

• Deletion anomalies: A deletion anomaly 
occurs when it is not possible to delete a 
given piece of information without also 
deleting another, unrelated piece of 
information that it is desirable not to 
delete. For example, Fred may withdraw 
from a course and so it is desired to 
delete that course from Fred’s student 
record. If the course to be deleted is the 
only course Fred is taking, poor database 
design may force other information 
about Fred (e.g., Fred’s address and 
telephone number) to be deleted along 
with the course information. Again there 
are possible workarounds for this 
situation (e.g., replacing the course 
information with “dummy” or null 
placeholders), but these also create 
serious problems of their own [4]. 
Deletion anomalies, like insertion and 
update anomalies, are undesirable in a 
good database design. 

 
The normalization process first identifies 

undesirable redundancies (and corresponding 
anomalies) and then eliminates them through a 
technique called decomposition. Decomposition 
splits one table (or class) into two (or eventually 
more) tables (or classes). In order to ensure that 
splitting tables during the normalization process 
does not result in loss of information or 
invalidation of important business rules and 
constraints, relational theory requires that 
decompositions be lossless-join, dependency-
preserving decompositions [8]. 
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• Lossless-Join Decomposition: The 
decomposition must not result in loss of 
information in the database 
(decompositions that result in loss of 
information are called loss-y). All data in 
the original table must be recoverable 
via relational join operations on the 
decomposed tables. This means that any 
row in the original table must be 
recoverable by combining appropriate 
rows of the decomposed tables [1]. 
 

• Dependency-Preserving 
Decomposition: The decomposition 
must not prevent constraints that were 
enforced on the original relation from 
being enforced on the decomposed 
relations. This means that any constraint 
on the original table must be enforceable 
by setting appropriate constraints on the 
decomposed tables. Thus there is no 
need to perform joins on the 
decomposed tables to discover whether a 
constraint on the original table is 
violated [1]. 

 
In order to identify undesirable redundancies 

and eliminate them through lossless-join, 
dependency-preserving decompositions, we 
must be able to identify functional dependencies 
in the original and decomposed relations. 
Understanding functional dependencies is 
critical to creating good database designs [9]. In 
order to better explore functional dependencies 
we first introduce the concepts of primary and 
candidate keys along with a notation for 
capturing relation structure. 

 
A candidate key is a minimal set of one or 

more columns in a table whose data values 
(taken together as a whole if there are multiple 
columns) are guaranteed never to be duplicated 
in the table. This means that the combined data 
values for all the candidate key columns in a 
given row must differ by at least one binary 
digit from all the other combined data values for 
the candidate key columns in every other row of 
the table. For example, if (FName, MI, LName, 

Phone) are four columns that form a candidate 
key for a table, then it must be impossible for 
any two rows of the table to have exactly the 
same data values for each of FName, MI, 
LName, and Phone. The concept of minimal 
means that if any column is removed from the 
candidate set of columns, the remaining 
columns no longer form a candidate key (i.e., 
are no longer guaranteed to be unique). A 
candidate key consisting of more than one 
column is called a composite key, while a 
single-column key is called a simple key. 

 
Note that while (FName, MI, LName, Phone) 

may be a good example for introducing the 
concept of candidate key, in real life it is 
difficult to guarantee uniqueness. Since people 
share names and phone numbers, duplication of 
key values is actually possible. Suppose, for 
example, that Fred J. Pherd Jr. lives with his 
father Fred J. Pherd Sr. at the same address with 
the single phone number 555-1234. If the 
LName data value is entered as ‘Pherd’ for both 
father and son, then we would have duplicate 
rows in the database – and of course (FName, 
MI, LName, Phone) would not be a candidate 
key. This is why database designers will often 
create special fields (such as account numbers, 
part numbers, etc.) that have no inherent 
meaning in the real world but whose sole 
purpose is to serve as candidate keys that 
identify rows in a table. 

 
The database designer will also pick one key 

from among the candidate keys for a table to 
serve as that table’s primary key. The primary 
key is the one most used to locate rows in a 
table. Ideally it should express what the table is 
“about”, should be stable (i.e., once entered for 
a row, its value should not change), and should 
consist of a minimal number of columns (ideally 
one). 

 
Columns that are not themselves a candidate 

key and are not part of a composite candidate 
key are known as non-key columns. Note well 
that non-key columns are not part of any 
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candidate key (which includes but is not limited 
to the primary key). 

 
We now introduce a simple notation for 

capturing the name, attributes, and primary key 
for a table: 

 
table-name (primary-key-col1, primary-key-

col2, column3, column4, …, columnn) 
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In this straightforward notation the table name 

is written first followed by a parenthesized list 
of attributes. The primary key attribute (or 
attributes if it is a composite key) are all 
underlined. This notation for relation structure 
provides an essential tool for exploring 
functional dependencies and carrying out 
normalization via lossless-join, dependency-
preserving decompositions. The following table 
structure will be used in later examples. It is an 
unnormalized or improper relation badly in need 
of improvement. 

 
Animals (AnimalID, Breed, AnimalType, 

FoodType, VetID, VetPhone, OwnerID, 
OwnerName) 

 
FUNCTIONAL  DEPENDENCIES 

 
Let A1, A2, …, An and B be attributes of a 

relation (columns of a table). We say that the set 
of attributes (A1, A2, …, An) functionally 
determines (or simply determines) B, or that B 
is functionally dependent on (A1, A2, …, An), 
and we write 

 (A1, A2, …, An)  B 
if for any two rows in which the corresponding 
data values for (A1, A2, …, An) all match (i.e., 
are equal), then the data values for B in the 
same two rows also match (i.e., are equal) [6]. 
The Left Hand Side (LHS) of a functional 
dependency, for example (A1, A2, …, An) in the 
definition above, is called a determinant. 

 
Another way to define functional dependency 

is that (A1, A2, …, An)  B if and only if for 
each set  of data  values  that  occurs for (A1, A2,  

…, An) in the table there is at most one 
corresponding data value for B [4]. Consider the 
following portion of an Enrollments table: 

 
Table 1 Enrollments 

StudentID StuName StuEmail StuMajor StuDorm 
111 Fred F111 Math East 
222 Sue S222 InfoSci North 
333 Mary M333 English North 
444 Fred F444 Math East 
 
Assume that StudentID is the primary key and 

that StuEmail is a candidate key (this implies 
that both fields are guaranteed to always be 
unique). Does StudentID functionally determine 
any other columns? The answer is in fact that 
StudentID determines all the other columns, i.e., 

 
StudentID StuName 
StudentID StuEmail 
StudentID StuMajor 
StudentID  StuDorm 
 

We can abbreviate this set of dependencies as 
 

StudentID  StuName, StuEmail, StuMajor, 
StuDorm 

 
Why do these dependencies hold? When a 

column (or group of columns) is unique, it 
automatically determines every other field in the 
table. This is because the uniqueness of the Left 
Hand Side (the determinant or LHS) means that 
a given data value (or set of data values if the 
determinant consists of multiple columns) can 
only occur in one row of the table. Since a given 
data value (or values) can only occur in one 
row, it can only match up with at most one 
value for the RHS (Right Hand Side of the 
dependency). This satisfies the second definition 
of functional dependency given above. Thus 
candidate keys (including primary keys) 
automatically determine all other columns in a 
table. 

 
Since StuEmail is also unique (a candidate 

key), we have the following additional 
dependencies: 

 

  



  

StuEmail  StudentID, StuName,StuMajor, 
StuDorm 

 
Note that the Right Hand Side (RHS) of a 

dependency does not have to be unique in order 
to have a valid dependency, as in StudentID  
StuDorm or StudentID  StuMajor. Both the 
StuDorm and StuMajor columns have duplicate 
entries, yet they correctly appear on the RHS of 
the indicated dependencies. 

 
So far, the LHS (determinants) of our example 

dependencies have been unique. This is not 
required by the definition of functional 
dependency, however. Consider the following 
portion of the Animals table whose structure 
was shown earlier: 

 
Table 2 Animals 

AnimalID Breed AnimalType FoodType 
111 Dachshund Dog Dry 
222 Persian Cat Tuna 
333 Brittany 

Spaniel 
Dog Dry 

444 Dachshund Dog Dry 
555 Siamese Cat Tuna 
666 Canary Bird Seed 
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The only column that is unique is the primary 

key AnimalID. Nevertheless, there are three 
dependencies involving the other (non-unique) 
columns. Specifically, 

 
          Breed  AnimalType, FoodType 
          AnimalType  FoodType 

 
Notice that Breed is not unique. The data value 

“Dachshund” appears in the Breed column in 
both rows 1 and 4. What matters with respect to 
the dependency Breed  AnimalType is that 
the same two rows of the AnimalType column 
must also contain duplicate data values (in the 
example above the value “Dog” appears in both 
rows 1 and 4 of the AnimalType column). To 
have a functional dependency, whenever two or 
more rows of the Breed column contain data 
values that equal one another, then the data 
values in the corresponding rows of the 

AnimalType column must also all equal one 
another. 

 
Now consider the dependency AnimalType  

FoodType. Rows 1, 3, and 4 of the AnimalType 
column contain the value “Dog”; the 
corresponding rows of the FoodType column all 
contain the value “Dry”. Likewise rows 2 and 5 
of the AnimalType column contain the value 
“Cat” while the corresponding rows of the 
FoodType column all contain the value “Tuna”. 
The value “Dog” in AnimalType always 
matches up with “Dry” in FoodType, while the 
value “Cat” in AnimalType always matches up 
with “Tuna” in FoodType. If every possible 
value of AnimalType can be proven to match up 
with no more than one value in FoodType, then 
by definition AnimalType  FoodType. 
Although the data in Table 2 Animals would 
seem to support the claim that FoodType  
AnimalType, this is not the case. Suppose for 
example that we add a row with AnimalType = 
‘Rodent’ and FoodType = ‘Seed’. There would 
then be two rows with FoodType = ‘Seed’ but 
one would have AnimalType = ‘Rodent’ and the 
other would have AnimalType = ‘Bird”, thus 
violating the definition of a functional 
dependency. 

 
It is critical to note that a functional 

dependency A  B cannot be proven to hold by 
observing existing data values in columns A and 
B of the relevant table. This does not work 
because even though a dependency may seem to 
exist in the data today, tomorrow someone may 
add new data values to the columns that would 
invalidate the dependency. To demonstrate a 
functional dependency, one must be able to give 
arguments proving that whenever two or more 
rows in the columns making up the LHS A have 
the same value, then the corresponding rows in 
column B will also be equal to one another – 
every single time, guaranteed. Thus in Table 2 
Animals if a given type of animal is always fed 
the same type of food, then AnimalType  
FoodType. Note again that if it is possible for 
different types of animals to be fed the same 

  



  

type of food, then FoodType does not determine 
AnimalType. 

 
We can use existing data to show that a 

functional dependency does not hold by finding 
a counter-example in the data. For example, the 
claim that AnimalType  Breed can be 
disproved by observing that in rows 1 and 3 of 
the existing table AnimalType has the value 
“Dog”, but that in rows 1 and 3 Breed has not 
one, but two different values (‘Dachshund’ in 
row 1 and ‘Brittany Spaniel’ in row 3), thus 
failing to meet the definition of functional 
dependency. 

 
The following table lists all the functional 

dependencies for Tables 1 and 2 above. We 
assume that students in the same StuMajor are 
always assigned to the same StuDorm (such a 
constraint derived from the way things work in 
the “real world” is called a business rule). 
Similarly, we assume the business rule that 
animals of the same type are always fed the 
same type of food. 

 
Table 3 List of Functional Dependencies 

 
Functional Dependencies 
for Table 1 Students 

Functional Dependencies 
for Table 2 Animals 

StudentID StuName, 
                     StuEmail, 
                     StuMajor, 
                     StuDorm 
 

StuEmail  StudentID, 
                     StuName, 
                     StuMajor, 
                     StuDorm 
StuMajor  StuDorm 

AnimalID      Breed, 
                          AnimalType,
                          FoodType 
Breed             AnimalType,
                          FoodType 
AnimalType  FoodType 
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NORMAL  FORM  DEFINITIONS 

 
The normalization process is guided by a set of 

definitions for normal forms. Each normal form 
identifies specific design flaws and provides an 
algorithm (or detailed set of instructions) for 
correcting the design. First Normal Form (1NF) 
deals with issues of compound fields and 
repeating groups, while Second Normal Form 
(2NF) deals with issues involving composite 

candidate keys. Third Normal Form (3NF) deals 
with certain kinds of relationships between non-
key columns, and Boyce-Codd Normal Form 
(BCNF) requires that all functional 
dependencies have determinants that are unique 
(i.e., have no duplicate values in the LHS 
column or columns). Each “higher” normal 
form is a refinement of its preceding normal 
form, so to be in 2NF a table must also be in 
1NF; to be in 3NF a table must also be in 2NF 
(and so in 1NF); to be in BCNF a table must 
also be in 3NF (and so in 2NF and 1NF). In 
short, each higher normal form is a proper 
subset of its predecessor(s). We begin by 
presenting the definitions for each normal form. 

 
FIRST  NORMAL  FORM  (1NF) 

 
A relation is in First Normal Form if all its 

domains are atomic. A domain is the set of 
allowable data values that may appear in a 
column. A domain is atomic if each data value 
in the domain can not be broken down into parts 
such that any of the parts will ever be 
meaningful or useful. Put another way, a 
domain is atomic if nobody will ever need to 
work with a proper subset of the characters 
making up any of the data values in the domain. 
Since this concept depends on the potential 
human need to work with just a part of a data 
value, it is obviously determined by business 
requirements rather than by pure theory. 

 
In practice there are two types of design flaws 

that result in non-atomic domains. A compound 
(or composite) attribute (or field or column) 
consists of more than one kind of usable 
information stored in a single column. The 
classic examples of composite fields are 
illustrated in the following table (for simplicity 
shown with only one row): 

 
Table 4 Composite Fields 

 
 

Name Address 
Fred J Pherd 123 Sesame St, BirdCity, FL 12345 

 

  



  

It is easy to fix composite fields by breaking 
them up into separate columns before any data 
is loaded into the table (it may not be so easy to 
break up composite fields after data has been 
loaded!). The table below corrects the Name and 
Address composite fields. Note that the Street 
column could have been broken up into the 
three columns StreetNumber (123), StreetName 
(Sesame), and StreetType (St). It is only safe to 
combine these three fields if it can be 
successfully argued that no one will ever want 
to work with them separately (or conversely that 
they will always be treated as one combined 
whole). 

 
Table 5 Corrected Composite Fields 

 
FName MI LName Street City State Zip 
Fred J Pherd 123 Sesame St BirdCity FL 12345 
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The second type of non-atomic domain 

involves repeating groups. A repeating group is 
more than one instance of the same kind of 
information appearing in a single column. 
Consider the CurrentCourses column in the 
table below: 

 
Table 6 Repeating Group 

 
StudentID CurrentCourses 

111 IST 300, IST 400, Math 200, English 100 
 
There are four course names in the 

CurrentCourses column. The four data values 
are all the same kind of information (course 
names), but the issue is that there is more than 
one of them. Unfortunately, it is not as simple to 
correct repeating groups as it is to correct 
composite fields. The next section presents a 
procedure for converting improper relations 
(with repeating groups) into 1NF (where 
repeating groups are eliminated). 

 
SECOND  NORMAL  FORM  (2NF) 

 
Normal forms above 1NF (up to BCNF) deal 

with issues involving functional dependencies. 
Remember that a relation must be in 1NF before 
it can be in 2NF. 

Second Normal Form deals specifically with 
issues that only arise when a table has one or 
more composite candidate keys. If a table has no 
composite candidate keys and it is in 1NF, then 
it is automatically in 2NF. For a relation in 1NF 
to be in 2NF when it has composite candidate 
keys, it must have no functional dependencies in 
which a non-key column depends on a proper 
subset of a candidate key, i.e., non-key columns 
must depend on the entire candidate key, not 
just a part of it. Consider the following relation 
structure: 

 
Orders (CustID, ItemID, ItemDescription, 
Quantity, CustZip) 

 
The combination of CustID and ItemID form 

the only candidate key, and therefore are chosen 
as the (composite) primary key. No single 
column in Orders is guaranteed to be unique. 
Customers may order multiple items, and so the 
same CustID may appear in multiple rows. 
Items may be ordered by multiple customers, 
and so the same ItemID may appear in multiple 
rows. The description, quantity, and zip code 
fields may also contain duplicate data values. 

 
Now consider the functional dependencies. 

Since (CustID, ItemID) together are unique, 
they determine every other column. Since a 
given customer will always have the same zip 
code, CustID  CustZip, and since a given item 
will always have the same description, ItemID 

 ItemDescription. A complete list of 
functional dependencies follows: 

 
(CustID, ItemID)  ItemDescription,   
Quantity, CustZip 
CustID  CustZip 
ItemID  ItemDescription 

 
Since CustID by itself is a proper subset of the 

composite candidate key (CustID, ItemID), the 
dependency CustID  CustZip violates the 
definition of 2NF. Likewise, since ItemID by 
itself is a proper subset of the composite 
candidate key (CustID, ItemID), the dependency 
ItemID  ItemDescription also violates 2NF. 

  



  

These problems can be corrected with lossless-
join, dependency-preserving decompositions as 
discussed below. 

 
To enhance understanding of 2NF we lastly 

consider some anomalies associated with the 
sample relation (not in 2NF): 

 
Insertion Anomaly: It is impossible to add 
a customer’s zip code unless the customer 
has ordered an item 
Deletion Anomaly: If we drop a customer 
who has placed the only order for an item, 
we lose the item description along with the 
customer information 
 
Update Anomaly: If a customer orders five 
items, the customer’s zip code will appear in 
five rows of the table. If the customer moves 
to a different zip code, all five copies will 
have to be updated 
 

THIRD  NORMAL  FORM  (3NF) 
 
To be in 3NF relations must first be in 2NF. In 

addition, 3NF tables must not have any non-key 
columns that are dependent on other non-key 
column(s). An equivalent definition is that 
relations in 3NF must not have any transitive 
dependencies in which A  B and B  C, from 
which it follows that A  C [4]. Yet another 
way to define 3NF is to require that if the 
general dependency “LHS  R” holds, then one 
of the following must be true [6]: 

 
• R is a column that appears in the group 

of columns making up the LHS [making 
this a trivial dependency since for any 
columns X, Y, and R if X  R, then (X, 
Y)  R] 

• The LHS is a superkey (a group of one 
or more columns that uniquely identifies 
each row of the table; however, unlike a 
candidate key, a superkey may include 
“extra” columns that do not contribute to 
the uniqueness) 

• R is part of a composite candidate key 
for the table in question 

For an example of a table in 2NF but not in 
3NF, consider the structure for Table 2 Animals: 

 
Animals (AnimalID, Breed, AnimalType, 
FoodType) 

 
AnimalID is the only candidate key (all other 

columns and combinations of columns have 
duplicate values in the sample data) and 
therefore is the primary key. Since all domains 
appear to be atomic and since the only candidate 
key is single-column, the table is in 1NF and 
also in 2NF. A partial list of functional 
dependencies from Table 3 List of Functional 
Dependencies is repeated below: 

 
Breed   AnimalType 
Breed   FoodType 
AnimalType  FoodType 

 
Since Breed, Foodtype, and AnimalType are 

all non-key columns (i.e., not candidate keys or 
part of candidate keys), all three dependencies 
violate the first definition of 3NF. Note too that 
since the primary key AnimalID determines 
Breed, and since Breed  FoodType, we have a 
transitive dependency that also violates the 
second definition of 3NF. Finally, consider the 
dependency AnimalType  FoodType. The 
RHS (FoodType) is not part of the LHS 
(AnimalType); the LHS is not a superkey (since 
AnimalType is not unique); and the RHS is not 
part of any candidate key for the table. Thus 
none of the conditions in the more formal third 
definition of 3NF hold, and the relation also 
violates the third definition of 3NF. Examples of 
anomalies resulting from the structural problems 
associated with not being in 3NF are shown 
below. These problems can be corrected by 
lossless-join, dependency-preserving 
decompositions as discussed later. 

 
Insertion Anomaly: A new food cannot 
be entered into the table unless there is 
an animal that is fed the new FoodType. 
 
Deletion Anomaly: If you delete the 
only animal that eats a given FoodType, 
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you must delete the information about 
the food along with the information 
about the animal. 
 
Update Anomaly: If a given 
AnimalType’s food changes, the change 
must be made to multiple rows of the 
table, wasting computer resources and 
creating the possibility of inconsistent 
data should all copies of FoodType fail 
to be updated. 

 
BOYCE-CODD  NORMAL  FORM  (BCNF) 

 
Boyce-Codd Normal Form addresses certain 

rare problems with data redundancy that occur 
in relations that are already in 3NF. Fortunately, 
these problems only arise when both of the 
following conditions hold (Watson, 1999): 

 
• The relation has multiple, composite 

candidate keys and 
•  
• At least two of the composite candidate 

keys overlap, i.e., have at least one 
column in common 

 
Since it is rare for the above conditions to arise 

in real-life designs, relations that are in 3NF are 
usually also in BCNF. In fact it is challenging to 
invent convincing examples of relations in 3NF 
that are not also in BCNF (the reader is 
encouraged to pause here and attempt the 
challenge). 

 
The definition of BCNF is more 

straightforward than any of the normal forms 
considered so far: A relation is in BCNF if all its 
determinants are unique. Although this 
definition is simple, there is unfortunately no 
guarantee that dependency-preserving 
decompositions can be found to convert a non-
BCNF relation to BCNF [8]. Hence the designer 
may have to choose between staying in 3NF 
(with the possibility, albeit rare, of certain 
anomalies) or going to BCNF to eliminate the 
anomalies at the price of possibly giving up 
dependency preservation. Since most real-world 

designs in 3NF do not exhibit the two conditions 
enumerated above (and are therefore in BCNF 
as well as 3NF), this paper focuses on getting 
relations to 3NF. 

 
ALGORITHMS  FOR  GETTING  TO  1NF 

 
In order to put an improper relation into 1NF 

one must eliminate all compound (composite) 
attributes and all repeating groups. We consider 
these as two separate cases. Note that in all 
algorithms COPY means to place a copy of a 
column in a new table while leaving the original 
column intact, while MOVE means to remove a 
column from its original table and place it in a 
new table. 

 
Case 1: Eliminate compound (composite) attributes 
 

Definition: Multiple data values of different 
kinds in one column 

 
PROCEDURE: 

 
Split attributes (columns) until all 
attributes are atomic (will never need to 
be divided into portions forming 
meaningful or useful information). 
Remember that whether or not a data 
value can be divided into something 
meaningful or useful is a semantic issue 
of business rules, policies, etc., so close 
cooperation with users is essential to 
make good decisions regarding this 
issue. 

 
EXAMPLE: 
 

See Table 4 Composite Fields and Table 
5 Corrected Composite Fields above for 
an example of how to eliminate 
compound attributes from a table. 

 
Case 2: Eliminate repeating groups (There are 
two equivalent solutions given) 
 

Definition: Multiple data values of the same 
kind in one column 
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1NF PROCEDURE-1: 
List all columns with repeating groups (step 1) 

 
Form the listed columns into separate sets of 
columns that describe the same entity (each 
column in a given set should “be about” the 
same entity) (step 2) 

 
For each set of columns formed above: 

 
If there exists a column or group of 
columns in the set of columns that 
uniquely identifies each row in the 
set of columns 

Choose a minimal group of 
unique columns to act as PK for 
the set 

Else 
Create a new column in the 
original table that alone or in 
combination with other columns 
in the set can function as the PK 
for the set of columns being 
processed 

End If (step 3) 
Create a new table for the set of 
columns and assign an appropriate 
name to it (step 4) 
COPY the original table’s primary 
key (PK) to the new table (step 5) 
 MOVE the set of columns chosen in 
step 3 as the PK for the set from the 
original table to the new table, 
distributing any repeating groups 
into separate rows (step 6) 
MOVE the rest of the columns in the 
set to the new table, distributing any 
repeating groups into separate rows 
(step 7) 
 

 
       Table 7 Repeating Groups 
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Remove duplicate rows and rename 
modified tables as needed to reflect 
the new table structures (step 8) 
Declare the PK of the new table to be 
the group of one or more columns 
chosen in step 3 and moved in step 6 
plus the original table’s PK copied in 
step 5 (step 9) 

End For 
 

Example of 1NF PROCEDURE-1: 
Consider the following relation structure 

 
Animals (AnimalID, Breed, Type, Food, 
VetID(s), VetPhone(s), OwnerID(s), 
OwnerName(s)) 

 
and the corresponding sample data 
 

(step 1) 
VetID, VetPhone, OwnerID, and 
OwnerName are the only attributes with 
repeating groups 

(step 2) 
We can organize the repeating group 
columns into two sets of attributes – one 
about Vets (VetID and VetPhone) and 
the other about owners (OwnerID and 
OwnerName) 

(step 3 – 9 first iteration) 
Choose VetID as the PK for the set {VetID, 
VetPhone} (step 3). Create a new table 
named PetVets (step 4), copy the original 
table’s PK (AnimalID) to it (step 5), move 
VetID (chosen in step 3) to it (step 6), then 
remove   VetPhone  from  the  original  table  
and place it in the new table (step 7). 
Remember to place each atomic value from 
a repeating group into a separate row and to 
make sure that the correct AnimalID values 
“stay with” each value for VetID and 
VetPhone, as in: 

 

 

AnimalI
D

Breed Type Food VetID VetPhone OwnerID OwnerName 

111 Dachshund Dog Dry AAA, 
BBB 

555-1111, 
555-2222 

O11, 
O22 

Fred, 
Sue 

222 Siamese Cat Tuna AAA, 
CCC 

555-1111, 
555-3333 

O11 Fred 

  



  

AnimalID VetID VetPhone 
111 AAA 555-1111 
111 BBB 555-2222 
222 AAA 555-1111 
222 CCC 555-3333 

 
In this example there are no duplicate 
rows to remove, and it seems appropriate 
to retain the name PetVets for the new 
table (step 8). Make VetID (from step 6) 
plus AnimalID (from step 5) the 
composite PK of the new PetVets table, 
which now has the structure PetVets 
(AnimalID, VetID, VetPhone). Note that 
the original table now has the structure 
Animals (AnimalID, Breed, Type, Food,  
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OwnerID, OwnerName). The finished 
PetVets table is shown below: 

 
Table 7 PetVets Table from 1NF Procedure-1 

 
AnimalID VetID VetPhone 
111 AAA 555-1111 
111 BBB 555-2222 
222 AAA 555-1111 
222 CCC 555-3333 

 
 (step 3 – 9 second iteration) 
 

Choose OwnerID as the PK for the set 
{OwnerID, OwnerName} (step 3). 
Create a new table named PetOwners 
(step 4), copy the original table’s PK 
AnimalID to it (step 5), move OwnerID 
to it (step 6), then remove OwnerName 
from the original table and place it in the 
new table (step 7). Remember to place 
each atomic value from a repeating 
group into a separate row, as in: 

 
AnimalID OwnerID OwnerName 
111 O11 Fred 
111 O22 Sue 
222 O11 Fred 

 
If there are any duplicate rows in the 
new table, remove them and change 
table names as appropriate (step 8). In 

this example, no changes were made for 
step 8. Next, make OwnerID together 
with AnimalID the PK of the new 
PetOwners table (step 9). The new table 
now has the structure PetOwners 
(AnimalID, OwnerID, OwnerName) 
while the original table has the structure 
Animals (AnimalID, Breed, Type, 
Food). The finished PetOwners table is 
shown below: 
 

Table 8 PetOwners Table from 1NF Procecure-1 
 

AnimalID OwnerID OwnerName 
111 O11 Fred 
111 O22 Sue 
222 O11 Fred 

 
The complete set of relation structures and 
tables with sample data are shown below: 
 

Animals (AnimalID, Breed, Type, Food) 
PetVets (AnimalID, VetID, VetPhone) 
PetOwners (AnimalID, OwnerID, 
OwnerName) 

 
Table 9 Animals 1NF 

 
AnimalID Breed Type Food 
111 Dachshund Dog Dry 
222 Siamese Cat Tuna 

 
Table 10 PetVets 1NF 

 
AnimalID VetID VetPhone 
111 AAA 555-1111 
111 BBB 555-2222 
222 AAA 555-1111 
222 CCC 555-3333 

 
Table 11 PetOwners 1NF 

 
AnimalID OwnerID OwnerName
111 O11 Fred 
111 O22 Sue 
222 O11 Fred 

 

  



  

Table 12 Repeating Groups Eliminated with Empty Cells 
 

AnimalID Breed Type Food VetID VetPhone OwnerID OwnerName
111 Dachshund Dog Dry AAA 555-11 1 1 O11 Fred 
    BBB 555-22 2 2 O22 Sue 
222 Siamese Cat Tuna AAA 555-11 1 1 O11 Fred 
    CCC 555-33 3 3   
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Table 13 Repeating Groups Eliminated & Empty Cells Filled In 

 
AnimalID Breed Type Food VetID VetPhone OwnerID OwnerName
111 Dachshund Dog Dry AAA 555-11 1 1 O11 Fred 
111 Dachshund Dog Dry BBB 555-22 2 2 O22 Sue 
222 Siamese Cat Tuna AAA 555-11 1 1 O11 Fred 
222 Siamese Cat Tuna CCC 555-33 3 3 O11 Fred 
 

1NF PROCEDURE-2: 
 

List all columns with repeating groups (step 
1) 
Form the listed columns into separate sets of 
columns that describe the same entity (each 
column in a given set should “be about” the 
same entity) (step 2) 
 

For each set of columns formed above: 
 
Locate (or create by adding an additional 
column or columns) a column or group 
of columns that uniquely identifies each 
row in the set of columns (step 3) 
Make the column or group of columns 
above part of the PK for the original 
table (step 4) 
Remove repeating groups by spreading 
the data values in each repeating group 
into separate rows, copying data values 
from the original atomic columns into 
the otherwise “empty” cells of the new 
table rows formed in the process (step 5) 

End For 
 

Example of 1NF PROCEDURE-2: 
 
We will use the same table as in the 

example of PROCEDURE-1. The first  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

two steps are the same in both 
procedures so they are not repeated here. 

  
(step 3) 

For the first iteration choose 
VetID; for the second iteration 
choose OwnerID. 

(steps 4-5) 
The primary key of the original 
table is extended to include 
VetID and OwnerID as shown in 
the tables 13 and 14. In the first 
version  of   the table  we remove 
repeating groups into separate 
rows, and in the final version of 
the table we fill in the “empty” 
data values with matching values 
from the original table: 

 
Although the two procedures above produce 

quite different results (PROCEDURE-1 
produced three tables and PROCEDURE-2 
produces just one), after applying the 
conversion algorithms for 2NF and 3NF we 
shall see that the end result is the same in both 
cases! One of the strengths of the normalization 
process is that, regardless of the starting point, it 
zeros in on a “good” design for the database in 
question. 

 
 
 
 

  



  

ALGORITHM  FOR  GETTING  TO  2NF 
 

The first step in putting a table in 2NF is to list 
all the functional dependencies and then identify 
those in the list that keep the table from being in  
2NF, i.e., identify those dependencies where the 
LHS is just part of a composite candidate key. 
The decomposition in the 2NF procedure shown 
below will then eliminate the unwanted 
dependencies, putting the relation in 2NF. 

 
Definition: Part of a composite key determines a 
non-key column 

 
2NF PROCEDURE: 
 

While there are tables not in 2NF: 
For each original table O not in 2NF: 

List all FD’s for O that violate 2NF 
(LHS is just part of composite 
candidate key; RHS is non-key 
column) (step 1) 

For each distinct LHS in the list: 
MOVE all the RHS columns that 
correspond to the LHS being 
processed to a new table N (step 2) 
COPY the LHS column(s) from 
the original table O to the new 
table N (step 3) 
Make the copy of the LHS from O 
the primary key of the new table N 
(step 4) 
Make the original LHS in O a 
foreign key in O referencing the 
copy of the LHS in N (step 5) 
Assign an appropriate name to the 
new table N (step 6) 
IF the original table O had data 
loaded Then 

Remove any duplicate rows from 
O and N 
End If (step 7) 

End For 
End For 

End While 
 
 
 

2NF Example-1: 
 
We first consider the relation structures 

produced in the example for 1NF Procedure-1: 
 

Animals (AnimalID, Breed, Type, Food) 
PetVets (AnimalID, VetID, VetPhone) 
PetOwners (AnimalID, OwnerID, 
OwnerName) 

(step 1) 
The Animals table is trivially in 2NF 
because the only candidate key is single-
column (AnimalID). PetVets and 
PetOwners both have only one candidate 
key each, but since in both cases the 
candidate key is composite, we must 
check the functional dependencies for 
PetVets and PetOwners: 
 

(AnimalID, VetID)  VetPhone 
VetID  VetPhone (PROBLEM 
DEPENDENCY!) 
(AnimalID, OwnerID)  OwnerName 
OwnerID  OwnerName (PROBLEM 
DEPENDENCY!) 
 

Since VetID and OwnerID are LHS’s 
that are only part of their respective 
composite candidate keys, neither 
PetVets nor PetOwners is currently in 
2NF. 
 

(step 2) [Note: for this and following steps we   
combine iterations into one discussion] 

 
Create a new table for each problem 
dependency and move the RHS columns 
from each problem dependency to its 
corresponding new table, giving: 
 
Animals (AnimalID, Breed, Type, Food) 
PetVets (AnimalID, VetID) 
PetOwners (AnimalID, OwnerID) 
NewTable (VetPhone) 
NewTable (OwnerName) 
 

COMPUTERS IN EDUCATION JOURNAL  65 
  



  

(steps 3 - 6) 
 

Copy the LHS column (or columns) of 
each problem dependency to its 
respective new table where it becomes 
the primary key (steps 3 - 4). Make the 
copy of the LHS still in the original table 
a foreign key referencing the new table, 
so that PetVets.VetID references 
Vets.VetID and PetOwners.OwnerID 
references Owners.OwnerID (step 5). 
Finally, assign the name Vets to the vet 
information table and the name Owners 
to the owner information table (step 6) to 
yield: 
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Animals (AnimalID, Breed, Type, Food) 
PetVets (AnimalID, VetID) 
PetOwners (AnimalID, OwnerID) 
Vets (VetID, VetPhone) 
Owners (OwnerID, OwnerName) 

 
The results for the PetVets and Vets 

tables are shown below. Note the 
duplicate row 3 in Table 15 Vets. 

 
 

Table 14 PetVets 
 

AnimalID VetID
111 AAA 
111 BBB 
222 AAA 
222 CCC 

 
Table 15 Vets 

 
VetID VetPhone 
AAA 555-1111 
BBB 555-2222 
AAA 555-1111 
CCC 555-3333 

 
(step 7) 

If data is already loaded in the tables 
when normalization is carried out, it can 
result in duplicate rows which are 
removed in this final step. Data values  

for the PetVets and Vets tables after 
duplicate rows are removed are shown 
below. A parallel situation would exist 
for PetOwners and Owners. 

 
Table 16 Completed PetVets Table 

 
AnimalID VetID

111 AAA 
111 BBB 
222 AAA 
222 CCC 

 
Table 17 Completed Vets Table with 

Duplicate Rows Removed 
 

VetID VetPhone 
AAA 555-1111 
BBB 555-2222 
CCC 555-3333 

 
2NF Example-2 
 
Consider the relation structure for Table 13 

Repeating Groups Eliminated & Empty Cells 
Filled In: 

 
Animals (AnimalID, Breed, Type, Food, 
VetID, VetPhone, OwnerID, OwnerName) 
 

(step 1)  
The only candidate key is the composite key 

(AnimalID, VetID, OwnerID). However, each 
of the three key columns is by itself a 
determinant. The list of “problem” dependencies 
created in step 1 thus consists of: 

 
AnimalID  Breed, Type, Food 
VetID  VetPhone 
OwnerID  OwnerName 

 
(step 2) 
Create a new table for each distinct LHS and 

move the corresponding RHS’s to their 
respective new tables yielding the structures: 

 
 

  



  

Animals (AnimalID, VetID, OwnerID) 
NewTable (Breed, Type, Food) 
NewTable (VetPhone) 
NewTable (OwnerName) 

 
 (steps 3 – 6) 
 
Now copy the LHS’s from Animals to their 

respective new tables, where they will become 
the primary key (steps 3 – 4), declare the 
original LHS’s as foreign keys referencing their 
respective new tables (step 5), and assign 
appropriate names to the new tables (and/or 
rename existing tables if desired): 
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Animals (AnimalID, VetID, OwnerID) 
AnimalCare (AnimalID, Breed, Type, 
Food) 
Vets (VetID, VetPhone) 
Owners (OwnerID, OwnerName) 
 

(step 7) 
Since Animals has no non-key columns, it is in 

2NF. Since the three new tables have no 
composite candidate keys, they are also in 2NF. 
Note that it may again be necessary to remove 
duplicate rows from the new design if the 
decompositions are performed on tables that 
already contain data. See Table 17 Completed 
Vets Table above for an example of this 
situation. Obviously it is better to carry out 
normalization prior to loading data into the 
database – since this eliminates the need to 
remove any duplicate rows. The Owners table 
just prior to removing duplicate rows is shown  

 
 
 
Table 19 2-Way versus 3-Way Relationships 

 
 

below. The last two rows (in italics) are 
duplicates and would be removed in step 7: 

 
OwnerID OwnerName 
O11 Fred 
O22 Sue 
O11 Fred 
O11 Fred 

 
Note that although all relations are now in 2NF, 
the relation structures produced in 2NF 
Example-2 are different from the relation 
structures produced in 2NF Example-1. 
Example-2 models the relationships among 
Animals, Vets, and Owners as a single 3-way 
relationship, while Example-1 models the same 
relationships  as  a  pair  of  2-way relationships. 
While both designs are in 2NF, the database 
designer should choose the design that best 
models the reality (business requirements) of the 
organization for which the database is being 
developed (this issue is beyond the scope of this 
paper). The following table 19-2 contrasts the 
two designs. 
 

ALGORITHM  FOR  GETTING  TO  3NF 
 

Careful checking will reveal that the tables for 
both 2NF Example-1 and 2NF Example-2 are 
not only in 2NF, but, with one exception, are in 
3NF and BCNF as well. The only table not in 
3NF appears as Animals (AnimalID, Breed, 
Type, Food) in Example-1 and AnimalCare 
(AnimalID, Breed, Type, Food) in Example-2 
(the table name “Animals” will be used in this 
section). This table is not in 3NF because of the 
dependencies 

 
 

Example 1 
Two 2-Way Relationships 

Example 2 
One 3-Way Relationship 

Animals (AnimalID, Breed, Type, Food) 
PetVets (AnimalID, VetID) 
PetOwners (AnimalID, OwnerID) 
Vets (VetID, VetPhone) 
Owners (OwnerID, OwnerName) 

Animals (AnimalID, VetID, OwnerID) 
AnimalCare (AnimalID, Breed, Type, Food) 
Vets (VetID, VetPhone) 
Owners (OwnerID, OwnerName) 

 
 
 
 
 
 
 
 

  



  

Breed  Type 
Breed  Food 
Type  Food 

 
in all of which a non-key column determines 
another non-key column. 
 
Definition: A non-key column determines 
another non-key column 
 

3NF PROCEDURE: 
 
A slight variation of the 2NF Procedure can be 

used for 3NF as well. Use the 2NF Procedure 
but replace the 2NF version of step 1 with the 
following: 

 
List all FD’s for O that violate 3NF 
(LHS is a non-key column and RHS is 
another non-key column). Order the list  
so that if a column appears both as an 
LHS and an RHS, all the FD’s with the 
column on the LHS appear in the list 
before any FD’s with the column on the 
RHS. Note that if a column appears on 
both the LHS and RHS of the same 
dependency it can be safely removed 
from the LHS since (A, B)  B if and 
only if A  B. Finally if there are 
transitive dependencies of the form A  
B, B  C, and A  C in the list, 
remove the dependencies of the form A 

 C (step 1) 
 

3NF Example-1: 
 
(step 1) 
The list of FD’s for Animals (AnimalID, 

Breed, Type, Food) that violate 3NF is: 
 

Breed  Type 
Breed  Food 
Type  Food 

 
Since Type appears on both an LHS and an 

RHS,  order  the   list  so  that  the  dependencies  
 

with Type on the LHS appear before those 
where Type appears on the RHS: 

Type  Food 
Breed  Type 
Breed  Food 
 

Now note that Breed  Type, Type  Food, 
and    Breed  Food   form   a  set  of  transitive  
dependencies from which we should remove the 
dependency Breed  Food, leaving the final 
list: 

Type  Food 
Breed  Type 
 

(steps 2 - 7 iteration 1) 
Create a new table and move the RHS of the 

first dependency from Animals to the new table 
(step 2), then copy the LHS of the first 
dependency to the new table and declare it the 
primary key (steps 3 - 4). Make Type an FK in 
Animals referencing the new table (step 5) then 
give an appropriate name to the new table (step 
6) and if data is loaded remove any duplicate 
rows (step 7). The table structures that result 
are: 

 
Animals (AnimalID, Breed, Type) 
Feeds (Type, Food) 

 
(steps 2 - 6 iteration 2) 
Create a new table and move the RHS of the 

second dependency (Breed  Type) to it (step 
2), then copy the LHS of the second dependency 
to it and declare it the PK (steps 3-4). Make 
Breed in Animals an FK referencing Breed in 
the new table (step 5), then give an appropriate 
name to the new table (step 6) and remove any 
duplicate rows (step 7), yielding the table 
structures: 

 
Animals (AnimalID, Breed) 
Feeds (Type, Food) 
Breeds (Breed, Type) 

 
All three relations are now in 3NF as desired. 
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SUMMARY 
 

The normalization process is often 
summarized with a witty version of a courtroom 
oath: 

 
The key, the whole key, and nothing but the 
key (so help me Codd) 

The phrase “the key” refers to the fact that 
every candidate key in a table automatically 
(since by definition candidate keys are unique) 
determines every other column in the table. 
Thus for any given candidate key, “the key” 
determines all the other columns. 

 
The phrase “the whole key” ensures that the 

relation is in 2NF, i.e., that no proper subset of a 
candidate key determines a non-key column. 
Thus for any given candidate key, it is only “the 
whole key” that determines non-key columns. 

 
The phrase “nothing but the key” ensures that 

the relation is in 3NF, i.e., that non-key columns 
are functionally dependent only upon (nothing 
but) candidate keys. Thus there are no non-key 
columns that are functionally dependent upon 
other non-key columns. 

 
Finally, the phrase “so help me Codd” refers to 

E. F. Codd, whose seminal paper published in 
1970 earned him the reputation as the father of 
the relational database model [4]. 
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