

NORMALIZATION FOR NORMAL PEOPLE
UNDERSTANDING ALGORITHMS FOR GETTING TO 3NF

Larry Newcomer

The Pennsylvania State University
York Campus

ABSTRACT

Database projects typically weave database-

specific activities (such as Enterprise Data
Modeling, Conceptual Data Modeling, Logical
Database Design, and Physical Database
Design) into standard development
methodologies. This enhances methodologies
such as the traditional SDLC (Waterfall Model),
Rapid Application Development (RAD), and the
newer Object-Oriented development
methodologies to accommodate data-centric
projects. In all cases, an abstract model of the
relevant data requirements must be developed
and documented during Conceptual Data
Modeling, the output of which can take several
forms, such as ER diagrams (ERD), Enhanced
ER diagrams, or UML Class diagrams. The
Logical Database Design phase then transforms
the Conceptual Data Model into a set of
relational table structures which can be
implemented using a commercial DBMS. Prior
to physical design and implementation,
however, the table structures are typically
analyzed and improved through a process called
normalization. This step is appropriate
regardless of whether traditional (ERD, EERD)
or OO (UML Class diagram) modeling has been
used, thus making good normalization skills
highly desirable for all database project teams.
However, such skills are not always easy to
come by. Many introductory texts present
normalization solely through examples, an
approach that does not scale well to real
projects. Advanced texts present formal
mathematics that is not readily assimilated by
undergraduates and practicing professionals.
This paper presents algorithms for converting
improper relations to 3NF in a formal manner
that is nevertheless accessible to undergraduates

and database professionals alike. The algorithms
depend only on the concepts of primary key,
candidate key, and functional dependency which
are defined herein. The paper begins with basic
concepts and definitions, gives two equivalent
algorithms for putting an improper relation into
1NF, and ends with a discussion of algorithms
for 2NF and 3NF. The relationship between
3NF and BCNF is also briefly discussed. These
results should prove useful in both the
classroom and corporate environments. The
paper assumes that the reader is already familiar
with database development methodologies, data
modeling, normal forms, and basic
normalization concepts.

INTRODUCTION

Current database development methodologies

all produce a Conceptual Data Model of
relevant data requirements and business rules
that is independent of any particular technology,
hardware/software platform, etc [1]. Although
conceptual modeling tools may differ, the
activity of modeling remains constant across
methodologies. For example, the traditional
SDLC (Waterfall model), Information
Engineering (IE), and Rapid Application
Development (RAD) methodologies may
employ Entity-Relationship Diagrams (ERD’s)
or Enhanced Entity-Relationship Diagrams
(EERD’s) for Conceptual Modeling [2], while
Object-Oriented development methodologies
may employ UML Class Diagrams for the same
purpose [5].

After a Conceptual Data Model has been

developed, it must ultimately be transformed
into a format that is suitable for implementation
with a particular database technology. At the

COMPUTERS IN EDUCATION JOURNAL 53

current time, this involves converting the
Conceptual Data Model into relational table
structures [3] or Object-Oriented class
definitions [7] in a process usually called
Logical Database Design [4].

Outputs from Logical Design in turn become

the inputs to the process of Physical Design in
which the Logical Design specifications are
translated into the format required for
implementation on a specific DBMS [8]. Prior
to releasing the logical design to the physical
design process, however, the table or class
structures are typically put through a process
called normalization. Normalization detects and
corrects several problems whose root cause is
data redundancy, i.e., storing the same
information in more than one place in the
database [6].

Problems related to data redundancy include

the following:

• Wasted storage space: Duplicate copies

of the same data values wastes space.

• Update anomalies: An update anomaly
occurs when changing a given data value
in the database requires multiple updates
because that value occurs in multiple
copies. For example, if Fred’s telephone
number occurs at five different places
within the database and needs to be
changed, all five copies must be updated.
This wastes computer time (both
processor and I/O), and can also result in
data inconsistency if for some reason all
five copies of the phone number are not
updated identically.

• Insertion anomalies: An insertion

anomaly occurs when it is not possible
to store (i.e., add) a given piece of
information without also storing some
other, unrelated piece of information as
well. For example, it may be desired to
insert Fred’s student id into the database,

but the database design requires that in
order to do so a course number for a
course that Fred is taking must also be
inserted. If Fred hasn’t yet enrolled in
any courses, this creates an obvious
problem. Although there are
workarounds for this situation (e.g.,
entering a “dummy” course number or a
null value), the workarounds create
serious problems of their own [4]. Like
update anomalies, insertion anomalies
are undesirable in a database design.

• Deletion anomalies: A deletion anomaly
occurs when it is not possible to delete a
given piece of information without also
deleting another, unrelated piece of
information that it is desirable not to
delete. For example, Fred may withdraw
from a course and so it is desired to
delete that course from Fred’s student
record. If the course to be deleted is the
only course Fred is taking, poor database
design may force other information
about Fred (e.g., Fred’s address and
telephone number) to be deleted along
with the course information. Again there
are possible workarounds for this
situation (e.g., replacing the course
information with “dummy” or null
placeholders), but these also create
serious problems of their own [4].
Deletion anomalies, like insertion and
update anomalies, are undesirable in a
good database design.

The normalization process first identifies

undesirable redundancies (and corresponding
anomalies) and then eliminates them through a
technique called decomposition. Decomposition
splits one table (or class) into two (or eventually
more) tables (or classes). In order to ensure that
splitting tables during the normalization process
does not result in loss of information or
invalidation of important business rules and
constraints, relational theory requires that
decompositions be lossless-join, dependency-
preserving decompositions [8].

COMPUTERS IN EDUCATION JOURNAL 54

• Lossless-Join Decomposition: The
decomposition must not result in loss of
information in the database
(decompositions that result in loss of
information are called loss-y). All data in
the original table must be recoverable
via relational join operations on the
decomposed tables. This means that any
row in the original table must be
recoverable by combining appropriate
rows of the decomposed tables [1].

• Dependency-Preserving
Decomposition: The decomposition
must not prevent constraints that were
enforced on the original relation from
being enforced on the decomposed
relations. This means that any constraint
on the original table must be enforceable
by setting appropriate constraints on the
decomposed tables. Thus there is no
need to perform joins on the
decomposed tables to discover whether a
constraint on the original table is
violated [1].

In order to identify undesirable redundancies

and eliminate them through lossless-join,
dependency-preserving decompositions, we
must be able to identify functional dependencies
in the original and decomposed relations.
Understanding functional dependencies is
critical to creating good database designs [9]. In
order to better explore functional dependencies
we first introduce the concepts of primary and
candidate keys along with a notation for
capturing relation structure.

A candidate key is a minimal set of one or

more columns in a table whose data values
(taken together as a whole if there are multiple
columns) are guaranteed never to be duplicated
in the table. This means that the combined data
values for all the candidate key columns in a
given row must differ by at least one binary
digit from all the other combined data values for
the candidate key columns in every other row of
the table. For example, if (FName, MI, LName,

Phone) are four columns that form a candidate
key for a table, then it must be impossible for
any two rows of the table to have exactly the
same data values for each of FName, MI,
LName, and Phone. The concept of minimal
means that if any column is removed from the
candidate set of columns, the remaining
columns no longer form a candidate key (i.e.,
are no longer guaranteed to be unique). A
candidate key consisting of more than one
column is called a composite key, while a
single-column key is called a simple key.

Note that while (FName, MI, LName, Phone)

may be a good example for introducing the
concept of candidate key, in real life it is
difficult to guarantee uniqueness. Since people
share names and phone numbers, duplication of
key values is actually possible. Suppose, for
example, that Fred J. Pherd Jr. lives with his
father Fred J. Pherd Sr. at the same address with
the single phone number 555-1234. If the
LName data value is entered as ‘Pherd’ for both
father and son, then we would have duplicate
rows in the database – and of course (FName,
MI, LName, Phone) would not be a candidate
key. This is why database designers will often
create special fields (such as account numbers,
part numbers, etc.) that have no inherent
meaning in the real world but whose sole
purpose is to serve as candidate keys that
identify rows in a table.

The database designer will also pick one key

from among the candidate keys for a table to
serve as that table’s primary key. The primary
key is the one most used to locate rows in a
table. Ideally it should express what the table is
“about”, should be stable (i.e., once entered for
a row, its value should not change), and should
consist of a minimal number of columns (ideally
one).

Columns that are not themselves a candidate

key and are not part of a composite candidate
key are known as non-key columns. Note well
that non-key columns are not part of any

COMPUTERS IN EDUCATION JOURNAL 55

candidate key (which includes but is not limited
to the primary key).

We now introduce a simple notation for

capturing the name, attributes, and primary key
for a table:

table-name (primary-key-col1, primary-key-

col2, column3, column4, …, columnn)

COMPUTERS IN EDUCATION JOURNAL 56

In this straightforward notation the table name

is written first followed by a parenthesized list
of attributes. The primary key attribute (or
attributes if it is a composite key) are all
underlined. This notation for relation structure
provides an essential tool for exploring
functional dependencies and carrying out
normalization via lossless-join, dependency-
preserving decompositions. The following table
structure will be used in later examples. It is an
unnormalized or improper relation badly in need
of improvement.

Animals (AnimalID, Breed, AnimalType,

FoodType, VetID, VetPhone, OwnerID,
OwnerName)

FUNCTIONAL DEPENDENCIES

Let A1, A2, …, An and B be attributes of a

relation (columns of a table). We say that the set
of attributes (A1, A2, …, An) functionally
determines (or simply determines) B, or that B
is functionally dependent on (A1, A2, …, An),
and we write

 (A1, A2, …, An) B
if for any two rows in which the corresponding
data values for (A1, A2, …, An) all match (i.e.,
are equal), then the data values for B in the
same two rows also match (i.e., are equal) [6].
The Left Hand Side (LHS) of a functional
dependency, for example (A1, A2, …, An) in the
definition above, is called a determinant.

Another way to define functional dependency

is that (A1, A2, …, An) B if and only if for
each set of data values that occurs for (A1, A2,

…, An) in the table there is at most one
corresponding data value for B [4]. Consider the
following portion of an Enrollments table:

Table 1 Enrollments

StudentID StuName StuEmail StuMajor StuDorm
111 Fred F111 Math East
222 Sue S222 InfoSci North
333 Mary M333 English North
444 Fred F444 Math East

Assume that StudentID is the primary key and

that StuEmail is a candidate key (this implies
that both fields are guaranteed to always be
unique). Does StudentID functionally determine
any other columns? The answer is in fact that
StudentID determines all the other columns, i.e.,

StudentID StuName
StudentID StuEmail
StudentID StuMajor
StudentID StuDorm

We can abbreviate this set of dependencies as

StudentID StuName, StuEmail, StuMajor,
StuDorm

Why do these dependencies hold? When a

column (or group of columns) is unique, it
automatically determines every other field in the
table. This is because the uniqueness of the Left
Hand Side (the determinant or LHS) means that
a given data value (or set of data values if the
determinant consists of multiple columns) can
only occur in one row of the table. Since a given
data value (or values) can only occur in one
row, it can only match up with at most one
value for the RHS (Right Hand Side of the
dependency). This satisfies the second definition
of functional dependency given above. Thus
candidate keys (including primary keys)
automatically determine all other columns in a
table.

Since StuEmail is also unique (a candidate

key), we have the following additional
dependencies:

StuEmail StudentID, StuName,StuMajor,
StuDorm

Note that the Right Hand Side (RHS) of a

dependency does not have to be unique in order
to have a valid dependency, as in StudentID
StuDorm or StudentID StuMajor. Both the
StuDorm and StuMajor columns have duplicate
entries, yet they correctly appear on the RHS of
the indicated dependencies.

So far, the LHS (determinants) of our example

dependencies have been unique. This is not
required by the definition of functional
dependency, however. Consider the following
portion of the Animals table whose structure
was shown earlier:

Table 2 Animals

AnimalID Breed AnimalType FoodType
111 Dachshund Dog Dry
222 Persian Cat Tuna
333 Brittany

Spaniel
Dog Dry

444 Dachshund Dog Dry
555 Siamese Cat Tuna
666 Canary Bird Seed

COMPUTERS IN EDUCATION JOURNAL 57

The only column that is unique is the primary

key AnimalID. Nevertheless, there are three
dependencies involving the other (non-unique)
columns. Specifically,

 Breed AnimalType, FoodType
 AnimalType FoodType

Notice that Breed is not unique. The data value

“Dachshund” appears in the Breed column in
both rows 1 and 4. What matters with respect to
the dependency Breed AnimalType is that
the same two rows of the AnimalType column
must also contain duplicate data values (in the
example above the value “Dog” appears in both
rows 1 and 4 of the AnimalType column). To
have a functional dependency, whenever two or
more rows of the Breed column contain data
values that equal one another, then the data
values in the corresponding rows of the

AnimalType column must also all equal one
another.

Now consider the dependency AnimalType

FoodType. Rows 1, 3, and 4 of the AnimalType
column contain the value “Dog”; the
corresponding rows of the FoodType column all
contain the value “Dry”. Likewise rows 2 and 5
of the AnimalType column contain the value
“Cat” while the corresponding rows of the
FoodType column all contain the value “Tuna”.
The value “Dog” in AnimalType always
matches up with “Dry” in FoodType, while the
value “Cat” in AnimalType always matches up
with “Tuna” in FoodType. If every possible
value of AnimalType can be proven to match up
with no more than one value in FoodType, then
by definition AnimalType FoodType.
Although the data in Table 2 Animals would
seem to support the claim that FoodType
AnimalType, this is not the case. Suppose for
example that we add a row with AnimalType =
‘Rodent’ and FoodType = ‘Seed’. There would
then be two rows with FoodType = ‘Seed’ but
one would have AnimalType = ‘Rodent’ and the
other would have AnimalType = ‘Bird”, thus
violating the definition of a functional
dependency.

It is critical to note that a functional

dependency A B cannot be proven to hold by
observing existing data values in columns A and
B of the relevant table. This does not work
because even though a dependency may seem to
exist in the data today, tomorrow someone may
add new data values to the columns that would
invalidate the dependency. To demonstrate a
functional dependency, one must be able to give
arguments proving that whenever two or more
rows in the columns making up the LHS A have
the same value, then the corresponding rows in
column B will also be equal to one another –
every single time, guaranteed. Thus in Table 2
Animals if a given type of animal is always fed
the same type of food, then AnimalType
FoodType. Note again that if it is possible for
different types of animals to be fed the same

type of food, then FoodType does not determine
AnimalType.

We can use existing data to show that a

functional dependency does not hold by finding
a counter-example in the data. For example, the
claim that AnimalType Breed can be
disproved by observing that in rows 1 and 3 of
the existing table AnimalType has the value
“Dog”, but that in rows 1 and 3 Breed has not
one, but two different values (‘Dachshund’ in
row 1 and ‘Brittany Spaniel’ in row 3), thus
failing to meet the definition of functional
dependency.

The following table lists all the functional

dependencies for Tables 1 and 2 above. We
assume that students in the same StuMajor are
always assigned to the same StuDorm (such a
constraint derived from the way things work in
the “real world” is called a business rule).
Similarly, we assume the business rule that
animals of the same type are always fed the
same type of food.

Table 3 List of Functional Dependencies

Functional Dependencies
for Table 1 Students

Functional Dependencies
for Table 2 Animals

StudentID StuName,
 StuEmail,
 StuMajor,
 StuDorm

StuEmail StudentID,
 StuName,
 StuMajor,
 StuDorm
StuMajor StuDorm

AnimalID Breed,
 AnimalType,
 FoodType
Breed AnimalType,
 FoodType
AnimalType FoodType

COMPUTERS IN EDUCATION JOURNAL 58

NORMAL FORM DEFINITIONS

The normalization process is guided by a set of

definitions for normal forms. Each normal form
identifies specific design flaws and provides an
algorithm (or detailed set of instructions) for
correcting the design. First Normal Form (1NF)
deals with issues of compound fields and
repeating groups, while Second Normal Form
(2NF) deals with issues involving composite

candidate keys. Third Normal Form (3NF) deals
with certain kinds of relationships between non-
key columns, and Boyce-Codd Normal Form
(BCNF) requires that all functional
dependencies have determinants that are unique
(i.e., have no duplicate values in the LHS
column or columns). Each “higher” normal
form is a refinement of its preceding normal
form, so to be in 2NF a table must also be in
1NF; to be in 3NF a table must also be in 2NF
(and so in 1NF); to be in BCNF a table must
also be in 3NF (and so in 2NF and 1NF). In
short, each higher normal form is a proper
subset of its predecessor(s). We begin by
presenting the definitions for each normal form.

FIRST NORMAL FORM (1NF)

A relation is in First Normal Form if all its

domains are atomic. A domain is the set of
allowable data values that may appear in a
column. A domain is atomic if each data value
in the domain can not be broken down into parts
such that any of the parts will ever be
meaningful or useful. Put another way, a
domain is atomic if nobody will ever need to
work with a proper subset of the characters
making up any of the data values in the domain.
Since this concept depends on the potential
human need to work with just a part of a data
value, it is obviously determined by business
requirements rather than by pure theory.

In practice there are two types of design flaws

that result in non-atomic domains. A compound
(or composite) attribute (or field or column)
consists of more than one kind of usable
information stored in a single column. The
classic examples of composite fields are
illustrated in the following table (for simplicity
shown with only one row):

Table 4 Composite Fields

Name Address
Fred J Pherd 123 Sesame St, BirdCity, FL 12345

It is easy to fix composite fields by breaking
them up into separate columns before any data
is loaded into the table (it may not be so easy to
break up composite fields after data has been
loaded!). The table below corrects the Name and
Address composite fields. Note that the Street
column could have been broken up into the
three columns StreetNumber (123), StreetName
(Sesame), and StreetType (St). It is only safe to
combine these three fields if it can be
successfully argued that no one will ever want
to work with them separately (or conversely that
they will always be treated as one combined
whole).

Table 5 Corrected Composite Fields

FName MI LName Street City State Zip
Fred J Pherd 123 Sesame St BirdCity FL 12345

COMPUTERS IN EDUCATION JOURNAL 59

The second type of non-atomic domain

involves repeating groups. A repeating group is
more than one instance of the same kind of
information appearing in a single column.
Consider the CurrentCourses column in the
table below:

Table 6 Repeating Group

StudentID CurrentCourses

111 IST 300, IST 400, Math 200, English 100

There are four course names in the

CurrentCourses column. The four data values
are all the same kind of information (course
names), but the issue is that there is more than
one of them. Unfortunately, it is not as simple to
correct repeating groups as it is to correct
composite fields. The next section presents a
procedure for converting improper relations
(with repeating groups) into 1NF (where
repeating groups are eliminated).

SECOND NORMAL FORM (2NF)

Normal forms above 1NF (up to BCNF) deal

with issues involving functional dependencies.
Remember that a relation must be in 1NF before
it can be in 2NF.

Second Normal Form deals specifically with
issues that only arise when a table has one or
more composite candidate keys. If a table has no
composite candidate keys and it is in 1NF, then
it is automatically in 2NF. For a relation in 1NF
to be in 2NF when it has composite candidate
keys, it must have no functional dependencies in
which a non-key column depends on a proper
subset of a candidate key, i.e., non-key columns
must depend on the entire candidate key, not
just a part of it. Consider the following relation
structure:

Orders (CustID, ItemID, ItemDescription,
Quantity, CustZip)

The combination of CustID and ItemID form

the only candidate key, and therefore are chosen
as the (composite) primary key. No single
column in Orders is guaranteed to be unique.
Customers may order multiple items, and so the
same CustID may appear in multiple rows.
Items may be ordered by multiple customers,
and so the same ItemID may appear in multiple
rows. The description, quantity, and zip code
fields may also contain duplicate data values.

Now consider the functional dependencies.

Since (CustID, ItemID) together are unique,
they determine every other column. Since a
given customer will always have the same zip
code, CustID CustZip, and since a given item
will always have the same description, ItemID

 ItemDescription. A complete list of
functional dependencies follows:

(CustID, ItemID) ItemDescription,
Quantity, CustZip
CustID CustZip
ItemID ItemDescription

Since CustID by itself is a proper subset of the

composite candidate key (CustID, ItemID), the
dependency CustID CustZip violates the
definition of 2NF. Likewise, since ItemID by
itself is a proper subset of the composite
candidate key (CustID, ItemID), the dependency
ItemID ItemDescription also violates 2NF.

These problems can be corrected with lossless-
join, dependency-preserving decompositions as
discussed below.

To enhance understanding of 2NF we lastly

consider some anomalies associated with the
sample relation (not in 2NF):

Insertion Anomaly: It is impossible to add
a customer’s zip code unless the customer
has ordered an item
Deletion Anomaly: If we drop a customer
who has placed the only order for an item,
we lose the item description along with the
customer information

Update Anomaly: If a customer orders five
items, the customer’s zip code will appear in
five rows of the table. If the customer moves
to a different zip code, all five copies will
have to be updated

THIRD NORMAL FORM (3NF)

To be in 3NF relations must first be in 2NF. In

addition, 3NF tables must not have any non-key
columns that are dependent on other non-key
column(s). An equivalent definition is that
relations in 3NF must not have any transitive
dependencies in which A B and B C, from
which it follows that A C [4]. Yet another
way to define 3NF is to require that if the
general dependency “LHS R” holds, then one
of the following must be true [6]:

• R is a column that appears in the group

of columns making up the LHS [making
this a trivial dependency since for any
columns X, Y, and R if X R, then (X,
Y) R]

• The LHS is a superkey (a group of one
or more columns that uniquely identifies
each row of the table; however, unlike a
candidate key, a superkey may include
“extra” columns that do not contribute to
the uniqueness)

• R is part of a composite candidate key
for the table in question

For an example of a table in 2NF but not in
3NF, consider the structure for Table 2 Animals:

Animals (AnimalID, Breed, AnimalType,
FoodType)

AnimalID is the only candidate key (all other

columns and combinations of columns have
duplicate values in the sample data) and
therefore is the primary key. Since all domains
appear to be atomic and since the only candidate
key is single-column, the table is in 1NF and
also in 2NF. A partial list of functional
dependencies from Table 3 List of Functional
Dependencies is repeated below:

Breed AnimalType
Breed FoodType
AnimalType FoodType

Since Breed, Foodtype, and AnimalType are

all non-key columns (i.e., not candidate keys or
part of candidate keys), all three dependencies
violate the first definition of 3NF. Note too that
since the primary key AnimalID determines
Breed, and since Breed FoodType, we have a
transitive dependency that also violates the
second definition of 3NF. Finally, consider the
dependency AnimalType FoodType. The
RHS (FoodType) is not part of the LHS
(AnimalType); the LHS is not a superkey (since
AnimalType is not unique); and the RHS is not
part of any candidate key for the table. Thus
none of the conditions in the more formal third
definition of 3NF hold, and the relation also
violates the third definition of 3NF. Examples of
anomalies resulting from the structural problems
associated with not being in 3NF are shown
below. These problems can be corrected by
lossless-join, dependency-preserving
decompositions as discussed later.

Insertion Anomaly: A new food cannot
be entered into the table unless there is
an animal that is fed the new FoodType.

Deletion Anomaly: If you delete the
only animal that eats a given FoodType,

COMPUTERS IN EDUCATION JOURNAL 60

you must delete the information about
the food along with the information
about the animal.

Update Anomaly: If a given
AnimalType’s food changes, the change
must be made to multiple rows of the
table, wasting computer resources and
creating the possibility of inconsistent
data should all copies of FoodType fail
to be updated.

BOYCE-CODD NORMAL FORM (BCNF)

Boyce-Codd Normal Form addresses certain

rare problems with data redundancy that occur
in relations that are already in 3NF. Fortunately,
these problems only arise when both of the
following conditions hold (Watson, 1999):

• The relation has multiple, composite

candidate keys and
•
• At least two of the composite candidate

keys overlap, i.e., have at least one
column in common

Since it is rare for the above conditions to arise

in real-life designs, relations that are in 3NF are
usually also in BCNF. In fact it is challenging to
invent convincing examples of relations in 3NF
that are not also in BCNF (the reader is
encouraged to pause here and attempt the
challenge).

The definition of BCNF is more

straightforward than any of the normal forms
considered so far: A relation is in BCNF if all its
determinants are unique. Although this
definition is simple, there is unfortunately no
guarantee that dependency-preserving
decompositions can be found to convert a non-
BCNF relation to BCNF [8]. Hence the designer
may have to choose between staying in 3NF
(with the possibility, albeit rare, of certain
anomalies) or going to BCNF to eliminate the
anomalies at the price of possibly giving up
dependency preservation. Since most real-world

designs in 3NF do not exhibit the two conditions
enumerated above (and are therefore in BCNF
as well as 3NF), this paper focuses on getting
relations to 3NF.

ALGORITHMS FOR GETTING TO 1NF

In order to put an improper relation into 1NF

one must eliminate all compound (composite)
attributes and all repeating groups. We consider
these as two separate cases. Note that in all
algorithms COPY means to place a copy of a
column in a new table while leaving the original
column intact, while MOVE means to remove a
column from its original table and place it in a
new table.

Case 1: Eliminate compound (composite) attributes

Definition: Multiple data values of different
kinds in one column

PROCEDURE:

Split attributes (columns) until all
attributes are atomic (will never need to
be divided into portions forming
meaningful or useful information).
Remember that whether or not a data
value can be divided into something
meaningful or useful is a semantic issue
of business rules, policies, etc., so close
cooperation with users is essential to
make good decisions regarding this
issue.

EXAMPLE:

See Table 4 Composite Fields and Table
5 Corrected Composite Fields above for
an example of how to eliminate
compound attributes from a table.

Case 2: Eliminate repeating groups (There are
two equivalent solutions given)

Definition: Multiple data values of the same
kind in one column

COMPUTERS IN EDUCATION JOURNAL 61

1NF PROCEDURE-1:
List all columns with repeating groups (step 1)

Form the listed columns into separate sets of
columns that describe the same entity (each
column in a given set should “be about” the
same entity) (step 2)

For each set of columns formed above:

If there exists a column or group of
columns in the set of columns that
uniquely identifies each row in the
set of columns

Choose a minimal group of
unique columns to act as PK for
the set

Else
Create a new column in the
original table that alone or in
combination with other columns
in the set can function as the PK
for the set of columns being
processed

End If (step 3)
Create a new table for the set of
columns and assign an appropriate
name to it (step 4)
COPY the original table’s primary
key (PK) to the new table (step 5)
 MOVE the set of columns chosen in
step 3 as the PK for the set from the
original table to the new table,
distributing any repeating groups
into separate rows (step 6)
MOVE the rest of the columns in the
set to the new table, distributing any
repeating groups into separate rows
(step 7)

 Table 7 Repeating Groups

COMPUTERS IN EDUCATION JOURNAL 62

Remove duplicate rows and rename
modified tables as needed to reflect
the new table structures (step 8)
Declare the PK of the new table to be
the group of one or more columns
chosen in step 3 and moved in step 6
plus the original table’s PK copied in
step 5 (step 9)

End For

Example of 1NF PROCEDURE-1:
Consider the following relation structure

Animals (AnimalID, Breed, Type, Food,
VetID(s), VetPhone(s), OwnerID(s),
OwnerName(s))

and the corresponding sample data

(step 1)
VetID, VetPhone, OwnerID, and
OwnerName are the only attributes with
repeating groups

(step 2)
We can organize the repeating group
columns into two sets of attributes – one
about Vets (VetID and VetPhone) and
the other about owners (OwnerID and
OwnerName)

(step 3 – 9 first iteration)
Choose VetID as the PK for the set {VetID,
VetPhone} (step 3). Create a new table
named PetVets (step 4), copy the original
table’s PK (AnimalID) to it (step 5), move
VetID (chosen in step 3) to it (step 6), then
remove VetPhone from the original table
and place it in the new table (step 7).
Remember to place each atomic value from
a repeating group into a separate row and to
make sure that the correct AnimalID values
“stay with” each value for VetID and
VetPhone, as in:

AnimalI
D

Breed Type Food VetID VetPhone OwnerID OwnerName

111 Dachshund Dog Dry AAA,
BBB

555-1111,
555-2222

O11,
O22

Fred,
Sue

222 Siamese Cat Tuna AAA,
CCC

555-1111,
555-3333

O11 Fred

AnimalID VetID VetPhone
111 AAA 555-1111
111 BBB 555-2222
222 AAA 555-1111
222 CCC 555-3333

In this example there are no duplicate
rows to remove, and it seems appropriate
to retain the name PetVets for the new
table (step 8). Make VetID (from step 6)
plus AnimalID (from step 5) the
composite PK of the new PetVets table,
which now has the structure PetVets
(AnimalID, VetID, VetPhone). Note that
the original table now has the structure
Animals (AnimalID, Breed, Type, Food,

COMPUTERS IN EDUCATION JOURNAL 63

OwnerID, OwnerName). The finished
PetVets table is shown below:

Table 7 PetVets Table from 1NF Procedure-1

AnimalID VetID VetPhone
111 AAA 555-1111
111 BBB 555-2222
222 AAA 555-1111
222 CCC 555-3333

 (step 3 – 9 second iteration)

Choose OwnerID as the PK for the set
{OwnerID, OwnerName} (step 3).
Create a new table named PetOwners
(step 4), copy the original table’s PK
AnimalID to it (step 5), move OwnerID
to it (step 6), then remove OwnerName
from the original table and place it in the
new table (step 7). Remember to place
each atomic value from a repeating
group into a separate row, as in:

AnimalID OwnerID OwnerName
111 O11 Fred
111 O22 Sue
222 O11 Fred

If there are any duplicate rows in the
new table, remove them and change
table names as appropriate (step 8). In

this example, no changes were made for
step 8. Next, make OwnerID together
with AnimalID the PK of the new
PetOwners table (step 9). The new table
now has the structure PetOwners
(AnimalID, OwnerID, OwnerName)
while the original table has the structure
Animals (AnimalID, Breed, Type,
Food). The finished PetOwners table is
shown below:

Table 8 PetOwners Table from 1NF Procecure-1

AnimalID OwnerID OwnerName
111 O11 Fred
111 O22 Sue
222 O11 Fred

The complete set of relation structures and
tables with sample data are shown below:

Animals (AnimalID, Breed, Type, Food)
PetVets (AnimalID, VetID, VetPhone)
PetOwners (AnimalID, OwnerID,
OwnerName)

Table 9 Animals 1NF

AnimalID Breed Type Food
111 Dachshund Dog Dry
222 Siamese Cat Tuna

Table 10 PetVets 1NF

AnimalID VetID VetPhone
111 AAA 555-1111
111 BBB 555-2222
222 AAA 555-1111
222 CCC 555-3333

Table 11 PetOwners 1NF

AnimalID OwnerID OwnerName
111 O11 Fred
111 O22 Sue
222 O11 Fred

Table 12 Repeating Groups Eliminated with Empty Cells

AnimalID Breed Type Food VetID VetPhone OwnerID OwnerName
111 Dachshund Dog Dry AAA 555-11 1 1 O11 Fred
 BBB 555-22 2 2 O22 Sue
222 Siamese Cat Tuna AAA 555-11 1 1 O11 Fred
 CCC 555-33 3 3

COMPUTERS IN EDUCATION JOURNAL 64

Table 13 Repeating Groups Eliminated & Empty Cells Filled In

AnimalID Breed Type Food VetID VetPhone OwnerID OwnerName
111 Dachshund Dog Dry AAA 555-11 1 1 O11 Fred
111 Dachshund Dog Dry BBB 555-22 2 2 O22 Sue
222 Siamese Cat Tuna AAA 555-11 1 1 O11 Fred
222 Siamese Cat Tuna CCC 555-33 3 3 O11 Fred

1NF PROCEDURE-2:

List all columns with repeating groups (step
1)
Form the listed columns into separate sets of
columns that describe the same entity (each
column in a given set should “be about” the
same entity) (step 2)

For each set of columns formed above:

Locate (or create by adding an additional
column or columns) a column or group
of columns that uniquely identifies each
row in the set of columns (step 3)
Make the column or group of columns
above part of the PK for the original
table (step 4)
Remove repeating groups by spreading
the data values in each repeating group
into separate rows, copying data values
from the original atomic columns into
the otherwise “empty” cells of the new
table rows formed in the process (step 5)

End For

Example of 1NF PROCEDURE-2:

We will use the same table as in the

example of PROCEDURE-1. The first

two steps are the same in both
procedures so they are not repeated here.

(step 3)

For the first iteration choose
VetID; for the second iteration
choose OwnerID.

(steps 4-5)
The primary key of the original
table is extended to include
VetID and OwnerID as shown in
the tables 13 and 14. In the first
version of the table we remove
repeating groups into separate
rows, and in the final version of
the table we fill in the “empty”
data values with matching values
from the original table:

Although the two procedures above produce

quite different results (PROCEDURE-1
produced three tables and PROCEDURE-2
produces just one), after applying the
conversion algorithms for 2NF and 3NF we
shall see that the end result is the same in both
cases! One of the strengths of the normalization
process is that, regardless of the starting point, it
zeros in on a “good” design for the database in
question.

ALGORITHM FOR GETTING TO 2NF

The first step in putting a table in 2NF is to list
all the functional dependencies and then identify
those in the list that keep the table from being in
2NF, i.e., identify those dependencies where the
LHS is just part of a composite candidate key.
The decomposition in the 2NF procedure shown
below will then eliminate the unwanted
dependencies, putting the relation in 2NF.

Definition: Part of a composite key determines a
non-key column

2NF PROCEDURE:

While there are tables not in 2NF:
For each original table O not in 2NF:

List all FD’s for O that violate 2NF
(LHS is just part of composite
candidate key; RHS is non-key
column) (step 1)

For each distinct LHS in the list:
MOVE all the RHS columns that
correspond to the LHS being
processed to a new table N (step 2)
COPY the LHS column(s) from
the original table O to the new
table N (step 3)
Make the copy of the LHS from O
the primary key of the new table N
(step 4)
Make the original LHS in O a
foreign key in O referencing the
copy of the LHS in N (step 5)
Assign an appropriate name to the
new table N (step 6)
IF the original table O had data
loaded Then

Remove any duplicate rows from
O and N
End If (step 7)

End For
End For

End While

2NF Example-1:

We first consider the relation structures

produced in the example for 1NF Procedure-1:

Animals (AnimalID, Breed, Type, Food)
PetVets (AnimalID, VetID, VetPhone)
PetOwners (AnimalID, OwnerID,
OwnerName)

(step 1)
The Animals table is trivially in 2NF
because the only candidate key is single-
column (AnimalID). PetVets and
PetOwners both have only one candidate
key each, but since in both cases the
candidate key is composite, we must
check the functional dependencies for
PetVets and PetOwners:

(AnimalID, VetID) VetPhone
VetID VetPhone (PROBLEM
DEPENDENCY!)
(AnimalID, OwnerID) OwnerName
OwnerID OwnerName (PROBLEM
DEPENDENCY!)

Since VetID and OwnerID are LHS’s
that are only part of their respective
composite candidate keys, neither
PetVets nor PetOwners is currently in
2NF.

(step 2) [Note: for this and following steps we
combine iterations into one discussion]

Create a new table for each problem
dependency and move the RHS columns
from each problem dependency to its
corresponding new table, giving:

Animals (AnimalID, Breed, Type, Food)
PetVets (AnimalID, VetID)
PetOwners (AnimalID, OwnerID)
NewTable (VetPhone)
NewTable (OwnerName)

COMPUTERS IN EDUCATION JOURNAL 65

(steps 3 - 6)

Copy the LHS column (or columns) of
each problem dependency to its
respective new table where it becomes
the primary key (steps 3 - 4). Make the
copy of the LHS still in the original table
a foreign key referencing the new table,
so that PetVets.VetID references
Vets.VetID and PetOwners.OwnerID
references Owners.OwnerID (step 5).
Finally, assign the name Vets to the vet
information table and the name Owners
to the owner information table (step 6) to
yield:

COMPUTERS IN EDUCATION JOURNAL 66

Animals (AnimalID, Breed, Type, Food)
PetVets (AnimalID, VetID)
PetOwners (AnimalID, OwnerID)
Vets (VetID, VetPhone)
Owners (OwnerID, OwnerName)

The results for the PetVets and Vets

tables are shown below. Note the
duplicate row 3 in Table 15 Vets.

Table 14 PetVets

AnimalID VetID
111 AAA
111 BBB
222 AAA
222 CCC

Table 15 Vets

VetID VetPhone
AAA 555-1111
BBB 555-2222
AAA 555-1111
CCC 555-3333

(step 7)

If data is already loaded in the tables
when normalization is carried out, it can
result in duplicate rows which are
removed in this final step. Data values

for the PetVets and Vets tables after
duplicate rows are removed are shown
below. A parallel situation would exist
for PetOwners and Owners.

Table 16 Completed PetVets Table

AnimalID VetID

111 AAA
111 BBB
222 AAA
222 CCC

Table 17 Completed Vets Table with

Duplicate Rows Removed

VetID VetPhone
AAA 555-1111
BBB 555-2222
CCC 555-3333

2NF Example-2

Consider the relation structure for Table 13

Repeating Groups Eliminated & Empty Cells
Filled In:

Animals (AnimalID, Breed, Type, Food,
VetID, VetPhone, OwnerID, OwnerName)

(step 1)
The only candidate key is the composite key

(AnimalID, VetID, OwnerID). However, each
of the three key columns is by itself a
determinant. The list of “problem” dependencies
created in step 1 thus consists of:

AnimalID Breed, Type, Food
VetID VetPhone
OwnerID OwnerName

(step 2)
Create a new table for each distinct LHS and

move the corresponding RHS’s to their
respective new tables yielding the structures:

Animals (AnimalID, VetID, OwnerID)
NewTable (Breed, Type, Food)
NewTable (VetPhone)
NewTable (OwnerName)

 (steps 3 – 6)

Now copy the LHS’s from Animals to their

respective new tables, where they will become
the primary key (steps 3 – 4), declare the
original LHS’s as foreign keys referencing their
respective new tables (step 5), and assign
appropriate names to the new tables (and/or
rename existing tables if desired):

COMPUTERS IN EDUCATION JOURNAL 67

Animals (AnimalID, VetID, OwnerID)
AnimalCare (AnimalID, Breed, Type,
Food)
Vets (VetID, VetPhone)
Owners (OwnerID, OwnerName)

(step 7)
Since Animals has no non-key columns, it is in

2NF. Since the three new tables have no
composite candidate keys, they are also in 2NF.
Note that it may again be necessary to remove
duplicate rows from the new design if the
decompositions are performed on tables that
already contain data. See Table 17 Completed
Vets Table above for an example of this
situation. Obviously it is better to carry out
normalization prior to loading data into the
database – since this eliminates the need to
remove any duplicate rows. The Owners table
just prior to removing duplicate rows is shown

Table 19 2-Way versus 3-Way Relationships

below. The last two rows (in italics) are
duplicates and would be removed in step 7:

OwnerID OwnerName
O11 Fred
O22 Sue
O11 Fred
O11 Fred

Note that although all relations are now in 2NF,
the relation structures produced in 2NF
Example-2 are different from the relation
structures produced in 2NF Example-1.
Example-2 models the relationships among
Animals, Vets, and Owners as a single 3-way
relationship, while Example-1 models the same
relationships as a pair of 2-way relationships.
While both designs are in 2NF, the database
designer should choose the design that best
models the reality (business requirements) of the
organization for which the database is being
developed (this issue is beyond the scope of this
paper). The following table 19-2 contrasts the
two designs.

ALGORITHM FOR GETTING TO 3NF

Careful checking will reveal that the tables for
both 2NF Example-1 and 2NF Example-2 are
not only in 2NF, but, with one exception, are in
3NF and BCNF as well. The only table not in
3NF appears as Animals (AnimalID, Breed,
Type, Food) in Example-1 and AnimalCare
(AnimalID, Breed, Type, Food) in Example-2
(the table name “Animals” will be used in this
section). This table is not in 3NF because of the
dependencies

Example 1
Two 2-Way Relationships

Example 2
One 3-Way Relationship

Animals (AnimalID, Breed, Type, Food)
PetVets (AnimalID, VetID)
PetOwners (AnimalID, OwnerID)
Vets (VetID, VetPhone)
Owners (OwnerID, OwnerName)

Animals (AnimalID, VetID, OwnerID)
AnimalCare (AnimalID, Breed, Type, Food)
Vets (VetID, VetPhone)
Owners (OwnerID, OwnerName)

Breed Type
Breed Food
Type Food

in all of which a non-key column determines
another non-key column.

Definition: A non-key column determines
another non-key column

3NF PROCEDURE:

A slight variation of the 2NF Procedure can be

used for 3NF as well. Use the 2NF Procedure
but replace the 2NF version of step 1 with the
following:

List all FD’s for O that violate 3NF
(LHS is a non-key column and RHS is
another non-key column). Order the list
so that if a column appears both as an
LHS and an RHS, all the FD’s with the
column on the LHS appear in the list
before any FD’s with the column on the
RHS. Note that if a column appears on
both the LHS and RHS of the same
dependency it can be safely removed
from the LHS since (A, B) B if and
only if A B. Finally if there are
transitive dependencies of the form A
B, B C, and A C in the list,
remove the dependencies of the form A

 C (step 1)

3NF Example-1:

(step 1)
The list of FD’s for Animals (AnimalID,

Breed, Type, Food) that violate 3NF is:

Breed Type
Breed Food
Type Food

Since Type appears on both an LHS and an

RHS, order the list so that the dependencies

with Type on the LHS appear before those
where Type appears on the RHS:

Type Food
Breed Type
Breed Food

Now note that Breed Type, Type Food,
and Breed Food form a set of transitive
dependencies from which we should remove the
dependency Breed Food, leaving the final
list:

Type Food
Breed Type

(steps 2 - 7 iteration 1)
Create a new table and move the RHS of the

first dependency from Animals to the new table
(step 2), then copy the LHS of the first
dependency to the new table and declare it the
primary key (steps 3 - 4). Make Type an FK in
Animals referencing the new table (step 5) then
give an appropriate name to the new table (step
6) and if data is loaded remove any duplicate
rows (step 7). The table structures that result
are:

Animals (AnimalID, Breed, Type)
Feeds (Type, Food)

(steps 2 - 6 iteration 2)
Create a new table and move the RHS of the

second dependency (Breed Type) to it (step
2), then copy the LHS of the second dependency
to it and declare it the PK (steps 3-4). Make
Breed in Animals an FK referencing Breed in
the new table (step 5), then give an appropriate
name to the new table (step 6) and remove any
duplicate rows (step 7), yielding the table
structures:

Animals (AnimalID, Breed)
Feeds (Type, Food)
Breeds (Breed, Type)

All three relations are now in 3NF as desired.

COMPUTERS IN EDUCATION JOURNAL 68

SUMMARY

The normalization process is often
summarized with a witty version of a courtroom
oath:

The key, the whole key, and nothing but the
key (so help me Codd)

The phrase “the key” refers to the fact that
every candidate key in a table automatically
(since by definition candidate keys are unique)
determines every other column in the table.
Thus for any given candidate key, “the key”
determines all the other columns.

The phrase “the whole key” ensures that the

relation is in 2NF, i.e., that no proper subset of a
candidate key determines a non-key column.
Thus for any given candidate key, it is only “the
whole key” that determines non-key columns.

The phrase “nothing but the key” ensures that

the relation is in 3NF, i.e., that non-key columns
are functionally dependent only upon (nothing
but) candidate keys. Thus there are no non-key
columns that are functionally dependent upon
other non-key columns.

Finally, the phrase “so help me Codd” refers to

E. F. Codd, whose seminal paper published in
1970 earned him the reputation as the father of
the relational database model [4].

REFERENCES

1. Connolly, T., Begg, C., Strachan, A.,
Database Systems: A Practical Approach to
Design, Implementation, and Management,
2nd ed., Harlow, England, 1999.

2. Hoffer, J., Prescott, M., McFadden, F.,

Modern Database Management, 6th ed.,
Upper Saddle River, NJ, Prentice Hall,
2002.

3. Kroenke, D., Database Processing:

Fundamentals, Design, and Implementation,

7th ed., Upper Saddle River, NJ, Prentice
Hall, 2000.

4. Mannino, M., Database Design, Application

Development, and Administration, 2nd ed.,
Boston, MA, McGraw-Hill Irwin, 2004.

5. Post, G., Database Management Systems:

Designing and Building Business
Applications, 2nd ed., Boston, MA,
McGraw-Hill Irwin, 2002.

6. Ramakrishnan, R., Gehrke, J., Database

Management Systems, 3rd ed., Boston, MA,
McGraw-Hill, 2003.

7. Riccardi, G., Principles of Database Systems

with Internet and Java Applications, Boston,
MA, Addison Wesley, 2001.

8. Silberschatz, A., Korth, H., Sudarshan, S.,

Database System Concepts, 4th ed., Boston,
MA, McGraw-Hill, 2002/

9. Ullman, J., Widom, J., A First Course in

Database Systems, Upper Saddle River, NJ,
Prentice Hall, 1997/

10. Watson, R., Data Management: Databases

and Organizations, 2nd ed., New York, NY,
John Wiley & Sons, Inc., 1999.

BIOGRAPHICAL INFORMATION

Larry R. Newcomer is an Associate Professor

of Information Sciences and Technology (IST)
at The Pennsylvania State University York
Campus. He teaches IST courses in the areas of
database, networking, software development,
and systems development and integration. He
has written four textbooks including
SELECT…SQL, The Relational Database
Language published by Macmillian. He has
published papers in the areas of networking,
database technology, systems development, and
curriculum development, and has served as an
industry consultant in the areas of networking,
database, and software development.

COMPUTERS IN EDUCATION JOURNAL 69

	ABSTRACT
	INTRODUCTION
	FUNCTIONAL DEPENDENCIES
	StudentID

	NORMAL FORM DEFINITIONS
	123 Sesame St, BirdCity, FL 12345

	ALGORITHMS FOR GETTING TO 1NF
	ALGORITHM FOR GETTING TO 2NF
	ALGORITHM FOR GETTING TO 3NF
	SUMMARY

