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Abstract 
 

The most common convolution technique for 
evaluating the output of linear time invariant 
systems is to convolve the system h(t) impulse 
response with the input x(t).  A major extension 
of these concepts is presented whereby the 
convolution of the nth derivative (or integral) of 
the input x(t) can be convolved respectively with 
the nth integral (or derivative) of the h(t) impulse-
response to yield the output.  This extension of 
convolution theory not only leads to more 
powerful techniques for system analytical 
analyses, it also provides the basis for an elegant 
mathematical interpretation of representing x(t) 
signal models as expansion of x(t) into an infinite 
sum of infinitesimal singularity functions. 

 
Index  Terms 

 
Convolution, convolution evaluations, impulse 

response, singularity functions, and singu-larity 
response functions. 
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TO formulate the complete family of convolution 
forms,  the  concept of the  complete family of  
singularity functions δn(t) must be defined and 
presented.  With this background a complete 
family of singularity response functions hn(t) and 
a generalized family of one-sided Green’s 
Function(s) gn(t) are defined.  Then the concept 
of representing an x(t) input as an expansion of 
an infinite number of infinitesimal δn(t) 
components is presented where the index n does 
not mean for all n, rather the expansion is for one 
value of n; e.g., x(t) can be expanded into δ2(t) 
ramp components, or δ1(t) step components, etc.  
Once this concept is understood, it becomes a 
simple process to use convolution as a tool to 
apply superposition to evaluate the total output 
y(t) which is equal to the sum of the hn(t) 
components where hn(t) is the response to each 

δn(t) component of the input x(t).  A direct 
result of these formulations is that an analyst 
now has the flexibility of solving for the output 
of a linear time-invariant system by convolving 
hn(t) with the nth derivative of x(t) rather than 
being restricted to the one common approach 
defined by  y(t) = h(t)*x(t).  This flexibility, in 
many cases, drastically reduces the efforts 
required for evaluating system outputs using 
convolution techniques.  

 
Finally, examples are used to illustrate the 

power of the extended convolution concepts 
and appropriate conclusions are presented with 
an emphasis on summarizing and clarifying the 
area of analytically evaluating convolution 
forms. 

 
Background 

 
The complete family of singularity functions 

is defined by the following relationships: 
 

The continuous-time step-function δ1(t) is 
defined by 
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from which the complete family of the δn(t)  
singularity functions are defined as 
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The term “or” between (2a) and (2b) reflects 

the fact that either one of these relationships is 
derivable from the other.  It is also important to 
know that the derivative in (2a) is defined as 
the “derivative in the singularity sense” which 
means the δn(t) functions are represented by 
“distribution functions” and all derivatives exist 
[1].  Simons et. al. presented a graphical 
interpretation of the higher order derivative 



singularity functions such as the impulse δ(t) or 
δ0(t), the doublet (  or ( )tδ& ( )t1−δ ), the triplet ( ( )tδ&&  or 

( )t2−δ ), … etc. [2].  The δ1(t) step, δ2(t) ramp, 
δ3(t) parabola, etc. are easily interpreted with 
simple integral calculus.  DeRusso et. al. in their 
1965 text recognized the requirement to define 
and use the complete family of singularity 
functions in any comprehensive signals and 
systems text [3].   

 
There are several good arguments to support 

the fact that the authors δn(t) definitions 
represent a substantial improvement over this 
and other early attempts to define the family of 
singularity functions.  Not only does δn(t) for  n 
= 0  imply  δ0(t) = δ(t), the universal definition of 
the impulse, the singularity response function 
hn(t) and gn(t) definitions of (4) and (6) naturally 
follow.  Alternatively, the choice of  u0(t) = u(t)  
for the step-function would imply u-n(t) = , 
which would be rather disconcerting.  Another 
argument for using the δ

( 1)
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definition is that the nth derivative of δ(t) or 

, which means that there is never a 
need to use negative n indices in time-domain 
δ
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ntδ δ−= t

n(t) functions.  Rather, use δn(t) for n positive, 
use δ(t) for n = 0, and use 

( )

( )
n

tδ  for n negative.  
Finally, the Laplace-transform of δn(t) is simply 
1/sn, which is another very desirable feature for 
choosing the δn(t) definitions. 

 
With the complete δn(t) family of singularity 

functions defined, the complete family of 
singularity systems responses can be defined.  
For example, consider the SdE (Standard 
differential Equation) with the v(t) term added 
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which is simply a single-input single output 
constant coefficient dE model.  For this system 
model it is common practice to define the output 
y(t) as h(t) when the input x(t) is the unit impulse 
δ(t).  From this standard definition, the complete 
family of system responses to singularity 
functions can be extended and defined by  

 
( ) ( ) ( ) ( )n nx t th t y t δ=∆  (4) 

which implies   
    M  

         ( )th2  = ramp-response                          (5) 
      ( )th1  = step-response 

        ( ) ( )thth =0  = the standard impulse response 
      ( ) ( )thth &=−1  = the doublet response 
     M  
 
Similarly, if the whole right-hand side of the 

SdE is defined as v(t), then the Complete 
Family of Green’s Functions, or the one-sided 
generalized Green’s function can be defined by 
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where 
        M  

    ( )tg 2  =  the Green’s Function ramp-response 
    ( )tg1

 =  the Green’s Function step-response 
    ( )tg0  =  the standard one-sided Green’s       

Function 
   M  
  etc. 

 
With the definitions of (4) and (6) and the 

SdE model of (3), it is easily shown using 
superposition that 
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and with simple calculus 
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This background material combined with the 

linear system theory and convolution concepts 
will provide the basis to extend convolution 
techniques and define the “Complete Family of 
Convolution Forms.”  The well-known IST 
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(Impulse Sifting Theorem) and the less familiar 
HS-SST (Harden-Simons Step-Sifting Theorem) 
are essential for analytically evaluating 
convolution forms [4].   

 
The basic HS-SST in mathematical form is  
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where terms of the type 1 1( ) ( , ) (B Ef t )δ τ τ τ δ τ τ− −  are 
one of the most commonly encountered terms 
when analytically evaluating convolution forms, 
especially when functions are piece-wise 
continuous.  Harden and Simons first published 
their basic SSTs (Step-Sifting Theorems, meaning 
more than one) in 1987 and followed that in 1989 
with their Generalized Step-sifting Theorems for 
Signals and Systems paper where they presented a 
extensive range of SST forms [5].  Harden and 
Simons have taught these techniques to their 
students for over 20 years because not only do 
students develop a deeper understanding of the 
convolution process, but the typical standard 2 to 
3 page textbook examples are reduced to 3 or 4 
lines that can often be written in the margin of the 
text.    
 

The fundamental SST concept graphically 
depicted in Fig. 1 is extremely simple to interpret 
and understand.  For example, the integrand 
function f(t,τ) is “turned on” at the beginning τB 

by the forward running step δ1(τ-τB) and turned 
off at the end τE by the backwards-running step 
δ1(τE - τ), as expressed in (10) and illustrated 
graphically in Fig. 1.  The δ1(τE -τB) “step” serves 
to produce a zero value when the τE end occurs 
before the τB beginning begins; i.e., there is not an 
overlap as depicted in Fig.1.  It is important to 
note that τB and τE are generally functions of t.  
Furthermore, with a little experience, analysts are  
able to apply SSTs without consciously 
memorizing their forms or applying any graphical 
interpretations, rather SST forms are formulated 
and analytically evaluated by recognizing the 
integrand and “δ1(t)-limits” relationships. 

f(t,τ)

ττΕτB

1 E( )δ τ τ−

1 B( )δ τ τ−

1 B 1 E( ) ( , ) ( )f tδ τ τ τ δ τ τ− −=

0

 
Fig. 1.   A graphical representation of the HS-

SST  (Harden-Simons Step-Sifting 
Theorem) as expressed in equation (10). 

 
 

Linearity  and  Convolution 
 
If the operation L by a system on the input 

x(t) produces an output  y(t) = L{x(t)},  then the 
system is said to be linear iff 

 
     ( ) ( ){ } ( ){ } ( ){ }1 1 2 2 1 1 2 2L a x t a x t a L x t a L x t+ = +     (11a) 

 
for any two inputs x1(t) and x2(t) and any 
scalars a1 and a2. 

 
If (11a) holds for a restricted class of inputs, 

then the system is said to be linear for that class 
of inputs.  The significance of (11a) is that the 
principle of superposition applies, i.e. evaluate 
the output due to each of the inputs and add 
them to obtain the output due to the combined 
inputs.  Furthermore, if for a class x(t)  inputs 

 
( ){ } ( )ττ −=− tytxL  (11b) 

then the system is said to be linear time-
invariant for that class of x(t) inputs since the 
output for x(t – τ) is just a delayed version of 
the output for x(t) . 
 

The standard convolution form for evaluating 
the output y(t) for a linear time-invariant model 
is 
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           (12) ( ) ( ) ( ) ( ) ( )∫
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Fig. 2  can be used to explain why equation  

(12)  is valid. 
 

x(τ)

ττ

τ∆

t

x(τ)

x(τ)dτ h(t-τ)

Fig. 2.   The x(t) can be represented by a sum of 
x(τ)dτ δ(t – τ) im-pulse components, each of 
which produces a x(τ)dτ h(t – τ) response. 

 
For example, if the output due to a unit impulse 

is h(t), then the output due to the model of the 
infinitesimal impulse x(τ)dτδ(τ) depicted by the 
shaded x(τ)∆τ strip will also cause the response 
to be an impulse response; but this impulse 
response is scaled down by the area ratios x(τ)dτ 
to 1 where ‘1” represents the unit impulse.  This 
observation is a direct result of linearity as 
expressed by (11a).  Thus, the magnitude of the 
impulse response will be proportional to the area 
under the impulse or the “weight” of the input 
impulse.  If the differential response of the 
system output at τ = t due to an infinitesimal 
x(τ)dτδ(τ) impulse at any τ is defined as dy(t), 
then 

 
       ( ) ( ) ( )τττ −= thdxtdy  (13) 

 
is a manifestation of (11b) where the t - τ  
argument defines the time between the 
application of an infinitesimal impulse and the 
time the output is evaluated at τ = t.  Finally, the 
output for all of the x(τ) infinitesimal impulses 
becomes a matter of simple calculus or for all 
time t
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The familiar alternate y(t) = h(t)*x(t) form for 
(14)  
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can be derived with a simple change of 
variable. 
 

Some versions of this standard convolution 
derivation is common to almost all system 
theory texts, but what follows will focus on 
alternate interpretations that will lead to the 
Complete Family of Convolution Forms.  To 
initiate the alternate interpretation, consider the 
common IST (Impulse Sifting Theorem)  
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Based on similar arguments to what were 

presented for standard convolution, x(t) can be 
thought of as an expansion of x(t) into an 
infinite number of infinitesimal x(τ)dτδt - 
τ) impulses, which is also depicted in Fig. 2.  
The application of superposition as expressed 
by the definition of linearity in (11) to evaluate 
the summation of the outputs due to each of 
these δ(t) components is simply convolution.  
To extend this concept, consider integrating 
(16) by parts to obtain 
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and if x(t) is assumed to be zero as t approaches 
- ∞ , then  

                        (18)  ( ) ( ) ( )∫
∞
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If x(t) is not zero as t approaches - ∞, then 
superposition can be used to treat that 
component separately.  The form of x(t) in (18) 
can be interpreted as an expansion of  x(t) into 
an infinite number of infinitesimal 

( ) ( )ττδτ −tdx 1&  step functions as shown in Fig. 3.  
By induction and repeated integration by parts 
of (16) 
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( ) ( ) ( )( )n

nx t x t dτ δ τ
∞
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which implies that x(t) can be represented as an 
infinite sum of any one δn t infinitesimal 
components; i.e., x(t) can be expanded into a set 
of δn t components for any one value of finite n.  
Since any input x(t) can be expanded into a set of 
infinitesimal δn t components, linearity implies 
that the output y(t) is equal to the sum of the 
outputs due to each δn t component.  To illustrate 
the concept for  n = 1 , integrate (14) by parts to 
obtain  

 

( ) ( )( ) ( ) ( ) ( )∫
∞

∞−

∞

∞−
−+−−= τττττ dthxthxty 111 &  (20) 

which implies 

( ) ( ) ( )∫
∞

∞−

−= τττ dthxty 1&     (21) 

 
where x(t) is assumed to be nonzero in the finite 
range of t.  The convolution form (21) is not 
new.  Chen defined the inditial function, which is 
h1(t), and then formulated a convolution form 
equivalent to equation (21) [6].   
 

To extend convolution beyond h(t) and h1(t), 
(21) can be  repeatedly integrated by parts.  Then 
the Complete Family of Convolution Forms for 
hn(t) becomes 
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In a similar manner, the following Complete 

Family of Convolution Forms for Green’s 
Functions can be derived. 
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Equations (22) and (23) represents the 

Completed Theorems of Convolution for linear 
time-invariant systems.  Conclusions and 
observations concerning the convolution forms 
of (19), (22), and (23) will be more meaningful 
after considering the following examples. 

 
 

Generalized  Convolution Examples 
 

The first example is designed to provide an 
interpretation of how an arbitrary x(t) input 
function can be expanded into an infinitesimal 
set of δ2t  ramp functions.  This interpretation 
with the aid of Fig. 3 can be defined by 
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where effectively a ramp function  δ2 t-τ2)  is 

added to x(t) at  t = τ2  to account for change in 
curvature of x(t).  In an infinitesimal sense with 
τ defined as the current τ  

  
        ( ) ( )[ ] ( ) ( ) τττττ

ττ
dxxdxx &&&&& ==−

→ 12
12

lim           (25)  

  
Equations (25) can be interpreted as 

representing  ( ) ( )ττδτ −tdx 2&&  ramp functions, 
which is the special case of  n = 2  for the 
general form of (19).  Expansions of x(t) into 
other infinitesimal δn t  functions can be 
interpreted in a similar manner.  

 

t

x(t)

τ1

τ∆

τ2

x(τ1)
x(τ2)

x(τ1)slope.
x(τ2)slope.

Fig. 3.   An illustration of how an x(t) input can 
be represented by an infinite number of 
infinitesimal ( ) ( )ττδτ −tdx 2&&  ramp functions. 

 
The second example is partitioned into three 

cases to better  illustrate  the  concepts  that  
have  been  presented.  For all three cases in the 
second example, assume the SdE 

 
    ( ) ( ) ( ) ( ) ( )2 3 4   y t y t x t x t v t+ = + ∆& &             (26) 
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to be driven by the input  
  

( ) ( ) ( )51010 11 −−= tttx δδ   (27) 
  
With standard Laplace transform techniques 

applied to the model defined by (26), the 
transform for h1(t) is 

 

( )1
1 1 3( )

2
sH s H s 4

s s s
+

= = ⋅
+

  (28) 

  
which leads to  
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using Laplace techniques, equation (8), and the 
knowledge that  for  .  The input can 
be expressed in the three forms 

( ) 0=thn 0<t

 
( ) ( ) ( )51010 11 −−= tttx δδ  (30a) 

 
( ) ( ) ( )51010 −−= tttx δδ&  (30b) 

 
( ) ( ) ( )51010 −−= tttx δδ &&&&  (30c) 

 
Thus, the complete family of convolution forms 
 

( ) ( ) ( ) ( )
n

ny t h t x t= ∗  (31) 
 

can be applied to the system and input models of 
(29) and (30) for three cases: with cases 1,2, and 
3 defined by n = 0, 1, and 2.  The case 1 for n = 
0 is defined by h(t)*x(t) or 
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where the familiar IST (Impulse Sifting 
Theorem) was used to evaluate the first two 
terms whereas the last two terms are 
determined by the HS-SST (Harden-Simons 
Step-Sifting Theorem) [4].  With simple algebra 
and integral calculus, the output y(t) can be 
reduced to  
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The application of superposition or the given 
( )tx  implies  
 

( ) ( ) ( )51010 11 −−= ththty             (33) 
 

which is shown to agree with (32) using the 
h1(t) of  (29b).  The case 2 (n = 1) output y(t) is 
defined by 
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which when evaluated using the IST results in 
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Again, the previous results are consistent, and 
thus verified.  Finally, for the case 3 where  n = 
2, 
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This particular form is not common and will 

in most cases not be handled correctly because 
several literature sources claim that the product 
rule does not apply to impulses, doublets, etc., 
which is not true.  The Zadeh and DeSorer text 
is correct in its treatment of δn(t) functions.  
The basic problem with the claim that the 
product rule does not apply for ( ) ( ),, tt δδ &  etc, is 
the failure of the analyst to recognize that the 
term ( ) (f t )τ δ τ−&     has   both   an  impulse   and  
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doublet component.  To illustrate the point 
consider the term 

( ) ( ) ( ) ( ) ( )τδτδττ −=−= ttftfw   (37) 
 
from which the product rule implies 
 
      ( ) ( ) ( ) ( ) ( )w f t f tτ τ δ τ τ δ τ= − +& && −     (38) 
 

where  is defined as the derivative with 
respect to τ, not t.  If the sampled version of the 
(37) is differentiated with respect to τ, then 

( )τf&

 
( ) ( ) ( )w f t tτ δ τ= && −    (39) 

 
Equating the correct versions of (38) and (39) 

results in 
 
      ( ) ( ) ( ) ( ) ( ) ( )f t t f t f tδ τ τ δ τ τ δ− = − + −&& τ&

)

  (40a) 
 
which in turn reveals that 
 
       ( ) ( ) ( ) ( ) ( ) (f t f t t f tτ δ τ δ τ τ δ τ− = − − −&& & (40b) 
 

or the term ( ) ( )f tτ δ τ−& has a doublet and impulse 
term.  This result can be confirmed by 
interpreting a simple graphical approximation of 

( ) ( )f tτ δ τ−& .  Similar to (40a) 
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The relationships of (40) and (41) along with 

the relation-ship defined by  
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are needed to evaluate the more difficult  

 form of (36).  A straight forward 
application of (40), (41), and (42) will reveal an 
answer identical to other convolution forms 

 and .  Care must be exercised 

to recognize that the variable of integration is τ 
not t. 

( ) ( )txth &&∗2

( ) ( )txth ∗ ( ) ( )txth &∗1

 
The third example for illustrating the power 

of the author’s Completed Theorems of 
Convolution for linear time-invariant system 
analysis was presented by Goldberg et. al. [9] 
and repeated by Cavicchi [10] where he 
claimed his method was more efficient.  The 
problem was to evaluate y(t) = h(t)*x(t) where 

 
 2 2 1( ) ( ) 4 ( ) 4 ( 4) 4 ( 4)h t x t t t tδ δ δ= = − − − −  (43) 
 

and the subscripts on x and h were dropped to 
take advantage of the authors notation.  With 
the definitions 
 

    1 2 2 2 1( ) 4 ( ) 4 ( 4)  and  ( ) 4 ( 4)x t t t x t tδ δ δ= − − = − (44) 
 
and the application of linearity 
 
 1( ) ( ) ( ) ( ) ( )y t h t x t h t x t2= ∗ − ∗  (45) 
 
The author’s Completed Theorems of 

Convolution allows the reformulation of (45) 
into the form 

 

      1 22 1( ) ( ) ( ) ( ) ( )y t h t x t d h t x t dτ τ τ
∞ ∞

−∞ −∞

⋅⋅ ⋅= − + −∫ ∫ τ  (46) 

 
which is reduced to the trivial case of 
evaluating impulse sifted integrals.  The 
integration and differentiation of the x and h 
terms are also trivial in that indices are simply 
incremented and decremented to perform 
integration and differentiation on δn(t) 
functions. 

 
Conclusions 

 

A set of more relevant and important 
conclusions based on what has been presented 
is enumerated below. 

 
1. Any real-world x(t) signal model 

will possess all orders of derivatives in 
the singularity sense, which means that 
x(t) can be written as   
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( )
( )

( ) ( )
n

nx t x t dτ δ τ
∞

−∞

= −∫ τ  (47) 

 
where x(t) can be interpreted as an infinite 
number of infinitesimal δn(t) components. 

 
2. With the application of linearity, the output 

y(t) of a linear time-invariant system can be 
expressed as  

        ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n

n ny t x h t x h t dτ τ τ
∞

−∞

= ∗ = −∫ τ  (48) 

which is the summation of the outputs due 
to each of the infinitesimal δn(t) 
components defined in Conclusion 1.  
Equation (48) is defined as the Complete 
Family of Convolution Forms (Chen’s 
Superposition Integrals terminology may 
be an excellent alternative to Convolution 
Forms). 
 

3. A natural extension of (48) is the Complete 
Family of Convolution Forms for Green’s 
Functions defined by  

       ( ) ( ) ( ) ( ) ( )( ) ( )n n

n ny t v t g t v t g dτ τ τ
∞

−∞

= ∗ = −∫  (49) 

      where the input  is defined in (3). In 
addition, equation (7) can be to evaluate h

( )tv
n(t) 

from gn(t), which is important in that gn(t) is 
usually easier to solve for than hn(t). 

 
4. The Completed Theorems of Convolution 

as expressed by (48) and (49) combined 
with the HS-SST (Harden-Simons Step-
Sifting Theorems) repre-sents major 
extensions in convolution theory; e.g.: 
First, the typical two to three page 
textbook examples are reduced to simple 
two to four line solutions.  Goldberg et. al. 
support this claim [9]. 
Second, taking advantage of the 
generalized forms 

   ( ) ( ) ( ) ( )
n

ny t h t x t= ∗

almost always simplifies the evaluations, 
sometimes to the point of being trivial, see 
examples two and three. Example three 
was in both Cavicchi’s and Goldberg’s (et. 
al.) papers [9,10]. 

Third, answers are in one composite form 
and defined for all t, which is much more 
desirable than having one line for each 
functional form and its limits.  Harden and 
Simons first published their basic SSTs 
(Step-Sifting Theorems, meaning more than 
one) in 1987 and followed that in 1989 with 
their Generalized Step-sifting Theorems for 
Signals and Systems paper where they 
presented a extensive range of SST forms 
[4,5].   
 

5. Cavicchi failed to recognize in his 
“Simplified Method” that the SST approach 
of Harden and Simons does not require an 
evaluation for the last segment of piece-
wise continuous convolved functions.  To 
illustrate consider the example 3 answer 
expressed in its usual form 

 
  1 1 2 1 3 1( ) ( ) ( ) ( ) ( 4) ( ) ( 8)y t f t t f t t f t tδ δ δ= + − + −  

 
The f3(t) term serves to cancel the f1(t) 
and f2(t) terms for  t ≥ 8 where y(t) = 0 .  
Thus, the answer  

  
      { }1 1 2 1 1( ) ( ) ( ) ( ) ( 4) (8 )y t f t t f t t tδ δ δ= + − −  
 

is perfectly valid.  The only reason for 
including f3(t) or any end term would be 
to serve as a check. 
 

6. Cavicchi’s “Simplified Method” is 
valuable as an alternative tool although our 
students find the Complete Family of 
Convolution Forms coupled with the HS-
SST much easier to master.  It is also 
noteworthy to recognize the significance 
of  Cavicchi’s work in that one of the 
authors, Roberts, has derived a 
multidimensional extension of his work, 
which implies further work will evolve. 

 
7. Obviously completed convolution forms 

requires the usual conditions of integral 
existence and differenti-ability of integrand 
functions, a subject too broad to cover in 
detail in this paper.  However, consider 
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L 
( )

( ) ( ){ } ( ) ( ) ( ) ( )
1n

n
n

nx t h t s X s H s X s H s
s

∗ = ⋅ =   

  
which implies the Complete Family of 
Convolution Forms applies to any x(t),h(t) 
pairs that have one-sided Laplace 
transforms.  Similarly, it also applies to any 
x(t),h(t) pairs that have Fourier transforms.  
Thus, broad ranges of functions can be 
analyzed with these completed theorems of 
convolution. 
 

Finally, the authors have developed analogous 
techniques and extensions for convolution in 
discrete system theory.   
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