
An Efficient Method for Complex Digital Systems Design Using Verilog

Wayne Lu
Department of Electrical Engineering and Computer Science

University of Portland
Portland, OR 97203

Abstract

Verilog is a very popular hardware description

language for ASIC (Application Specific
Integrated Circuit) design. Students can learn
Verilog programming in various courses.
Although Verilog is easy to learn due to its
similarity to the C language, however, it still will
take some time before a student can write efficient
synthesizable Verilog code for designing complex
digital systems. This paper presents a quick
method to implement complicated digital systems
before students have reached such a proficiency
level of using Verilog. The method is to design a
target digital system using an extremely easy to
learn ABEL language as the building blocks and
then translate the ABEL programs to the Verilog
syntax. The system operations of the converted
Verilog programs can be verified by programming
a CPLD (complex programmable logic device) or
FPGA (field programmable gate array) device.

Introduction

Many digital system designers use Verilog to

implement digital ASIC designs. Students can
learn Verilog programming in various courses.
Although Verilog is easy to learn due to its
similarity to the C language, however, it still will
take some time before a student can write efficient
synthesizable Verilog code for designing complex
digital systems. Often times, there is a need to
quickly implement a complicated digital system
using a CPLD (complex programmable logic
device) or FPGA (field programmable gate array).
Verilog certainly will be the choice of language
for those who have already learned the language,
but how about students without the proficiency of
using Verilog? To address this need, this
Paper presents a quick way to implement

complicated digital systems using Verilog. The
strategy is to spend a few hours learning the
extremely easy ABEL language and then translate
it to the Verilog syntax. Since ABEL statements
are closely related to logic gates and flip-flops,
the translated Verilog code will be completely
synthesizable.

A Sample ABEL Program

The ABEL language is so easy to learn that

students can comfortably learn ABEL
programming within a few hours [1]. ABEL
defines a digital design through a module and is
very efficient for a single module design targeted
for a single PLD regardless of the design
complexity. The module can be as simple as a
single gate or as complicated as a microcomputer
[2]. The ABEL syntax is simple enough to be
outlined in the following short paragraph.

Each design begins with the module keyword

followed by a module name. A title statement
uses a pair of single quotes to provide
documentation information. Afterwards, each
ABEL statement is terminated by a semicolon. A
device statement specifies the target device used
by the design. The pin statements define a digital
circuit’s input and output signal names. The
istype keyword in a pin statement defines an
output to be a combinational (‘com’) or registered
(‘reg’) signal. A single line comment is indicated
by a double quote. Any intermediate labels can
be defined without first declaring the labels once
the signals or variables involved have been
previously defined. The logic equations for the
output signals are defined in the equations
section. A state machine is defined by a
state_diagram statement which specifies the next
state transitions using if-then-else statements

58 COMPUTERS IN EDUCATION JOURNAL

based on the current state and current input
values. A GOTO statement specifies a forced
next state transition. The state machine outputs
can be embedded in the state transition statements
or specified in the “equations” section. The end
module_name statement ends the module.

For example the ABEL program, doors.abl

(Listing 1), implements a state machine and
combinational logic for a 4-story elevator
controller. The state machine consists of four D
flip-flops for simulating the elevator doors’
closing and opening movements. The
combinational logic generates arrival signals to
another state machine to trigger state transitions.

Converting ABEL to Verilog

Verilog also defines a digital circuit in module.

The complexity of a module can also be as simple
as a gate or as complicated as a microcomputer
[3]. But the main difference is that Verilog is
very efficient for multiple-module hierarchical
top-down designs. Each module can be
individually designed, tested, and then integrated
with other modules to form a more complicated
module. Those more complicated modules can be
integrated to form an even more complicated
module and on and on. Eventually the entire
system consists of only a few complicated
modules in a style very similar to the main() of a
C program consisting of a few subroutine calls. It
is this hierarchical design capability that provides
Verilog the flexibility and efficiency so crucially
demanded in ASIC designs.

 Due to the similarity, an ABEL program can be

easily converted to Verilog syntax [3], [4]. The
conversion process involves very straightforward
editing steps as detailed below.

1. Add a port list including all input and output

signals after the module name, delete title and
device statements, make module and
endmodule keywords lower case letters.

2. Add the input and output keywords for input

and output signals. Delete the active-low

signal polarity prefix (!) and pin declarations.
 Change the ABEL comment indicator to //.

3. Declare wire data type variables for

intermediate equations.

4. Convert all intermediate and equations

statements to assign statements. Change !
(not) to ~, # (OR) to |. Add a ~ (not) before
active-low input variables.

5. Declare a state machine’s state, next state, and

output variables as reg data type.

6. Prefix a parameter keyword to state

definitions and change ^b to 7'b, 6'b, 4'b, 3'b
etc. depending on the number of bits defined
for a value. Change a set definition into
individual assign statements for each variable
defined in the set.

7. Change each state-diagram statement into

three always statements. The first always
statement updates the next state variable based
on the state transitions through a case
statement with the state variables and state
machine inputs included in the sensitivity list
after the always keyword. Remove the ABEL
state keywords and replace the ABEL then
keywords by the next state name. The second
always statement updates the state variable to
the next state at each clock tick. The Verilog
case statement has the default statement to
capture all unspecified state transitions.
Therefore, all the ABEL GOTO statements in
a state machine can be replaced by a single
Verilog default statement. Add ‘;’ to the end
of every state machine statement. The third
always statement defines the output signals
based on the current state included in the
sensitivity list. If the state variables are used
as outputs directly, the third always statement
Listing 2. More ABEL to Verilog conversion
examples for a 4-story elevator controller can
be found from the author’s website at
www.egr.up.edu/contribu/lu.

COMPUTERS IN EDUCATION JOURNAL 59

http://www.egr.up.edu/contribu/lu

 It will take just a little time to convert an
ABEL program into Verilog syntax. Note that the
ABLE variable names are kept as uppercase in the
converted Verilog program to illustrate the
conversion process. Normally, variable names in
Verilog design modules are defined in lowercase
letters.

From Simple Modules To

A Complicated Digital System

A complicated digital system can be efficiently
designed by dividing a complex system into
simpler subsystems, the so-called top-down
design methodology. Each subsystem performs a
specific task much like the subroutine does in a
high-level language program. After each
subsystem is developed and tested, they can be
connected together in a bottom-up order to form
the system. ABEL is very efficient for developing
such subsystem modules and Verilog is extremely
efficient for connecting modules into a system.
By converting the debugged ABEL subsystem
modules into Verilog syntax, a top Verilog
module can easily integrate all the modules into a
system. The top module is mainly to instantiate
the subsystem modules in a straightforward net-
list format. For example, the following top
module, controller.v, instantiates seven modules
designed for a 4-story elevator control system.
These eight Verilog modules are then synthesized
into a complete system by a synthesis tool such as
Xilinx ISE and implemented by an XC9572
CPLD. The complete ABEL and Verilog
programs can be downloaded from the author’s
web site at www.egr.up.edu/contribu/lu.

Conclusion

This paper presents a very efficient method to
quickly implement a complicated digital system
using Verilog. Although this method uses only
part of the Verilog language constructs, however,
it provides the designers an insight on the top-
down design and bottom-up implementation
methodology. In Verilog, combinational circuits
can also be represented by behavioral modeling
(always statements) to create a more abstract
description of the circuit. Therefore, a digital
system can be designed in a style much like that
of high-level programming languages. Readers
are encouraged to take a Verilog-related design
course to fully utilize the capability of this
popular hardware description language.

References

1. John F. Wakerly, “ADigital Design Principles and
Practices”, Third Edition Updated, Prentice-Hall,
2001.

2. Dave Van d. Bout, “The Practical Xilinx Designer

Lab Book”, Prentice-Hall, 1998.

3. Michael D. Ciletti, “Modeling, Synthesis, and
Rapid Prototyping with the VERILOG HDL”,
Prentice-Hall, 1999.

4. Samir Palnitkar, “Verilog HDL”, 2nd Edition,

Prentice-Hall PTR, 2003.

Biographical Information

Wayne Lu received the phD degree in Electrical

Engineering from the University of Oklahoma in
1989. He has been with the University of
Portland since 1988 and currently is an Associate
Professor of Electrical Engineering. Dr. Lu’s
primary research interests are ASIC design &
prototyping, embedded systems, and computer
vision.

60 COMPUTERS IN EDUCATION JOURNAL

http://www.egr.up.edu/contribu/lu

Listing 1 doors.abl
─────────────────────────
module doors
title 'Door opening and closing control for a 4-story elevator'
U4 device 'p20v8';

"Input pins
CLK pin 1;
DIRA, DIRB, DOOR pin 6,5,2;
MOTIONU, MOTIOND pin 3,4;
DOC, CNT2, CNT1, CNT0 pin 11,7,8,9;

"Output pins
LED1, LED2, LED3, LED4 pin 19,20,21,22 istype 'reg';
ARR0, ARR1, ARR2, ARR3 pin 15,16,17,18 istype 'com';

"Intermedia equations
CLOSING = DOC & !DOOR & !MOTIONU & !MOTIOND;
OPENING = DOC & DOOR & !MOTIONU & !MOTIOND;

"State definitions
CLOSE = ^b1111; OPEN1 = ^b0111; OPEN2 = ^b0011;
OPEN3 = ^b0001; OPEN = ^b0000;

"Intermediate equations
UP01 = !DOC & !DOOR & MOTIONU & !MOTIOND & !DIRB & !DIRA;
UP12 = !DOC & !DOOR & MOTIONU & !MOTIOND & !DIRB & DIRA;
UP23 = !DOC & !DOOR & MOTIONU & !MOTIOND & DIRB & !DIRA;
DN10 = !DOC & !DOOR & !MOTIONU & MOTIOND & !DIRB & DIRA;
DN21 = !DOC & !DOOR & !MOTIONU & MOTIOND & DIRB & !DIRA;
DN32 = !DOC & !DOOR & !MOTIONU & MOTIOND & DIRB & DIRA;

"Doors movement and status display, LED1 at the bottom, LED4 at the top

 CONTROL = [LED1, LED2, LED3, LED4];

equations
ARR0 = DN10 & CNT2 & CNT1 & CNT0;
ARR1 = (DN21 # UP01) & CNT2 & CNT1 & CNT0;
ARR2 = (DN32 # UP12) & CNT2 & CNT1 & CNT0;
ARR3 = UP23 & CNT2 & CNT1 & CNT0;
CONTROL.C = CLK;

"Doors control state machine description
state_diagram CONTROL

state CLOSE:
if (OPENING) then OPEN1
else CLOSE;

state OPEN1:
if (OPENING) then OPEN2
else CLOSE

state OPEN2:
if (OPENING) then OPEN3
else OPEN1

state OPEN3:
if (OPENING) then OPEN
else OPEN2

state OPEN:
if (CLOSING) then OPEN3
else OPEN;

end doors

COMPUTERS IN EDUCATION JOURNAL 61

Listing 2 doors.v
──
module doors(CLK,DIRA,DIRB,DOOR,MOTIONU,MOTIOND,DOC,CNT2,CNT1,CNT0,
 LED1,LED2,LED3,LED4,ARR0,ARR1,ARR2,ARR3);

input CLK,DIRA,DIRB,DOOR,MOTIONU,MOTIOND,DOC,CNT2,CNT1,CNT0;
output LED1,LED2,LED3,LED4,ARR0,ARR1,ARR2,ARR3;
wire CLOSING,OPENING,OPENDOOR,CLOSEDOO;
wire UP01,UP12,UP23,DN10,DN21,DN32;
reg[3:0] CONTROL,NEXTCONTROL;

//Intermediate equations
assign CLOSING = DOC & ~DOOR & ~MOTIONU & ~MOTIOND;
assign OPENING = DOC & DOOR & ~MOTIONU & ~MOTIOND;
assign OPENDOOR = ~DOC & DOOR & ~MOTIONU & ~MOTIOND;

assign CLOSEDOOR = ~DOOR & ~MOTIONU & ~MOTIOND;

//State definitions
parameter CLOSE = 4'b1111;
parameter OPEN1 = 4'b0111;
parameter OPEN2 = 4'b0011;
parameter OPEN3 = 4'b0001;
parameter OPEN = 4'b0000;

//Intermediate equations
assign UP01 = ~DOC & ~DOOR & MOTIONU & ~MOTIOND & ~DIRB & ~DIRA;
assign UP12 = ~DOC & ~DOOR & MOTIONU & ~MOTIOND & ~DIRB & DIRA;
assign UP23 = ~DOC & ~DOOR & MOTIONU & ~MOTIOND & DIRB & ~DIRA;
assign DN10 = ~DOC & ~DOOR & ~MOTIONU & MOTIOND & ~DIRB & DIRA;
assign DN21 = ~DOC & ~DOOR & ~MOTIONU & MOTIOND & DIRB & ~DIRA;
assign DN32 = ~DOC & ~DOOR & ~MOTIONU & MOTIOND & DIRB & DIRA;

//CONTROL = [LED1, LED2, LED3, LED4] for door movement and status;
assign LED1 = CONTROL[3], LED2=CONTROL[2], LED3=CONTROL[1], LED4=CONTROL[0];
assign ARR0 = DN10 & CNT2 & CNT1 & CNT0;
assign ARR1 = (DN21 | UP01) & CNT2 & CNT1 & CNT0;
assign ARR2 = (DN32 | UP12) & CNT2 & CNT1 & CNT0;
assign ARR3 = UP23 & CNT2 & CNT1 & CNT0;

always @(posedge CLK)
 CONTROL = NEXTCONTROL;

always @(CONTROL or OPENING or CLOSING)
 begin
 case(CONTROL)

 CLOSE:
if (OPENING) NEXTCONTROL = OPEN1;
else NEXTCONTROL = CLOSE;

 OPEN1:
if (OPENING) NEXTCONTROL = OPEN2;
else NEXTCONTROL = CLOSE;

 OPEN2:
if (OPENING) NEXTCONTROL = OPEN3;
else NEXTCONTROL = OPEN1;

62 COMPUTERS IN EDUCATION JOURNAL

 OPEN3:
if (OPENING) NEXTCONTROL = OPEN;
else NEXTCONTROL = OPEN2;

 OPEN:
if (CLOSING) NEXTCONTROL = OPEN3;
else NEXTCONTROL = OPEN;

 default: NEXTCONTROL = CLOSE;
 endcase
end
endmodule

───
Listing 3 controller.v
──
module controller(CLK,OCALL,CCALL,CALL0,CALL1,CALL2,CALL3,ECALL0,ECALL1,ECALL2,ECALL3,RESET,
 W0,W1,W2,W3,E0,E1,E2,E3, DLED1,DLED2,DLED3,DLED4,
 LED0, LED1, LED2, LED3,LED4, LED5, LED6, LED7,
 SEGA,SEGB,SEGC,SEGD,SEGE,SEGF,SEGG,UPARROW,DNARROW,MIDARROW);

input CLK,OCALL,CCALL,CALL0,CALL1,CALL2,CALL3,ECALL0,ECALL1,ECALL2,ECALL3,RESET;
output W0,W1,W2,W3,E0,E1,E2,E3, DLED1,DLED2,DLED3,DLED4;
output LED0, LED1, LED2, LED3,LED4, LED5, LED6, LED7;
output SEGA,SEGB,SEGC,SEGD,SEGE,SEGF,SEGG, UPARROW ,MIDARROW; ,DNARROW

wire W0_BAR,W1_BAR,W2_BAR,W3_BAR,E0_BAR,E1_BAR,E2_BAR,E3_BAR;
wire L0CALL,L1CALL,L2CALL,L3CALL,ARR0,ARR1,ARR2,ARR3;
wire CT3,DOOR,DIRA,DIRB,MOTIONU,MOTIOND,DOC,CNT2,CNT1,CNT0;

//Instantiate modules and their interconnections
wallbtns U1(OCALL,CALL0,CALL1,CALL2,CALL3,DOOR,DIRA,DIRB,
 W0,W0_BAR,W1,W1_BAR,W2,W3_BAR,W3,W4_BAR);

ebuttons U2(OCALL,DOOR,DIRA,DIRB,ECALL0,ECALL1,ECALL2,ECALL3,
 E0, E0_BAR, E1, E1_BAR,E2, E2_BAR,E3, E3_BAR);

mainctl U3(CLK,L0CALL,L1CALL,L2CALL,L3CALL,ARR0,ARR1,ARR2,ARR3,CCALL,OCALL,RESET,
 CT3,DOOR,DIRA,DIRB,MOTIONU,MOTIOND,DOC,CNT2,CNT1,CNT0);

doors U4(CLK,DIRA,DIRB,DOOR,MOTIONU,MOTIOND,DOC,CNT2,CNT1,CNT0,
 DLED1,DLED2,DLED3,DLED4,ARR0,ARR1,ARR2,ARR3);

etravel U5(MOTIONU, MOTIOND,CNT2, CNT1, CNT0,
 LED0, LED1, LED2, LED3,LED4, LED5, LED6, LED7);

display U6(DIRA,DIRB,MOTIONU,MOTIOND,CNT0,
 SEGA,SEGB,SEGC,SEGD,SEGE,SEGF,SEGG);

arrow U7(W0,W1,W2,W3,E0,E1,E2,E3,MOTIONU,MOTIOND,
 UPARROW,DNARROW,MIDARROW,L0CALL,L1CALL,L2CALL,L3CALL);

Endmodule
──

COMPUTERS IN EDUCATION JOURNAL 63

	An Efficient Method for Complex Digital Systems
	Abstract

