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ABSTRACT 
 
A complete formulation of the problem of 

forced vibrations of an elastic plate using the 
modal superposition method and a simple finite 
element is presented. An earlier version of this 
problem was presented as a project for a 
“Summer Institute on Supercomputing” at the 
Pittsburgh Supercomputing Center in 
Pittsburgh, Pennsylvania.  The objective of the 
project was to demonstrate the use of massively 
parallel techniques in connection with practical 
engineering problems. The presentation here has 
been stripped from all references to highly 
parallel computation to make the problem 
usable in introductory graduate or 
undergraduate structural dynamics or vibrations 
courses. The problem illustrates many concepts 
of structural dynamics in a structured way and 
shows all the steps required to solve it: from the 
mathematical formulation, to the generation of a 
computer animation using the commercially 
available mathematical package MAPLE®.  The 
particular organization of the material facilitates 
the introduction of  the topic to graduate or 
undergraduate engineering students without 
having to resort to black-box type commercial 
finite element packages.   

 
INTRODUCTION 

 
Due to the inherent richness and complexity of 

the subject matter, it is difficult to find complete 
worked-out solutions of dynamics problems in 
the literature that are both simple enough for the 
classroom and sufficiently realistic to be of 
practical value.  The purpose of this paper is to 
present a practical vibration analysis problem in 
a complete yet “classroom friendly” way.  

The problem of the forced vibrations of an 
elastic plate involves many concepts of 
structural analysis and structural dynamics. For 
simple, skeletal structures, some knowledge of 
the direct stiffness method of analysis is 
sufficient. Other more complex, continuous 
structures require knowledge of the finite 
element method (FEM). As a matter of fact, 
accurate solutions of the plate problem require 
finite element (F.E.) discretizations using 
complex plate or shell elements. These elements 
are readily available in commercial black-box 
type computer codes like ANSYS®, SAP2000®, 
RISA®, etc. The problem with using these 
black-box type packages in an instructional 
setting is that students usually miss important 
details of the calculations involved. As an 
alternative to the use of commercial F.E. 
packages, simple F.E. formulations of the 
problem like the one presented here provide a 
valuable alternative. The present F.E. 
formulation uses two degree-of-freedom finite 
elements to approximate the linear elastic 
behavior of the plate. This formulation can be 
easily implemented using high-level computer 
languages like those available within 
MATLAB®, MAPLE®, or even EXCEL®.  It 
should be noted that this model will probably 
not be accurate enough for industrial 
applications. However, the resulting calculation 
procedure captures all the important aspects of 
the F.E. method when applied to dynamic 
problems. In addition, because of its simplicity, 
the calculation procedure allows for the 
generation of a realistic animation of the 
vibrations of the plate using the commercial 
computer package MAPLE®.  The simplicity of 
the formulation also allows for a modular 
arrangement of the entire procedure that 



COMPUTERS IN EDUCATION JOURNAL  80  
 

facilitates the identification and execution of all 
the steps in a logical fashion.   

 
In general, a numerical simulation of the 

forced vibrations of an elastic plate can be 
performed using one of the following three 
methods:  

 
1. Modal superposition 
2. Frequency domain analysis 
3. Direct numerical integration of the 

differential equation of motion.  
 
Method 2. requires knowledge of Fourier 

transforms and Fourier series. It is 
mathematically more involved than the other 
two and probably not appropriate for an 
introductory setting.  Method 3. is the method of 
choice when the modal superposition method 
cannot be used (like when the structure exhibits 
nonlinear behavior. See e.g.,[1]).  Method 1.  on 
the other hand, is a method that can be used in 
many practical situations and that is rich in 
terms of academinc and practical content. The 
present discussion will therefore use method 1., 
or modal superposition. When this method is 
used, the numerical solution of the problem of 
the forced vibrations of an elastic structure 
involves the following steps: 

 
1. Discretization of the problem using a 

suitable finite element model. 
2. Formulation of the corresponding 

eigenvalue problem. 
3. Solution of the eigenvalue problem. 
4. Determination of the normal equations of 

motion (uncoupling of the equations of 
motion). 

5. Calculation of the response to the given 
excitation for each of the normal 
coordinates. 

6. Superposition of the normal response 
functions to obtain the response of the 
structure. 

 
The remaining of this paper will discuss the 

foregoing steps in detail.  
 

 

PROBLEM  DESCRIPTION. 
 
Figure 1 shows a plan view of a rectangular 

plate together with a general, time dependent, 
transverse (i.e., perpendicular to the plane of the 
plate) load q(x,y,t). The simplest problem that 
can be defined for this plate consists of finding 
the vertical deflection or displacement field 
u(x,y,t). In the context of dynamics, this is 
referred to as the “response” of the system.  In a 
rigorous mathematical context, this problem is a 
continuum problem. In other words, it has an 
infinite number of degrees of freedom (DOF). 
Its exact analytical solution requires the use of 
partial differential equations and Fourier series 
approximations. 

 
Even the static problem, i.e., one in which the 

time coordinate t has been removed from the 
equations, requires the application of the theory 
of partial differential equations.  A much more 
practical approach to the solution of this 
problem from the engineering point of view, 
consists of using a numerical approximation 
procedure like the finite element method (FEM). 
An accurate model of the plate problem using 
the FEM requires the use of complex elements 
with many degrees of freedom.  These are the 
elements that commercial packages use. Since 
the objective of the current presentation is 
educational, a much simpler finite element 
model was adopted.  Figure 2 illustrates 
schematically this finite element model. In this 
model, the plate is modeled as a grid of beam 
elements with just two degrees of freedom. This 
model allows for a realistic representation of the 
vibrations of the plate in the form of an 
animation.  It also allows for the illustration of 
all the concepts related to the application of the 
modal superposition method to structural 
problems. It must be emphasized again 
however, that this model will not be accurate 
enough for industrial applications.    

 
A  SIMPLIFIED   FINITE  ELEMENT 

MODEL  FOR  A  PLATE 
 

The finite element model of the plate is 
illustrated in Figure 2. It uses a 2-DOF finite 



element that leads to the following element 
stiffness matrix: 
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A global stiffness matrix K for the entire plate 

structure can now be assembled using the 
standard steps of the direct stiffness method 
(See e.g., [2]).  For the case of a static load, the 
global equilibrium equations of the structure can 
be formally written as: 

 
                         K u = P                                (2) 
 

where u is the displacement vector, and P, the 
load vector.  For the case of the plate, the 
displacement vector will contain the vertical 
displacements of the plate at the nodal points 
(See Figure 2). The simplest way to account for 
a distributed load like that shown in Figure 1 is 
to add the contributions of four adjoining 
tributary areas and assign them to the node at 
the center of the areas as a nodal load.  This 
procedure is referred to as the lump load 
method. The load vector will then contain these 
nodal loads.   

 
DYNAMICS  OF  MULTI-DEGREE-OF-

FREEDOM  (MDOF)  SYSTEMS 
 
Figure 3 illustrates a single degree of freedom 

(SDOF) dynamical system together with a one 
dimensional multi-degree-of-freedom system.  
A simple application of D’Alambert’s Principle 
to the SDOF system leads to the well know 
dynamic equilibrium equation: 

                                                        
                           (3)   )()()()( tptkutuctum =++ &&&

   
where m is the mass of the system, k the spring 
constant, c the damping constant, u(t) the 
displacement in the horizontal direction, and 
p(t) the applied load. For the MDOF system 
(Figure 3b), the dynamic equilibrium equation 
looks formally the same as Equation (3): 

          M ü(t) + C ů(t) + K u(t) = p(t)           (4) 
 
The difference is of course that now M, C, and 

K are matrices, and u and p are vectors. Notice 
also that u and p are functions of time. To solve 
Equation (4), it is convenient to first consider 
the problem of free vibrations of an undamped 
system i.e., one in which C and  p are zero. 
Equation (4) then becomes:        

 
         M ü(t) + K u(t) = 0                          (5) 
 

If a simple harmonic solution u(t) = u0 sin (ωt + 
θ) for (5) is assumed, the following eigenvalue 
problem is obtained: 
 

                     Eu0 = ω2 u0                                             (6) 
 

where E ≡ M-1 K is the inverse of the so-called 
dynamic matrix [3].  If n is the number of 
degrees of freedom of the system (i.e., the 
number of nodes in the plate model shown in 
Figure 2), there are n eigenvalues ωi and n 
eigenvectors φi that constitute the solution of 
(6).  The n eigenvalues ωi are referred to as the 
natural frequencies of the system. The n 
eigenvectors φi are known as the modes of 
vibration (or modal shapes) of the system. The 
smallest  frequency of the system is referred to 
as the fundamental frequency of the system. The 
smallest frequency corresponds to the largest 
period of vibration. If the frequencies are 
ordered in ascending order, the fundamental 
frequency corresponds to ω1 and the 
fundamental period to T1. These frequency and 
period are related by:  

                                                                       

                       T1 = 
1

2
ω
π                                 (7) 

 
An important characteristic of the modes of 

vibration of a dynamical system is that they are 
orthogonal to each other with respect to the 
mass M and stiffness K matrices (for repeated 
eigenvalues, the modes are not orthogonal but 
can be constructed to be so by using a suitable 
orthogonalization procedure like Gram-Schmidt. 
See e.g., [4]).   The mathematical statements of 
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the orthogonality properties of the modes of 
vibration are: 

 
                 φi

T M φj = 0,     i ≠ j                     (8) 
 
                 φi

T K φj = 0,     i ≠ j                      (9) 
 
Another important property of the modes of 

vibration of a dynamical system is that they 
constitute a base for the n-dimensional space.  
This property can be used to advantage to solve 
Equation (4) as explained next. Let u(t) be the 
solution of (4).  Then u(t) can be written as a 
linear combination of the n modal shapes φi as 
follows: 

 
                    u(t) = Ф y(t)                            (10) 
 

where Ф is a matrix whose columns are the 
modes of vibration φi. By substituting (10) in 
(4), pre-multiplying this result by φi

T and using 
the orthogonality conditions (8) and (9), the 
following scalar equation for mode of vibration 
i is obtained:  
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The quantities in Equations (12) to (15) are 

known as the generalized mass, generalized 
damping constant, generalized stiffness, and 
generalized load of the structure respectively. 

 
Equation (11) can also be written in a more 

convenient form as: 
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is the damping ratio, and  
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is the circular frequency corresponding to mode 
i.   

 
The foregoing process shows that Equation (4) 

can be transformed into a system of n equations, 
one for each mode of vibration (Equation (11)). 
This means that the modes of vibration 
effectively uncouple the dynamic equations of 
motion. In other words, to solve the dynamic 
problem, it suffices to solve n separate 
(uncoupled) differential equations of the form 
(11) as opposed to having to solve a system of 
coupled differential equations (Equation (4)).  
This is the advantage of using the method of 
modal superposition to solve dynamic problems.  

 
DYNAMIC  RESPONSE  TO  AN 

IMPULSIVE  LOAD 
 
One of the most common loads in structural 

systems is an impulsive load, i.e., a load that has 
a short duration with respect to the fundamental 
period of the structure (i.e., td << T). A 
schematic plot of such load is shown in Figure 
4a. The impulse of this load is by definition: 

                                                                  

                                 (19) ∫=
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dttpI
0

)(

 
It can be shown that the response of a SDOF 

system to this impulse load is given by: 
 

                 te
m
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ω
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where,  
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21 ξωω −≡d                             (21) 

 
is the damped frequency of the system [3]. 
 
In the case of a MDOF system, there will be 

one equation like (20) for each uncoupled 
degree of freedom i, i.e., 
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Following the definition of the generalized 

force for mode i given by (15), and the 
definition of impulse given in (19), the impulse 
for mode of vibration i, is given by: 

 
                                                                      

φ∫=
dt

iI
0

i
T p(t)  dt                           (23) 

 
The concept of response to an impulsive load 

can be used to advantage to find the response to 
general dynamic excitation of a SDOF system 
like the one shown in Figure 4b. This leads to 
the famous Duhamel’s Integral written here for 
mode of vibration i, 
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COMPUTATIONAL  ASPECTS. 

 
The F.E. program used in the present study is a 

research F.E. code written in FORTRAN (it is 
possible to write a F.E. program using high-
level programming languages like those 
available in MATLAB® or MAPLE® but the 
FORTRAN research code was already available 
and thus seemed a more logical choice for the 
purposes of this study). The F.E. program reads 
the standard input data, i.e., the geometry of the 
structure, the element properties, the element 
connectivity, and the boundary conditions 
(including loads). In this case it also reads the 
data necessary to perform a dynamical analysis, 

i.e., the individual element masses.  Damping is 
introduced into the system by means of 
individual damping ratios for each mode (See 
Equations (16) and (17)).  The program uses the 
direct stiffness method of analysis to assemble 
the stiffness and mass matrices.  It then solves 
the eigenvalue problem given by (6) by means 
of Jacobi’s method. Many other methods are 
available to solve eigenvalue problems and 
many are specifically tailored to eigenvalue 
problems arising from dynamical systems. 
Jacobi’s method was used here for convenience, 
since a ready-made Jacobi routine is readily 
available in [5,6]. A standard Jacobi routine 
could be used here since the matrix E given in 
(6) is symmetric. This is because the mass 
matrix for a lumped mass dynamical system is 
usually a multiple of the identity matrix. This 
makes M-1 also a multiple of the identity matrix. 
Therefore the matrix E is symmetric since K is 
symmetric. For more general structural 
dynamics problems (i.e., those for which E is 
not symmetric) other methods of solution like 
matrix iteration can be used [3,4].  It is possible 
however to use a modified version of Jacobi’s 
method to solve general eigenvalue problems 
(those for which E in (6) is not symmetric. See 
e.g., [4]).   

 
RESPONSE  CALCULATIONS 

 
The output of the F.E. program consists of the 

modes of vibration of the plate and the 
corresponding modal frequencies.  These data 
are read by a “response” program. This program 
can be easily written in MATLAB® or 
EXCEL®. The version used here was written in 
FORTRAN. The “response” program uses the 
modal superposition method to generate a 
discrete version of the response function u(x,y,t) 
mentioned in Section 2. above. The main 
ingredient of the process is Equation (22) which 
gives the response of a SDOF system to an 
impulsive load. In the context of a MDOF 
system, each response function yi(t) is actually 
the coefficient of φi in Equation (10). The 
process of generating the response of the 
structure is carried out in an incremental fashion 
using time steps. A suitable interval of time ∆t is 
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first chosen, the response calculated for time t, 
then for time t+ ∆t, and so on. The first step is 
to calculate the impulse Ii corresponding to each 
mode of vibration. This is done using Equation 
(23). Note that even though the impact load is 
applied to a particular node (or DOF), it affects 
many other degrees of freedom. In other words, 
even though the vector p(t) may have only one 
nonzero entry (that corresponding to the point 
(or node or DOF ) of application of the load), 
many  will be nonzero (see Equation 
(15)). The reason is that whenever the value of 
φ

)(* tpi

i at the point (node) of application of the load 
is nonzero, the integrand in Equation (23) will 
be nonzero.   

 
All the calculations performed by the 

“response” program are better appreciated when 
arranged in the form of an algorithm, as follows: 

 
ALGORITHM. 

 
1. Set problem parameters and initialize 

variables:  set the duration of the impact 
(impulse) load to a small number, say 

1000
1Ttd = . Set the damping coefficient ξi 

(say ξi = 2 %). Choose the time interval ∆t 
and set the initial time to zero:  

      ∆t =
IntervalsTimeofNumber

SimulationofDuration
___

__ ; t=0. 

 
2. Increment t: t = t + ∆t. 
 
3. For all x and y coordinates set frame(x,y) = 

0.0. 
 
4. Do For  i=1 to nmodes,  
      Calculate according to Equation (12) and 

ω

*
im

di according to Equation (21). 
      Calculate Ii = P0 * td * φ(xp,yp,i) 
      Calculate yi according to Equation (22). 
      Superimpose mode contributions into the 

array frame:            
frame(x,y)=frame(x,y)+yi*φ(x,y,i).  
Enddo. 
Write frame(x,y). 

5.  If t ≤ Duration_of_Simulation then goto 2, 
otherwise STOP.  

 
In the foregoing algorithm, nmodes refers to 

the number of modes considered for the 
simulation, which in general does not have to be 
equal to n. P0 is the intensity of the applied load. 
The coordinates xp and yp refer to the point of 
application of the impact load. This position can 
be changed within the program “response”. As 
shown in step 4. above, the “response” program 
outputs the animation frames to a file called 
“maplemodes.dat”. The format of this file 
must be such that it can be understood by 
MAPLE®.  This is accomplished by formatting 
this file according to the internal 
representational structure that MAPLE® uses for 
its plot3d function (this data structure will be 
displayed by MAPLE® when the command 
“?plot3d[structure];” is typed in the command 
line). The plot3d function is one of the 
functions that MAPLE® uses to produce 
animations. This function is used when the 
values of the surface to be animated (in this case 
the deflected shape of the plate) are specified by 
the user. Following this structure, the first  line 
of the “maplemodes.dat” should read 
something like: animation:= 
PLOT3D(GRID(0.0..1.0, 0.0..1.0 
[0.0,…,0.0], [0.0, -3.9,…,-3.9, 0.0], …  

 
The “maplemodes.dat” file is read by 

MAPLE® by means of the command ‘read 
“maplemodes.dat”;’. Once the file is read, the 
actual animation can be generated and displayed 
by simply typing ‘animation;’ in the command 
line.  

 
SAMPLE  RESULTS. 

 
The data for the sample problem presented 

here is shown in Figure 5. The plate has been 
discretized using 840 elements and 441 nodes. 
The lumped mass mi at each node corresponds 
to the mass of a 0.6 m × 0.6 m (× 0.4 m) square 
(parallelepiped) that is centered at node i as 
indicated in Figure 5. For the results presented 
here, the impact load was applied at the center 
node of the plate. Note that as far as the 
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simulation is concerned, the actual value of the 
load is immaterial since the deflection of the 
plate needs to be exaggerated (scaled) for 
purposes of graphical representation. The time 
increment used was ∆t =10-4 seconds. Figure 6 
illustrates a sequence of four frames obtained 
from the animation produced by MAPLE®. The 
number of modes considered for the modal 
superposition in the animation presented here 
was 100 (out of a maximum of 441 for the 
current discretization of the plate).  Figure 7 
shows modes of vibration 1, 4, 7, and 25. These 
modes were also obtained using the program 
“response”.  The speed of the computer 
simulation can be adjusted at will. However, it 
should be noted that the actual duration of the 
vibration phenomenon is very short. For 
instance, the interval of time that separates 
frames 4 and 9 in Figure 6 is actually 5∆t or 
5×10-4 seconds. 

 
CONCLUDING  REMARKS. 

 
A complete formulation of the problem of 

forced vibrations of an elastic plate has been 
presented together with sample results and 
snapshots of a computer animation. The plate is 
discretized using a simple finite element. The 
eigenvalue problem resulting from the finite 
element analysis is solved using Jacobi’s 
method. The response of the plate is determined 
using the modal superposition method.  The 
simplicity of the finite element model used 
allows for a computer implementation of the 
problem that permits the generation of an 
animation of the vibrations of the plate using 
MAPLE®. The problem is presented in a 
detailed and modular way so that it can be easily 
incorporated into lecture material for 
introductory graduate or undergraduate courses 
in structural dynamics or vibrations. The 
presentation offers an alternative to the use of 
black-box commercial computer codes to study 
the topic of forced vibrations of elastic 
structures in a classroom environment.  
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Figure 1. General, time-dependent load for a plate. 
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Figure 2.  Two degree-of-freedom finite elements to approximately model the plate. 
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Figure 3.  a) Single-degree-of-freedom (SDOF) System  b) Multi-degree-of-freedom (MDOF) System. .
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                           Figure 4.  a) Impulse load.                   b) General dynamic load 
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E = 24.525 GPa

Thickness = 0.40 m

m i = 34.56 kg

ρ = 2,400 kg / m3

I = 0.005333  m4

12 m

12 m

 
Figure 5. Plate dimensions and data for example problem. 

 

 
Figure 6. Clockwise From Top to Bottom: Frames 1, 4, 9, and 16 of computer animation. 
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Figure 7.   Clockwise From Top to Bottom: Modes of Vibration 1, 4, 7, and 25. 
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