
USING A DIGITAL SIGNAL PROCESSOR FOR REAL TIME
IMPLEMENTATION OF A TUNING DEVICE

Joseph Reagan, Sedig Agili and Aldo Morales

Electrical Engineering Program
Penn State University at Harrisburg

777 West Harrisburg Pike
Middletown, PA 17057

Abstract

In this paper, a demonstration of the use of a

digital signal processing (DSP) board for
teaching purposes and project implementation is
presented. This is carried out through the design
of a guitar tuner using a DSP platform. The goal
of the design is to optimize the DSP process so
that the best results are obtained for the guitar
tuner. This involves the proper selection of
DSP parameters and the use of DSP techniques
to provide an accurate guitar tuning such as
frequency resolution and sampling rates. The
application was implemented in a target
hardware system, the TMS320C5402 DSP
Starter Kit (DSK). The software for the guitar
tuner is written in the C programming language
and makes use of DSP assembly functions
provided by Texas Instruments. The software
program developed for the guitar tuner can be
run in the Code Composer Studio (CCS),
Integrated Development Environment (IDE) and
is able to accurately tune a guitar in several
common tunings. This project is interesting for
the students so they can experience real time
implementation issues of different DSP
techniques.

Introduction

Penn State Harrisburg offers BS EE, BS EET,

and ME degrees. The Bachelor of Science
degree in Electrical Engineering provides an
opportunity for students to pursue interests in
electrical and electronic circuits, including
digital circuits and VLSI and its fabrication,
microprocessors and their applications,
electromagnetics, communications, control
systems, digital signal/image processing and
computer vision. The BS EET program provides
similar experience however, its strengths

include an applied, hands-on approach and
extensive laboratory experience. Through a
senior capstone design project, both curricula
emphasize written as well as verbal
communication and a teamwork approach
among students to attain a common goal. The
Master in Electrical Engineering offers an
education in the advanced aspects of modern
electrical engineering. A candidate for the
Master of Engineering in Electrical Engineering
must write a scholarly report or engineering
paper and defend it before three faculty
members.

Thus, students in the DSP, communication,

senior design project courses and master paper
have ample opportunities to use real-time DSP
techniques. The program has acquired a number
of real-time TMS320C6x DSK DSP boards to
be used in undergraduate and graduate teaching
and research. Currently, several students are
involved in implementing real time DSP
applications such as guitar tuner using newer
boards, and test generation patterns for
interconnects.

This paper demonstrates how DSP techniques

are used to develop and implement a guitar
tuner. A guitar tuner is a device that accepts
musical signals as inputs and compares these to
standard pitch notes. It displays the pitch of the
input signal relative to the standard pitch. This
display aids the user in the process of tuning the
input signal so it equals the standard pitch. The
process of tuning a guitar is an iterative process
where a string on an instrument is plucked until
the user sees that its frequency is as close as
possible to a desired concert pitch. Guitar tuners
are often used in either a manual mode, where a
fixed note is being tuned to, or in an automatic

COMPUTERS IN EDUCATION JOURNAL 60

mode where the tuner detects a note and locks
onto it and allows the user to tune to that note.
Both modes are developed in this
implementation. The guitar tuner provides
visual feedback through an UART on the DSP
kit and a terminal program resident on a PC,
such as HyperTerminal. In order to demonstrate
the flexibility of DSP, several guitar tunings
used by guitarists are provided, such as
Standard, Open G and Open D. The program
provides a menu from which the user can
control various modes of operation.

Essential to the guitar tuner are signal

processing functions that acquire a guitar signal
and determine the pitch of a note. To determine
the note’s frequency, it must be sampled and
then converted to the frequency domain using
the Fast Fourier Transform (FFT). Additional
signal processing operations are also performed
to improve the results. These include filtering,
windowing, and zero-padding. In addition, an
algorithm that can determine whether a note is
being mistaken for the harmonic of another note
is used. The goal of the design is to optimize
the DSP process to provide an accurate guitar
tuning parameters such as frequency resolution
and sampling rates. To make this paper self-
contained, a brief discussion on guitar
fundamentals is presented in section II.
Hardware and Software selection is presented in
section III. The guitar tuner implementation
using the TMS320C5402 DSP Starter Kit
(DSK) is discussed in section IV. The tuner
performance is evaluated and discussed in
section V. Conclusions are given in section VI.

MUSICAL TUNING AND GUITAR
FUNDAMENTALS

A note is a name given to describe a musical

frequency[1]. The chromatic scale is typically
used in Western music and consists of the
following twelve notes:

A , A# , B , C , C# , D , D# , E , F , F# , G , G#.

The “A” note has been chosen as a standard

frequency upon which the other notes’
frequencies are determined. These 12 notes

repeat for each octave[1]. The frequency of the
notes doubles for each successive octave. Notes
are designated by their letter, and the octave
they reside in. For example, A = 440 Hz is in
the 3rd octave and is called “A3”. Table 1 lists
the chromatic scale of notes over a three-octave
range, which contains the notes of the guitar
tunings used in this paper.

A guitar is a stringed instrument, and typically

has six strings. The musical notes played on a
guitar are created by plucking one or more of its
strings at different locations on the guitar. These
locations where notes exist are created by frets.
A guitar’s fretboard is

Note Octave1 Octave2 Octave3
A 110.00 220.00 440.00
A# 116.54 233.08 466.16
B 123.47 246.94 493.88
C 130.81 261.63 523.25
C# 138.59 277.18 554.37
D 146.83 293.66 587.33
D# 155.56 311.13 622.25
E 164.81 329.63 659.26
F 174.61 349.23 698.46
F# 185.00 369.99 739.99
G 196.00 392.00 783.99
G# 207.65 415.30 830.61

Table 1 Chromatic Notes

designed so that the 12 notes of the chromatic
scale are positioned from the open position to
the 12th fret. After the 12th fret, the notes repeat
at the next octave. The 12th fret is designed so
that it is always double the frequency of the
open string frequency. The desired notes are
obtained by applying the proper tension to the
guitar strings by means of the tuning pegs. The
tuning pegs are turned in either direction to
increase or decrease the string tension. A guitar
must be tuned when new strings are put on a
guitar, and periodically thereafter to maintain
the concert pitch of the instrument. The main
reason a guitar comes out of tune is the playing
of the guitar, which will cause the strings to
stretch. Other factors, which affect the tuning,
include humidity, temperature and time.

61 COMPUTERS IN EDUCATION JOURNAL

A guitar is typically tuned to what is called
Standard tuning. A tuning is always defined by
the notes which exist when the strings are left
open, or unfretted. The Standard tuning has
grown to be the most popular tuning because of
the many chord variations, which can be easily
formed on it. There are many other guitar
tunings in use, but many of these are for more
specialized forms of music[1]. For example,
Open G is often used in folk music and
especially by guitarists using a slide
(bottleneck), since a major chord can be formed
by placing the slide straight across the fretboard.
Open D is also very popular with folk guitarists.
Table 2 lists the notes, which occur in these
three tunings, all of which can be tuned to with
the proposed guitar tuner.

Standard Tuning Open G Tuning Open D Tuning

Note Frequency Note Frequency Note Frequency
E1 164.81 D1 146.83 D1 146.83
A2 220.00 G1 196.00 A2 220.00
D2 293.66 D2 293.66 D2 293.66
G2 392.00 G2 392.00 Gb2 369.99
B3 493.88 B3 493.88 A3 440.00
E3 659.26 D3 587.33 D3 587.33
Table 2 Notes for guitar tunings used in this

project.

A guitar tuner is a device that provides the
desired musical pitch and provides some
feedback to the user as to what the present pitch
is. Two of the simplest guitar tuning devices are
a tuning fork and a pitch pipe. A tuning fork is
a simple tuning device that resonates at a known
frequency. The user must tune the string by ear
to this tone. A pitch pipe works in a similar
fashion. Both of these devices rely on the user’s
ability to hear slight differences in frequency in
order to tune with this method. Since many
users do not have the natural hearing ability to
tune this way, guitar tuners have been developed
which provide feedback that indicate the tuning
status. The advantages of the electronic guitar
tuner include speed, the ability to tune all of the
open string notes on a guitar or even the entire
chromatic scale of notes. Many of the tuners
also provide an input jack so an electric guitar
can be tuned without other sounds disturbing the
process, which is an important feature for a
musician on a stage.

Hardware And Software Platform

The hardware used for the implementation is

the TMS320C5402 DSK from Texas
Instruments (TI)[2] The DSK is a PC Board
which contains the TMS320C5402 (C5402)
DSP processor and supporting circuitry. Figure
1 shows parts of the functional block diagram of
the DSK[3] In what follows, some of the main
function blocks are explained.

The C5402 is a 16 bit fixed point DSP,[2,3]

with an architecture that has one program
memory bus and three data memory buses.
Separate program and data spaces allow
simultaneous access to both program
instructions and data. The C5402 CPU has a
40-bit Arithmetic Logic Unit (ALU) and can
access 192K words of memory.

The audio input to the board is established

through a microphone or a phone jack to a pre-
amp IC. This signal is then presented as an
input to the codec. The codec (AD50) provides
both Analog to Digital Conversion (ADC) on
receive, and Digital to Analog Conversion
(DAC) on transmit. The codec requires a one-
pole passive anti-aliasing filter, which is
implemented on the DSK board. The codec
interfaces to the C5402 DSP via the serial port
named MCBSP 1. The codec is only being used
as a receiver in this project.

The DSK board interfaces to the parallel port of
the PC through its host port interface (HPI).
Programs are downloaded to the target via the
HPI interface to be run and debugged. The HPI
allows Code Composer Studio to communicate
with the target hardware. An on-board UART
allows serial communication to an external
device. In this project, the UART,[4] is used to
communicate to the serial port of a PC using
HyperTerminal.

The Code Composer Studio (CCS),[5] is the

development environment provided by TI for
the C5000 family. CCS was used to implement
the guitar tuner on the DSK board. Functions
provided by CCS include: compiling, linking,

COMPUTERS IN EDUCATION JOURNAL 62

Figure 1 DSK F

debugging, loading data files, input signals an
filter coefficients. When using the DSK board
signals can either be inputted to hardwar
through the AD50 codec, or from a file inpu
which is called File I/O in the CC
environment. File I/O is useful in program
development such as inputting test signals int
memory that can be generated via softwar
programs like Labview or MATLAB. Th
technique can also be used to output results to
file, where they can be analyzed in anothe
software program.

The DSK comes with libraries o

functions,[6,7] written in C by TI which allow
various peripherals such as the codec, UART
LEDs, serial port, and other hardware on th
board to be operated. The header file for a grou
of functions must be included in the sourc
program to use them. Also included are severa
DOS utilities which test the board, reset it an
program the flash memory. Texas Instrumen
provides a library of C callable assembl
functions for DSP called dsplib. In this projec
the program is written in C and most of the DS
functions are from the dsplib library.

Implementation

In the CCS environment, a project file must b

created. A project file is a file which manage
the various files used as well as option setting
for compiling, linking and assembling th

MCBSP
Serial
Port

63

 Parallel Port

HPI Interface
d

e
t
S

o
e
i
a

e
p
e

d
t
y
t
P

e

e

Parallel
Port PC

Codec
A to D
Audio
Source

unctional Block Diagra

,

,

s

r

f

,

l

s

,

s
s

Program[5]. T
CCS is used
linked object f
guitar tuner co
be initialized.
C5402 CPU fr
other initializa
The codec is i
setup_codec()
gain, sample ra
also initialized

Once an anal

stored in mem
functions can b
arrays were use

• The inp

stored in
The ma
1024.

• 11 arra
designat
which n
These a
constant

• The arra
filter fu
function

Figure 2 sho

were used to c
The signal ge

D p

 COMPUTER
Memory

 UART
 User Input
Terminal

C5402
SP Chi
m

he Load Program command in
to download the compiled and
ile to the DSK board. Before the
de can be run, the hardware must
 The function brd_init() sets the
equency to 40 MHz and performs
tion tasks for the DSK board.
nitialized through the use of the
function, which sets codec input
te and output gain. The UART is

 by the uart_reset() function.

og signal is sampled, it must be
ory so that the signal processing
e performed on it. The following
d for signal processing:

ut array x that the audio signal is
 after it is acquired by the codec.
ximum input size is equal to

ys used for filter coefficients,
ed as hE1, hA2, etc, to indicate
ote the filter is designed for.

re stored in program memory as
s.
y r used as an output of the fir()
nction, and as an input to other
s.

ws the audio signal devices that
reate and modify the input signal.
nerator used was a commercial

S IN EDUCATION JOURNAL

guitar tuner which outputs the chromatic scale
of notes over three octaves. The frequencies of
these notes provide an accurate tuning reference
that can be used to evaluate the guitar tuner.
The distortion pedal is used since many guitar
players utilized it to add harmonic content to the
signal spectrum. The equalizer is useful for
shaping the spectrum of the signal.

The signal processing operations performed on

the input signal, which was acquired into x, are
detailed below:

• Clear the output buffer, r
• FIR Filtering
• Copy function
• Windowing
• Zero-Padding

The filtering, windowing and zero padding

operations are not required to perform the basic
frequency determination, but they are used in
the program to improve the performance. The
filter and window functions can be switched in
and out of the program. The fir() function is
from the dsplib library, and the other functions
were written for this project. The following C
functions correspond to the above operations,
respectively:

• void Zero_Buff (u16 count,DATA *input);

Clear the output buffer r.

• fir(x, h, r, &dbptr, NH, NX); This is the fir

filter function from dsplib. It takes as input
the array x, which is the input signal; and the
array h, which is the filter coefficients.
NHand NX are the sizes of the arrays. The
output of the filter is put into the array r.
The arrays for h are circular buffers, and
must be aligned on a memory boundary such
that the k Least Significant Bits (LSB)s of
the starting address are zeros; where k = log2
(NH).

Figure 2 Audio Signal Devices

• void Copy_Buff(u16 count,DATA
*input,DATA *output); This function is
required to copy the input buffer x to the
output buffer r, when the fir function is not
used. This is because the FFT functions
were designed to always operate on the r
buffer.

• void Window(u16 n,DATA *in_ptr); This

function takes as an input a pointer to the
array to be windowed and multiplies it by a
Hamming window function. To perform
this function the cosine function must be
used on data of type double. This data is
type-cast to float, and then the dsplib
function flt2q15 is used to convert the data
to Q15 format (used in the DSK). The data
must be shifted by 15 since the result from
the multiplication is 32 bits and needs to fit
in a 16-bit word.

• void Zero_Pad (u16 input_size,DATA

*in_ptr); This function provides zero
padding to the input signal. This is required
to ensure that the input is a power of 2, as
required for the FFT. The FFT size is fixed
at 1024 so this function always outputs an
array of this size.

So far, we have discussed how to setup the

project, define variables, initialize hardware,
acquire input, and perform the basic DSP
process of determining a frequency of a note. In
the following, the implementation of the guitar
tuner is discussed in detail.

It is an objective of this paper to provide the

three guitar tunings listed in Table 2. The
highest frequency note to be tuned is E3 at
659.26 Hz. To avoid aliasing, the minimum
sampling rate must be greater than twice the E3
frequency; which is 1318.52 Hz. A sampling
rate of 2000 Hz, which is the minimum the
codec can be operated at, satisfies the Nyquist

Signal Generator Distortion Equalizer DSK Codec

COMPUTERS IN EDUCATION JOURNAL 64

criterion of these notes if the signals are pure
sine waves. However, the signal input is not
guaranteed to be a pure sine wave. Many guitar
effects, especially distortion, will change the
wave shape of the signal. Therefore, the highest
signal present would not be exactly E3, but
higher. The highest frequency component
present would be 660 * 3 = 1980 Hz, if the 3rd
harmonic is significant. This would in turn
require the sampling rate to be set at 4000 Hz.
Once the sampling rate is determined, the
frequency resolution is calculated as is
explained in the following sub-section.

Frequency Resolution

Frequency resolution is defined

as: sf f N∆ = , where fs is the sampling
frequency and N is the buffer size, respectively.
It is desirable for ∆f to be as small as possible
for greater accuracy. The sampling rate must be
chosen to avoid aliasing as discussed above, but
also to keep ∆f low. Since time domain wave-
shape accuracy is not required, a high sampling
rate is not optimal. The more sampling points,
N, used as an input to the FFT, the lower ∆f will
be. However, processing speed and memory
requirements will increase as N is increased.
The maximum N is limited to 1024 due to the
dsplib FFT function rfft. The approach taken is
to fix N at 1024 and if the sampling rate is 2000
Hz, this would yield ∆f = 2000/1024 = 1.95 Hz,
which is the best obtainable resolution in this
design. The input signal size acquired is
programmable to determine if an input frame of
1024 is adequate (zero-padding is used to assure
the signal is a power of 2, as required by the
FFT) Table 3 summarizes these parameters.

Analog Bandwidth ~660 Hz fundamental
Input Size x 128-1024 variable
FFT Size N 1024 fixed
Sampling Rate 2000-8000 Hz
∆f 1.95 Hz min- 7.81 Hz max

 Table 3 Guitar Tuning Specifications

As shown in Table 3, different input sizes
were used to determine if speed was an issue.
Since the frequency of the desired note is known
in advance, a filter used at that frequency passes
notes in that range and discriminate against
others. This is accomplished by the use of an
FIR filter, with the option of switching it in or
out of the program. This flexibility allows
experimenting with the filter’s effects, and to
determine if it was helpful to minimize
unwanted signal content such as harmonics,
notes outside the range of interest, and other
noise. A window function that minimizes
leakage was also used, and switched in and out
to observe its effects in the program. The next
sub-section discusses the tuning range for a note
under test.

Range Determination

Once a note’s frequency was determined, the

objective was to obtain the pitch relative to the
concert pitch of the desired note. This was
accomplished by establishing the following four
ranges:

• InTune - the range around the center

frequency of the note that can be
considered in tune, or at concert pitch.

• Sharp - this range is above InTune but
below the High In-range value.

• Flat - this range is below InTune and
above the Low In-range value.

• Out of Range- the note is outside the
range of interest.

Table 4 shows an example of range definitions
used for a center frequency of 440 Hz.

Two methods can be used to determine these

ranges. They can be calculated ahead of time
and entered into the program as constants for
each note, or they can be dynamically calculated
in the program. This calculation is based on the
center frequency, fc, and the two range factors
around the central frequency as shown in table
4.

The function CalcInTune is used to calculate

the range of the present note being played. This

65 COMPUTERS IN EDUCATION JOURNAL

<418.00 Hz 418-435 Hz 435-445 Hz 445-462 Hz >462 Hz
Out of Range Flat InTune Sharp Out of Range

Table 4 Tuning range example for 440 Hz

function uses a center frequency array
(CenterFreq) from which the standard pitch of
the note is selected using the values of table 2.
In addition, two variables are used to calculate
the ranges: InTuneFactor and InRangeFactor, to
determine the four variables in the note’s
structure described in table 4. The InTuneFactor
was set to .01, which was about as accurate as
the tuner can get since ∆f was constrained to
1.95 Hz minimum. In addition to frequency
ranges, an amplitude threshold variable was
used. This helped in preventing small noise
signals from triggering the guitar tuner. This
value was calculated with the dsplib function
maxval(r, NX/2).

A function called the Harmonic Detection

Algorithm in the DSP library, uses existing
software to determine if a detected frequency is
a fundamental tone or a harmonic. It does this
by filtering a time domain signal, taking the
FFT and determining the frequency (f1). This is
repeated with the filter removed (f2). If both of
these frequencies f1 and f2 are nearly equal, then
it can be deduced that the frequency is a
fundamental and it is passed to the CalcInTune
function. If these frequencies are not equal,
then it can be deduced that the filtered tone is a
harmonic. The non-filtered frequency is then
passed to the CalcInTune function. The
assumption being made is that the fundamental
frequency will always have a higher magnitude
than any of its harmonics

There are a total of eighteen center frequencies

to be used, counting all three guitar tunings
(refer to table 2). A digital filter8, which is an
array of coefficients, is required for each note.
The coefficients for each filter must be included
in the program. The FIR function accepts as
input a pointer to an array of these coefficients.
Since many filters are used, and the FIR
function is called only once, a 2D array of
pointers was used. Each row of the array
contains pointers to the filters of the 6 notes of a
guitar tuning, in the same way as the 2D array

of center frequencies does. As can be seen in
Table 2, several of the notes in the table are
used multiple times. This leads to an efficient
implementation, since it allows for some of the
filters to be reused. It turns out that a total of
eleven filters need to be implemented out of the
eighteen total notes for the three guitar tunings.
It was decided based on trial runs that a 63-tap
FIR filter provides adequate filtering. Filters
with 25 coefficients provided only minimal
attenuation. Memory size is another reason for
selecting a 63-tap filter. 63 is under 64, which
is 26, then the coefficients can be easily aligned
on a memory address with the 6 LSBs = 0. If a
number greater than 64 were selected, then the
next power of 2 is 128. Then memory would be
wasted between these 128 word segments. For
11 filters, memory saving requirement is
significant. In addition, FIR filters become
computationally expensive as the number of
coefficients becomes large.

For a guitar tuner, we also need to display

tuning results in a user interface. It also allows
the user to select various modes of operation
and control the guitar tuner setup. When a note
is played on the guitar, it will decay within a
certain period of time. Then it is important that
the display is updated fast enough so the user
can respond to the results and adjust the tuning
accordingly. This is the only real-time
constraint of this design. One indication of
program execution speed is the LEDs which are
on the DSK board. The LEDs can be toggled at
certain places in the program to give an idea
how long certain sections of code take to
execute. This is not by any means an exact
measure of the speed. For exact timing, the
CCS has built-in functions in the DSP BIOS for
accurately measuring execution time. The
LEDs themselves cannot convey enough tuning
information, although three LEDs could be used
to indicate Flat, Sharp and InTune. The
following additional parameters can also be
displayed: Concert pitch of desired note, Mode
of Operation, Guitar Tuning, String being tuned,

COMPUTERS IN EDUCATION JOURNAL 66

Frequency of concert pitch, and Frequency of
current note. In addition, a menu is built to
allow the user to put the guitar tuner in the
desired mode, and provide user options. The
user interface uses a PC’s serial port, and the
HyperTerminal program.

Results And Discussion

In this section, results are presented which

validate the functionality of the guitar tuner
developed in this project. In order to obtain
these results, the program was compiled, loaded
into hardware, and run using CCS. Next, the
tuning of an actual guitar is presented.

The guitar used was a Fender Telecaster

Deluxe, retrofitted with Dual EMG switchable
active pickups. The harmonic algorithm was
switched in for this test.

• Standard Tuning: With an A2 already

tuned to 220 Hz, and the D2 out of tune
at 300 Hz (fc = 294); the two strings are
noticeably out of tune. The D2 was out
of tune by 6 Hz only. When tuned to 294
Hz, the strings sounded good. When
tuning the E1 note, the frequency
resolution is probably not quite adequate
since the frequency will jump from 166
to 164 Hz, and even 1 Hz off is
noticeable. The harmonic algorithm was
switched out and the filter switched in,
and an A2 harmonic can be mistaken for
the E3 note. The harmonic algorithm
prevented this when it was in. In Auto
Mode, all of the 6 notes were correctly
identified. The tuning reverts to the
Manual mode once this occurs, and
allows the found note to be tuned. It
reverts to scanning once the timeout
occurs.

• Open D Tuning: The Open D Tuning was

selected via the Menu. The guitar was
tuned to Open D. There was some
trouble for the Auto Mode to detect the
A3=440 Hz note, it was often detecting
this note as A=220 Hz. This is due to the
harmonic content of the guitar string.

When dropping the tuning of a string by a
whole step, it is probably better to use the
guitar tuner in manual mode as it is
difficult to know where a string is as it is
dropped this far.

• Open G Tuning: The Open G Tuning is

also selected via the Menu. There were
no problems when tuning to Open G.

Conclusions

The performance of the guitar tuner met the

requirements. The ∆f accuracy of 1.95 Hz was
achieved and provided adequate tuning. The
anti-aliasing filter removed some harmonic
content of notes that were over the Nyquist
frequency. A window function was
programmed which showed that leakage could
be reduced. However, the results of this project
did not seem to rely to heavily on windowing.
This is because the FFT analysis was
straightforward and only the peak value was
being detected.

The harmonic content of guitar signals can be

troublesome for guitar tuners. The harmonic
detection function provided a simple but
effective algorithm to determine if a detected
note was a fundamental or a harmonic
component.

While all of the tuning concepts could have

been simulated, it is important to implement
them in real time. This was successfully done
on the TI DSK target. Some of the key issues to
deal with in the implementation were the
number formats required for the signal; in this
case, the Q15 format. It is also important to
convert data types of variables when performing
certain operations. For example, the window
function required typecasting data from double
to float to Q15 format. Another important issue
is the use of arrays for signals, and alignment of
signals in memory where necessary.

This project demonstrates the use of real-time

DSP in an educational environment. Through
the recent acquisition of several DSP
TMS320C6X DSK boards, a number of

67 COMPUTERS IN EDUCATION JOURNAL

graduate and undergraduate students are
currently involved in implementing real time
DSP applications such as guitar tuner, using the
newer board, and test generation patterns for
interconnects. The authors feel that the guitar
tuner application example, given in this paper,
can be used as a model for real-time DSP
projects in other engineering schools.

References

1. http://www.tyala.freeyellow.com

2. Texas Instruments, TMS320C54x DSP, CPU

and Peripherals Reference Set Volume 1,
Literature Number SPRU131F, April 1999.

3. R. Chassaing and D. Horning, Digital Signal

Processing with the TMS320C25, 1990,
John Wiley & Sons, pp. 105-146.

4. Texas Instruments, TL16C550C UART Data

Sheet, 2001.

5. Texas Instruments, Literature Number

SPRU328B, Code Composer Studio Users
Guide, February 2000.

6. Texas Instruments, TMS320C54x,

Optimizing C Compiler, Literature Number
SPRU103D, December 1999.

7. Texas Instruments, TMS320C54x DSP
Library Programmers Reference, Literature
Number SPRU518, April 2001.

8. Richard K. Lyons, Understanding Digital

Signal Processing, Prentice Hall, 2001.

Biographical Information

 Joseph Reagan was a graduate student in the
Master of Engineering Program at Penn State
Harrisburg. He obtained his M.E. degree in the
Fall 2002. He works as Senior Electrical
Engineer at Dentsply Professional Division,
York, Pennsylvania.

Sedig S. Agili received his BS, MS, and Ph.D.

in Electrical and Computer Engineering from
Marquette University in 1986, 1989, and 1996,
respectively. As a student, he was awarded

fellowships from Marquette University and the
U.S. Department of Education. Upon receiving
his Ph.D., he joined the faculty at Marquette
University where he taught several courses in
electrical engineering and conducted research in
the area of electro-optic devices, fiber optic
communication and fiber optic sensors. In fall
of 2001, he joined the electrical engineering and
electrical engineering technology programs at
Penn State University, Capital College.
Currently, he is teaching and conduction
research in electronic communications, fiber
optic communications, fiber optic sensors and
signal processing. He has authored several
articles published in journals and conference
proceedings, and made presentations at many
conferences and seminars. He also worked for
Astronaut Corporation of America in
Milwaukee, Wisconsin where he was involved
in designing optical projection and heads-up
display systems. He is a member of the Institute
of Electrical and Electronic Engineers,
American Society for Engineering Education
and Sigma Xi.

Aldo W. Morales was born in Tacna, Peru.

He received his electronic engineering degree
with distinction form the University of
Tarapace, Arica, Chile (formerly Northern
University) and the MS. And Ph.D. degrees in
electrical and computer engineering from the
State University of New York at Buffalo. From
September 1990 to July 2001 he was with the
College of Engineering, Penn State DuBoise.
He is now Associate Professor Electrical
Engineering at Penn State Harrisburg. His
research interest are in mathematical
morphology, digital image processing, computer
vision, and neural networks. Dr. Morales was
honored by the Institute of Electrical and
Electronic Engineers (IEEE) with the Best Paper
Award at the International Asia Pacific
Conference on Circuits and Systems for the
paper “Basis Matrix Representation of
Morphological Filters with N-Dimensional
Structuring Elements.”

COMPUTERS IN EDUCATION JOURNAL 68

http://www.tyala.freeyellow.com/

	Penn State University at Harrisburg
	Middletown, PA 17057
	Abstract
	Hardware And Software Platform
	Frequency Resolution
	Range Determination

	Results And Discussion
	References

