
TEACHING GRAPHICAL USER INTERFACES AND EVENT
HANDLING THROUGH GAMES

John K. Estell

Electrical & Computer Engineering and Computer Science Department
Ohio Northern University

Introduction

The introductory programming sequence for

both computer engineering and computer
science majors at Ohio Northern University can
be summarized as follows. The first course
covers the concepts of sequence, iteration, and
selection. The second course explores the
object-oriented programming paradigm.
Finally, the third course reinforces the object-
oriented programming paradigm and introduces
the graphical user interface (GUI) and the
related concept of event handling. After two
courses with a text-based focus, the introduction
of visual components in the third course
provides an opportunity to excite students about
programming. However, in order to reach
today’s students, one must understand that their
perception of computers is different than that
once held by today’s faculty when they were
entering the profession. Many of our students
have their conceptual images of computers
formed primarily through their interactions with
video games and GUI-based applications.
Given this context, the use of games is an
effective motivational tool as students now have
the opportunity to study that which they easily
relate to. Most games are both visual and event-
driven; usually there is a graphical element such
as playing cards or a game board, and the play
of the game progresses through the handling of
discrete user-generated events. As
assignments, games are often challenging to
write, but provide both a definite goal to strive
for and a greater sense of accomplishment as the
completed program actually does something.
Furthermore, by providing extra credit
opportunities for the implementation of
additional game features, students become very
involved in their programming, helping them to
learn the concepts taught in the course – and
often to learn advanced concepts on their own.

Along with the motivational value of such
assignments, the writing of games promotes
strategic thinking [1]. Students must consider
how to properly utilize data structures to
represent the physical elements of the game and
how to establish the necessary heuristics for
evaluating the status of the game. As getting the
logic right is required for the game to play
properly, and as having a correctly working
game provides the student with a significant
amount of positive feedback, the strategic aspect
of writing game programs forces students to pay
greater attention to the construction of their
code than they would otherwise be
experiencing. There is another valid reason for
the early introduction of GUIs and event
handling. Frankly, while still useful, the
teletype approach to programming cannot fully
prepare students with the skills required for 21st
century software development [2]. Modern
platforms are increasingly graphically oriented
and event driven, and so software development
in this area needs to be addressed. Furthermore,
the tools for such development have grown to
the point that much of the "gruntwork" is
handled either internally by the system or
automatically generated by the IDE used to
write the program. In short, the complexity of
such a task has diminished to a point where a
first-year student can successfully accomplish it.

Platform

The Java programming language was adopted

for this course as it lends itself well to the
subject. Java is an object-oriented language
featuring a rich built-in library of routines,
including component libraries for the
development of graphical user interfaces. The
implementation of any sufficiently interesting
GUI tends to result in pages worth of tedious
code. However, most Java development

Computers in Education Journal 85

systems (such as JBuilder and NetBeans) allow
for automatic GUI code generation through
visual drag-and-drop mechanisms. The event
model is relatively simple, with some
development systems supplying interaction
wizards to assist with code generation. Swing,
which is the Java Foundation Classes' GUI
component library, is robust yet well designed
and allows for the easy inclusion of graphical
images contained in GIF or JPEG format. The
built-in pixel-oriented graphics context allows
for easy rendering, and provides an option for
the incorporation of introductory computer
graphics material into the course curriculum.
Finally, assignments can be developed either as
applets orexecutable JAR file applications,
allowing the program to be easily assessable to
the instructor.

Initial Concepts: Labels, Buttons, and

ActionEvents

Traditionally, one introduces students to the

design of graphical user interfaces using
components that are simple to work with. The
simplest component to work with is the label,
which is normally used for static output displays
but can also be used for dynamic displays via
event-driven constructs. The use of Swing's
JLabel provides additional design flexibility
through its ability to display images in addition
to text. All that is needed is either a GIF or a
JPG file to be loaded into memory as an
instance of an ImageIcon class, followed by a
call to the setIcon() method of the appropriate
JLabel:

ImageIcon d2 = new ImageIcon(getImage(

 getCodeBase(), "die2.gif"));
dice1Label.setIcon(d2);

For input, the simplest approach is to use a

button, as user input is thereby limited to just
clicking the mouse while the cursor is over the
component. As with the JLabel, the JButton
allows for the display of both text and images,
again through use of the setIcon() method.
However, in order for a button to be properly
used, the concept of event handling as
implemented in Java must be covered.

Essentially, whenever the user presses a key,
moves the cursor, or clicks a mouse button, an
event occurs. In order for a component to be
associated with an event, the appropriate
interface needs to be implemented and the
specific event must be registered such that the
component becomes an event listener. Buttons
use action events; in order for user input to be
recognized, the ActionListener interface must be
implemented by the program and the
addActionListener() method must be applied to
the button object. When a registered event is
received, program control is transferred to the
appropriate actionPerformed() method, which
contains the code that handles the actual event.

While the above is sufficient for an

introduction to GUI programming, two other
items must be introduced at this time in order
for a student to effectively implement a game
program that is worth playing. Random
numbers are a vital part of game programming,
as it is at the heart of making many games
appear realistic, such as those involving dice or
cards. Random numbers are easily generated
through appropriate method calls upon an
instantiation of a Random object. As an
example, if one were to implement a dice game,
each roll of a die would be simulated through
the invocation of the nextInt() method on the
object, with an integer parameter passed to
specify an exclusive upper bound and an
additive translation employed to finalize the
result to the familiar cubic die values of one
through six:

Random generator = new Random();
int dieValue = generator.nextInt(6) + 1;

The other item that is useful to introduce here

is the use of timers. The Timer class, which is
part of the Swing hierarchy, allows for the
implementation of program-controlled GUI
interaction, which can be used to implement
such things as animation or constrained
interactions (e.g. providing the user with a
limited amount of time to provide a response).
It is recommended that Swing-based timers be
used for GUI-related tasks as Swing timers all
share the same pre-existing timer thread and the

86 Computers in Education Journal

GUI-related task is automatically executed on
the event-dispatching thread. [3] Timers
generate action events just like buttons;
accordingly, it is easy to introduce the material
early on, once the concept of event handling has
been covered. A timer is operated by first
instantiating an object featuring the
specification of a delay in milliseconds between
events and the location of the action event
handler code. The start() method is invoked
upon the timer object, upon which action events
are fired at regular intervals. If necessary,
Timer objects can be set up in a "one-shot"
configuration, turned on or off as necessary, or
even have the period between events varied as
needed.

An example program suitable for an

introductory game assignment is "Shut the
Box!" In this game, the player has nine tiles,
enumerated 1 through 9, which are initially face
up. Upon rolling the dice, the player lays down
any combination of tiles to match the total value
shown on the dice. The player continues to roll
until no more tiles can be laid down. The player
is said to have "shut the box" if all of the tiles
are turned down. The total of the remaining
tiles is the final score, with the player having the
lowest total being the winner. The
implementation of this game, a screenshot of
which is shown in Figure 1, is straightforward.

Figure 1. Screenshot of "Shut the Box!" applet.

The dice are implemented using integer

variables; to roll the dice, the user clicks the
"Roll" JButton. The event causes the values of
the die to be set via calls to the nextInt() method
of a Random object; these values are then used
to access dice images stored in an ImageIcon
array such that the value of the array index
corresponds to the number of dots displayed on
the die. Finally, the selected images are used to

display the rolled dice on two JLabels. The
tiles are implemented also using buttons. When
a tile is selected, the background color is
changed to show that it has been "laid down."
When the sum of the tiles laid down for the
current turn equal the total value of the dice,
those tiles are then disabled and the next turn
commences. Options that can be included are a
"new game" button and a label to show the low
score.

Incorporating Text

There are many games that require text-based

input and/or output; it is therefore appropriate to
introduce such GUI widgets as text fields, text
areas, and choice buttons in a game-playing
context. The text field is often portrayed as
useful for both input and output; however, labels
are more appropriate for text output as they are
rendered without the unsightliness of the
surrounding box that visually characterizes a
text field. When used for input, an action event
has to be registered for the text field. Swing
provides the JTextField component, which
allows for any string input. If the input needs to
be restricted, then testing must be performed as
part of the action event handling routine. An
alternative approach, available as of Java
Release 1.4, is to use a subclass of JTextField
called JFormattedTextField, where the
programmer can specify the legal set of
characters that can be entered into a text field.

An example program using text fields for input

and labels for output is the "Hi Lo Game," a
screenshot of which is provided in Figure 2.
The purpose of the game is to guess a randomly
generated integer that ranges between 0 and 99,
inclusive, in six or fewer tries. If the answer is
correctly guessed, a label is used to indicate a
successful outcome to the player. After each
incorrect guess, the player is informed as to
whether the guess was too high or too low
relative to the correct answer, and (unless it was
the final guess) the text field for the next guess
and its corresponding prompting label are made
visible to the player. If the answer is not
correctly guessed within the allowed number of
guesses, then a label is used to inform the player

Computers in Education Journal 87

that he/she lost and also to show what the
correct answer was. At the end of the game, a
button is displayed to offer the player the
opportunity to start a new game; this button is
invisible the rest of the time.

Figure 2. Screenshot of "Hi Lo Game" applet.

For this game, students must take the input as

a string from the text field and convert it into an
integer through use of the parseInt() static
method of the Integer class. This method will
throw a NumberFormatException if the string
does not contain a parsable integer; this allows
students the opportunity to incorporate a try-
catch block into their code to idiot-proof the
input and respond accordingly via the
information label to the right of the text field.
To promote the concept of classes, students are
required to write the class RandomInt, to be
stored in the file RandomInt.java, for dealing
with the random integers to be generated and
processed for this assignment. Methods to be
supported are:

• RandomInt(int maxIntValue) – a

constructor that will instantiate a
RandomInt object with a "correct answer"
value in the range [0, maxIntValue] having
been generated.

• int getCorrectAnswer() – an inspector that
returns the "correct answer" integer.

• boolean isCorrectGuess(int guess) –
returns true is the passed guessed integer is
the "correct answer" integer.

• boolean guessIsTooHigh(int guess) –
returns true if the guessed integer is
greater than the correct answer.

• boolean guessIsTooLow(int guess) –
returns true if the guessed integer is less
than the correct answer.

Another game that utilizes random numbers

and text fields, and includes the use of text
areas, is the "Laurie Moo" program, which is a
variant of the classic Mastermind game (this
version features a stuffed toy cow named Laurie
Sue). The game, a screenshot of which is
presented in Figure 3, is similar to the Hi Lo
Game: you have ten attempts to guess a four-
digit number randomly generated by the game.
However, the feedback from this program is
different. For each digit correctly specified
(both value and position), you get a "Moo!"
displayed by the program. For each digit
specified that is not in the correct position but is
in the solution, you get a "moo." displayed by
the program. If none of the digits match in any
way, then the message "all you hear are
cowbells" is displayed. If the number is
correctly guessed then, in addition to all of the
"Moo!" strings being printed out, you also get a
"LaurieMOO!!!" displayed as a "reward." If the
user fails to guess the number after ten attempts,
the message "Boo hoo -- no LaurieMOO" is
displayed. Adventurous students in search of
extra credit can enhance the Laurie Moo
experience through the addition of sound effects
via the Java Sound API. The text area in this
program is used to display the previously
unsuccessful inputs. Under Swing, the
JTextArea is normally embedded within a
JScrollPane container so that, if necessary, the
contents of the text area can range outside of the
provided viewing area space allotted to it on the
applet yet still be accessible through use of
scroll bars.

The choice button is a practical way of

providing a set of input options to a player
without having to dedicate a large amount of
real estate on the GUI. Accessed through the
JComboBox class in Swing, the choice button
provides a list of items from which the user can
make a selection; furthermore, this list can be
dynamically updated during the execution of the

88 Computers in Education Journal

Figure 3. Screenshot of "Laurie Moo" applet.

program. An example program that utilizes the
choice button is the "Dice Game" applet; the
screenshots from two implementations of this
program are presented in Figure 4. The dice
game is very similar to Yahtzee, but with the
student implementing sufficient changes such
that there would be no trademark infringement
(such as not using the word Yahtzee and altering
the scoring algorithm). For this assignment,
students were asked to implement an applet
such that its footprint would not exceed 100 by
150 pixels, with the provision that it was
permissible for the choice button to exceed the
prescribed boundaries when activated. For both
applets shown below, dice images are placed
onto buttons; clicking on the buttons allows one
to either hold or roll selected dice on the next
roll. As the JButton allows for both text and
images to be displayed, it is simple to include
the "HOLD" text indicating an individual die's
status, and there are methods that allow for the
positioning of the text both relative to the image
and relative to the component. For both
implementations, scoring occurs by the selection
of the appropriate category contained in the
choice button; the text for that item is then
updated so that its use can be shown on future
turns.

Figure 4. Screenshots from two dice game

implementations

The Cursor and MouseEvents

There are times where, in order to promote a

certain look and feel for a program, a
programmer either does not want to or cannot
utilize the "canned" input method of clicking
upon a button component. In these situations,
mouse events are used. The application of
mouse events can provide a great deal of
flexibility in determining the overall operation
of a program, as essentially anything a user can
do with the mouse can be trapped, just as long
as the widget listening for a mouse event is
derived from the Component class. Because of
the nature of mouse interactions, there are two
different interfaces available. The
MouseListener interface is used to deal with the
pressing (mousePressed), clicking
(mouseClicked), and releasing (mouseReleased)
of a mouse button; it is also used to detect when
the cursor has been moved onto
(mouseEntered), or off from (mouseExited), a
registered component. It should be noted that,
when implementing this interface, all five
methods must be defined in the program, even if
only one method is actually needed. This is
handled either with an empty method body for
each unneeded method or by an extension of the
MouseAdapter class, where one inherits all
empty methods and writes overriding methods
for just those whose functionality is required.
The MouseMotionListener interface is used to
deal with both the regular movement
(mouseMoved) of the cursor and the dragging
(mouseDragged) of the cursor by moving it
while a mouse button is pressed.

Whenever a registered activity with a mouse is

handled, a MouseEvent object is provided to the
method. This object provides valuable
information regarding where the cursor was
located when the event occurred. For some
interactions, such as the ability to select from a
set of images being displayed on individual
labels, using the getSource() method will
provided sufficient information as to which
component was the target of the interaction. If a
specific location is needed, the X and Y
coordinates of the cursor location relative to the

Computers in Education Journal 89

registered widget can be obtained through
application of the getX() and getY() methods
upon the passed MouseEvent object. This
approach is used to implement the Magnetic
Poetry applet shown in Figure 5.

Figure 5. Screenshot of Magnetic Poetry

applet

Each word is created through the instantiation

of a label, which is then placed onto the applet.
The label to be moved is selected by clicking on
it; the cursor changes to a hand and the
background color is set to gray to indicate its
selection. At this time, the initial location of the
cursor relative to the label is stored. Upon the
dragging of the cursor, the new location of the
cursor relative to the label is obtained, from
which the change in the x and y values of the
cursor location is calculated. The x and y
coordinates for the location of the label relative
to the applet are obtained, and the ∆x and ∆y
values from the previous calculation are then
added to these values to form the new location
for the label, which is then moved through the
invocation of the setLocation() method. In this
way, the cursor appears at the same relative
location on the label during the dragging
process. When the mouse is released, the cursor
and label background color revert to their
original status. An advanced implementation
can be performed through using a layered pane
to contain the magnets. As the layered pane
constitutes a container that can be placed onto
the applet as a component, it can be sized such
that it does not take up all of the applet's real
estate. This allows other components to be
placed onto the applet, such as a text field that
allows the user to enter specific words; when an
action event for this text field is received, the
applet generates a new word tile through the
instantiation of a label object. However, in this

implementation the label is not registered to
handle mouse events; instead, the layered pane
is registered. By using the X and Y coordinates
from the passed MouseEvent object, the
getComponentAt() method can be invoked on
the layered pane object to determine what
component, if any, lies underneath the cursor.
Once selected, the label is moved to the front of
the layered pane, which allows it to be placed, if
desired, on top of or overlapping another label.

Organization through Panels, Layouts, and

the Collections Framework

To create more sophisticated GUIs, additional

tools and techniques are needed. First, all
containers have an associated layout manager,
which are provided to arrange GUI components
in a particular format. Several layout managers
are provided, such as FlowLayout,
BorderLayout, and GridLayout; a container's
layout is defined using the setLayout() method.
Typically, when designing a GUI, the
programmer wants the various components to be
placed at a specific location. In order to
accomplish this, the layout manager for the
program is disabled by passing a null reference
to setLayout(). For most IDEs featuring a
graphical GUI editor, this code is automatically
generated for the programmer's benefit.
However, there are instances where the use of a
layout manager can be an appropriate design
decision and a considerable time saver.

A panel constitutes the simplest container class

in Java. Panels can be effectively used to
compartmentalize one portion of a GUI display
so that the components placed within the panel
are organized according to the specified layout
manager for that panel without affecting the
layout of the other components of the GUI. A
typical example where a panel is useful involves
the use of game boards, where one is often faced
with placing identically shaped labels into a two
dimensional array. Under the Swing hierarchy,
one usually creates an extension of the JPanel
class; the constructor method for this class will
set the layout of the panel through use of a
GridLayout object, where the number of rows
and columns for the game board are specified.

90 Computers in Education Journal

Labels are then instantiated (as part of an array
of JLabel objects) and added to the panel in
row-major order, starting in the upper left corner
of the panel. Each label is registered through
invocation of the addMouseListener() method
so that, when a mouse interaction occurs within
the panel, the appropriate label can be selected.

Finally, a collections framework is often used

in conjunction with games in order to facilitate
the manipulation of data using conceptual
abstractions. A collections framework presents
a unified architecture for working with
collections of data, providing both hierarchical
reusable data structures to represent collections
and polymorphic algorithms for performing
useful computations. Given that this course is
taken prior to a formal data structures or
algorithms course, expecting students to write
their own sorting, searching, and shuffling
routines is both asking much of the student and
detracts from the implementation of the game
program under consideration. By introducing a
collections framework at this stage, students can
utilize various routines from an abstract
conceptual perspective without needing to deal
with the actual implementation details. Under
the Java Collections Framework, a Collection
represents a group of objects, and serves as the
root of the collection hierarchy. Within this
hierarchy are a variety of elements such as lists,
sets, and maps. From a gaming perspective the
List interface, which provides an ordered
collection, is the most important derivative of
the Collection interface. Lists allow for
positional access, searches, list iteration, and the
specification of range views that allow for a
subset of a list to be processed.

As an example, let us create a test program

that uses a standard deck of 52 playing cards as
a precursor to implementing an actual card
game. Card game programs are both visual and
event-driven; playing cards serve as a well-
recognized graphical element and the play of the
game progresses through the handling of
discrete user-generated events. Additionally,
implementing a card game provides a valuable
opportunity to focus on the concepts of object-

oriented programming, particularly in the areas
of object development and code reuse. In the
past, each card game program had to be
essentially written from scratch; but what really
changes from the implementation of one card
game to the next? How does the concept of a
card or a deck differ? There is a great deal of
functionality that stays the same, regardless of
the card game being written. The complete card
game assignment described here is available at
the Nifty Assignments web site [4]; for this
portion of the assignment, an object-oriented
programming approach is used to determine the
constituent parts of a card game. In particular,
the card is viewed as an object and, by
examining both the properties of a card and how
cards are used, classes are designed accordingly.
By taking this approach, the source code can be
compartmentalized into classes that are easy to
write and can be readily reused, leaving only a
small amount of code that has to be written for a
particular application.

When describing a playing card, one

commonly refers to two properties of a card.
The suit of a card refers to one of four possible
sets of playing cards in a deck: clubs, diamonds,
hearts, and spades. The rank of a card refers to
the name of a card within a suit: ace, two, three,
four, five, six, seven, eight, nine, ten, jack,
queen, and king. Traditionally, the rank is used
to specify the ordering of cards within a suit,
e.g. the two comes before the three, and the jack
comes before the queen. The combination of
suit and rank uniquely describe a card found in a
standard deck of playing cards. To express the
rank and suit values, Rank and Suit classes are
used, with constants such as JACK or SPADES
being automatically constructed as privately
instantiated static objects. This methodology
allows the necessary values to be readily
available without the headache of erroneous
values potentially being instantiated by the
client.

In order to work in a visually-oriented

environment, a third property is required: the
image, or graphical representation, of the card.
One of the problems with GUI implementations

Computers in Education Journal 91

of card games is finding images of cards that are
not encumbered by copyrights; fortunately,
there is a set of card images available through
the GNU General Public License [5]. The
format of the filenames for these images is such
that the process of reading in the images can be
automated. All of the standard card images are
stored in individual files using filenames of the
form:

RS.gif

where R is a single character used to represent
the rank of the card and S is a single character
used to represent the suit of the card. The
characters used for R are: 'a' (ace), '2', '3', '4', '5',
'6', '7', '8', '9', 't' (for 10), 'j' (jack), 'q' (queen),
and 'k' (king). The characters used for S are: 'c'
(clubs), 'd' (diamonds), 'h' (hearts), and 's'
(spades). Two other cards are also available:
b.gif (back of card) and j.gif (joker). To assist
with the generation of filenames, the constants
defined in the Rank and Suit classes store the
characters associated with each rank and suit
value. The static getFilename() method in the
Card class refers to these values and bases its
generation of the filenames according to the
rules specified above.

Information detailing the properties of the
classes to be implemented can be provided
either through Javadoc, which consist of HTML
pages generated from documentation comments
embedded with Java source code, or through
Unified Modeling Language (UML) diagrams.
An example UML description of the Card class
is presented in Figure 6.

Card Class name
cardImage
rank
suit

Instance
variables of the
class

static getFilename()
getCardImage()
getRank()
getSuit()
toString()
compareTo()

Methods of the
class

Figure 6. UML description of the Card class

The Deck class serves as a container for Card
objects, and possesses the functionality of a
typical deck of cards. A deck is implemented
through use of an ArrayList from the
Collections Framework. When instantiated,
decks are empty; they need to be populated with
cards via iteration on the sets of rank and suit
values. For each card, the relative pathname of
the image associated with the current rank and
suit value combination must be generated; this
is usually a combination of the name of the
directory storing the card images and the
filename of the specified image. To create the
cards and establish a deck, the following code
fragment would be implemented in the init()
method of an applet:

cardDeck = new Deck();
Iterator suitIterator =Suit.VALUES.iterator();
while (suitIterator.hasNext()) {
 Suit suit = (Suit) suitIterator.next();
 Iterator rankIterator = Rank.VALUES.iterator();
 while (rankIterator.hasNext()) {
 Rank rank = (Rank) rankIterator.next();

 String imageFile = directory +Card.getFilename (
suit, rank);

ImageIcon cardImage = new ImageIcon(
getImage(getCodeBase(),

imageFile));
 Card card = new Card(suit, rank, cardImage

);
 cardDeck.addCard(card);
 }
}

Once the deck has been populated with cards,
it is normally shuffled, then used to "deal"
cards. When dealing cards, it is best not to
implement the activity literally; i.e., to remove
cards from the deck, as this often add needless
complexity to the implementation of the game,
such as how to deal with the transition from one
hand to the next. Instead, the set of cards in the
deck is treated as immutable after initialization,
although the listing of these cards is mutated
through invocation of the deck's shuffle()
method, which is implemented as a wrapper
function that calls upon the similarly-named
method in the Collections class:

public void shuffle() {
 Collections.shuffle(deck);
}

92 Computers in Education Journal

The drawing of a card is performed by using
an index variable to refer to the "top of deck"
location in the list. The deck is restored to
being a full deck through the invocation of the
restoreDeck() method, which resets the index to
the beginning of the list.

The Hand class represents the basic

functionality of a hand of cards, and is
implemented using an ArrayList. Those
operations that are normally conducted upon a
hand, such as adding or removing cards, are
supported; however, the evaluation of the cards
contained in the hand is defined as an abstract
method. This allows code common to the
implementation of a hand in various games to be
written once and reused as needed. The code
specifically required for the evaluation of a hand
in a particular game is developed within a class
extended from Hand by providing a definition
of the evaluateHand() method; this method can
then be accessed directly or via a superclass
reference when comparing or evaluating hands.
The following code snippet shows how both the
cards in a hand and the value of the hand are
displayed to the user:

myHand.sort();
for (int i = 0; i < SIZE_OF_HAND; i++) { //

display the hand
 Card c = myHand.getCard(i);
 handLbl[i].setIcon(c.getCardImage());
 handLbl[i].setText(c.toString());
}
scoreLbl.setText("Score is: " +

myHand.evaluateHand());

The result of this approach can be seen in the
screenshot, shown in Figure 7, of a test program
applet used to verify the correctness of a
student's implementation of the Card, Deck,
Hand, Rank, and Suit classes.

Figure 7. Screenshot of card game

demonstration applet

With this applet, one displays both the image
and the name of the card on a label. Clicking on
the "Draw a Hand" button will shuffle the deck
and deal out a new hand, after which the display
is updated. By clicking on one of the sort
buttons, the cards in the hand are sorted by
passing the hand object as the argument to the
Collections.sort() static method in the order
established by the compareTo() method
implemented by the programmer in the Card
class.

From here, students can go ahead with the

implementation of an actual card game. One can
either provide specifications for a particular
game, the rules for which can be obtained online
[4,6], or allow students to implement whatever
card game they are interested in. Card games
that have been implemented over the years in
this course include variations on poker,
blackjack, rummy, hearts, crazy eights, and
Klondike solitaire. An example screenshot from
one student's implementation of Klondike is
presented in Figure 8.

Figure 8. Screenshot of Klondike applet

Another example, which utilizes panels, layout

managers, timers, and the Java Collections
Framework, is the game "Concentration," based
upon the long-running television game show of
the 1960s and 1970s. Two contestants face a
game board divided into 30 game panels (not to
be confused with the panel container) consisting
of 6 rows and 5 columns. Squares are
enumerated starting with the number 1 game
panel at the upper left, continuing sequentially
across the board then down, until arriving at the
number 30 game panel at the bottom right.
Each game panel hides either a prize or an
action card, with each card appearing twice on

Computers in Education Journal 93

the board. Players alternate selecting two of the
game panels by their numbers, which are then
revealed. If the two prizes do not match, then
the prizes are shown to the players for a limited
amount of time, after which the game panels are
turned back to their original (i.e. number
bearing) position. If a prize is matched, the
player adds the prize to his or her collection. If
an action card (either "TAKE 1 GIFT" or
"FORFEIT 1 GIFT") is matched, then that
action must be performed. Should a player
uncover a "WILD" card, the player
automatically matches whatever is picked along
with it. Matching both WILD cards wins the
contestant a car, regardless of the outcome of
the game, plus the player is allowed to select
two more game panels for prizes. The car
cannot be forfeited or taken. The matching
prizes or actions are then removed to reveal two
portions of a rebus puzzle, which is a common
phrase or name drawn out graphically. At this
point the player may attempt to guess the
solution to the rebus. The player maintains
control of the board until the two selected game
panels do not match, at which point control of
the board is passed to the opponent. The game
is over when one player correctly solves the
rebus following making of a match during the
turn. An example screenshot of a Concentration
applet during a particular point in play is shown
in Figure 9.

Figure 9. Screenshot of Concentration applet

As evidenced in Figure 9, the implementation

of a game such as Concentration involves many
components covered in the course. The rebus, a
portion of which is visible in the figure, is an
image that is painted onto the panel by a call in

the paintComponent() method of the JPanel
subclass to the drawImage() method of the
Graphics class. The game panels consist of
labels organized in a grid layout on an
instantiation of a class derived from JPanel.
Borders are used on each label to recreate the
look and feel of the actual game. Each label is
registered with a mouse listener so that, when
selected via a mouse click, the prize associated
with that game panel is displayed. After the
second game panel is selected, if the prizes do
not match, then a timer is actuated, with its
action event handler used to redisplay the game
panel's numbers. If the prizes do match, then
the corresponding labels have their text and
borders removed, are disabled (to turn off future
mouse events), and made transparent to show
that portion of the rebus that lies underneath.
Furthermore, a text field (shown at the bottom
of the figure) is made active for a limited
amount of time so that, if desired, a guess as to
the solution to the rebus can be entered. The
prize won on that turn is placed into the current
player's list of prizes, which is implemented
using a text area. If a forfeit or take card is
matched, then the appropriate player's text area
is activated such that a prize can be selected for
taking or for forfeiture. To insure that the game
does not get stale when repeatedly played,
random numbers are used to select one of
several rebuses, and the prizes are placed into a
list structure obtained from the collections
framework, then shuffled so that with each
game the prizes are placed into new positions on
the board.

Results and Conclusions

Computer games are a powerful influence in

our society. Many students who are now
pursuing a career in the computer field first
encountered computers as a gaming platform,
and their interest in computers grew from that
experience. Games can be successfully used as
programming assignments for introducing
graphical user interfaces, event handling, and
other programming concepts. One of the strong
points for this type of approach is that students
have familiarity with a wide variety of games,

94 Computers in Education Journal

and therefore have some reasonable
expectations as to how the game is to operate.
While many games are difficult to implement, a
thoughtful approach can result in a positive
learning outcome and a sense of
accomplishment through the construction of
appropriately selected games. Of particular
interest are those games that interact with
graphical elements; by using languages with
built-in GUI capabilities along with IDEs that
allow for ease of GUI editing, it is possible to
tap into the interest that students have in playing
such games. Student feedback obtained from
course evaluation surveys has been strongly
positive regarding this approach. Numerical
data indicates that students feel that this type of
course develops or enhances their ability to
solve problems. Many have commented that
they enjoyed the programming assignments
because, once finished, the programs actually
did something. Others commented that the
assignments were found to be challenging, yet
they were also interesting so they wanted to do
it. The workload was considered to be greater
but acceptable, as they often pushed themselves
harder (especially when given opportunities for
extra credit) and thereby learned more; some
students have commented that they have learned
more in this course than in any other course they
have taken in college. The use of games made
for a valuable learning experience in this course,
both with the stated goal regarding GUIs and
event handling, and through the introduction of
other pertinent topics such as collection
frameworks. The comment of one student sums
it up best: the course was fun and educational.

Bibliography

1. J. Ross, "Guiding Students through
Programming Puzzles: Value and Examples
of Java Game Assignments," SIGCSE
Bulletin, Vol. 34, No. 4 (December 2002),
pp. 94-98.

2. K. Bruce, A. Danyluk, and T. Murtagh,
"Event-driven Programming is Simple
Enough for CS1," Proceedings of the 6th
Annual Conference on Innovation and
Technology in Computer Science Education,
pp. 1-4, 2001, Canterbury, United Kingdom.

3. K. Walrath and M. Campione, The JFC

Swing Tutorial: A Guide to Constructing
GUIs, Addison-Wesley, 1999.

4. J. Estell, "The Card Game Assignment,"

Nifty Assignments 2004 Special Session,
35th SIGCSE Technical Symposium on
Computer Science Education. Online:
http://nifty.stanford.edu

5. Online: http://www.waste.org/~oxymoron/

cards/

6. Card Games Rules Archive. Online:

http://www.usplayingcard.com

Biographical Information

John K. Estell became Chair of the Electrical

& Computer Engineering and Computer Science
Department at Ohio Northern University in
2001. He received his BS (1984) degree in
computer science and engineering from The
University of Toledo and received both his MS
(1987) and PhD (1991) degrees in computer
science from the University of Illinois at
Urbana-Champaign. His areas of interest
include interface design, programming
applications, and ways to streamline the
outcomes assessment process. Dr. Estell is a
Senior Member of IEEE, and a member of
ACM, ASEE, Tau Beta Pi, and Eta Kappa Nu.

Computers in Education Journal 95

http://nifty.stanford.edu/
http://www.waste.org/~oxymoron/ cards/
http://www.waste.org/~oxymoron/ cards/

