

COMPUTERS IN EDUCATION JOURNAL 2

SYSTEMS PROJECTS FOR A COMPUTER SCIENCE COURSE

Mohammad B. Dadfar, Sub Ramakrishnan
Department of Computer Science
Bowling Green State University

Bowling Green, Ohio 43403

ABSTRACT

In this paper we discuss some practical and

useful projects for our operating systems /
data communications course. Most of our
projects are assigned in a UNIX platform.
The projects deal with a multiprogramming
environment where there are several
processes running concurrently. The
operating systems projects use different
methods for process synchronization and
cooperation including message passing and
the use of semaphores. We use different
methods for establishing communications
between processes, including bi-directional
pipes. Other projects are concerned with
data communications aspect of the course.

INTRODUCTION

Due to the increasing demand for people

with expertise in the area of data
communications and networks and the
importance of operating systems concepts,
our department decided to include a required
undergraduate course that covers the
fundamental issues in both areas (CS 327).
We have been offering a course in each of
these two areas for many years. However,
none of these two courses are mandatory for
our undergraduate students. Many students
completed their undergraduate program
without taking a course in operating systems
or data communications. Since operating
systems and computer networks can play an
important role in understanding other
computer science topics, we feel that students
majoring in computer science should have at
least one course in these areas. (The
ACM/IEEE Computing Curricula 2001 also
recommends this approach.)

Our course, CS 327, provides an

introduction to both operating systems and

networks. It is a one-semester long
mandatory course designed for computer
science students at the sophomore or junior
level. Students wishing to know more of
operating systems and/or networking
concepts can take our more advanced
courses. In CS 327, we cover introductory
topics including process management,
concurrent processes, process scheduling,
protocol architecture, TCP/IP suite, brief
overview of broadband services, client-server
communication and web enabling
applications.

Practical and useful projects in this course

is very important. These projects help
students to gain an insight into the operating
systems concepts and networking and to
better understand the topics covered in
classrooms and textbooks. In the past we
have assigned some projects that have been
very useful1, 2, 3. In this paper we discuss
some practical projects given to our students.
Most of our projects are assigned in a UNIX
platform. Our students in CS 327 know
UNIX and have done extensive programming
in C/C++. We will discuss these projects and
share the problem-solving phase with the
readers.

The projects deal with a multiprogramming

environment where there are several
processes running concurrently. We use
different methods for process
synchronization and cooperation. The first
project uses the message passing method to
force the processes run in a specified
sequence. Each process uses a separate pipe
to send its information to another process. In
the next project all the children processes use
a common single pipe to pass their
information to the parent process. The third
project requires the use of semaphores and

COMPUTERS IN EDUCATION JOURNAL 3

semaphore operations to accomplish the
same task. At the end we briefly discuss
another project dealing with the client/server
communication concepts. Other projects
that are primarily concerned with data
communications aspect of the course are not
discussed here. We use different methods for
establishing communications between
processes, including bi-directional pipes. In
some projects students use instructor
supplied object modules to build an
application.

We share our experience and

implementation details with readers with a
view to possibly help other instructors
integrate such ideas in their classroom. Our
students feel that completing these projects
have helped them to gain a better
understanding of networking and inter-
process communication issues.

The projects proposed in this paper can also

be extended in a number of ways, which may
be assigned in follow-up elective courses in
data communications and/or operating
systems.

FIRST PROJECT: USING MESSAGE

PASSING

The objective of this project is to

understand process creation, understand
simple communication between processes,

and become familiar with some of the system
calls. In this assignment students will study
communication between parent and child
processes. The parent process creates two
children; each child generates a sequence of n
random numbers in the range 0 to 999. Each
number is passed to the parent process. The
parent prints the numbers received from
children. One child initializes the random
number seed to seed1 and the other child to
seed2. Each child process runs a loop n times
and each time generates a random number
and sends it to the parent process. The
arguments n, seed1, and seed2 are given as
command line arguments. We provide
students with some sample programs that
deal with fork and pipe statements.

Couple of observations are in order. The

two child processes are running
asynchronously. Thus, it is not possible to
predict the interleaving of the two children.
In fact, it is quite possible one child runs
through its loop sending all of the numbers to
the parent before the second child gets a
chance to run. However, each time through
the parent loop the parent reads a random
number from the first child and then from
the second child in this order. Thus, no
matter how the two children are interleaved,
the parent reads the numbers from the two
children in strict order. The following is a
possible solution to this assignment.

/**
* Problem: Parent creates two children. *
* Each child generates n random numbers and sends each number *
* to the parent through a pipe. The parent prints the numbers *
* received from children. *
**/
#include <sys/types>
#include <iostream>
#include <unistd>
#include <stdlib>
#include <signal>

int main(int argc, char *argv[])
 { // check for the number of arguments
 if (argc != 4)
 { cout << "You must supply two seeds and the number of random numbers."
 << endl;
 exit(1); }
 int pid1, pid2, seed1, seed2, i, count;
 int pipe1[2], pipe2[2], buffer[1];
 count = atoi (argv[3]);

COMPUTERS IN EDUCATION JOURNAL 4

 // create the first pipe, and exit if it fails
 if (pipe(pipe1) < 0)
 { cout << "Pipe 1 cannot be created" << endl;

 exit(1);}

 // create the first child
 pid1 = fork();
 if (pid1 == -1)
 { cerr << "The child process cannot be created." << endl;

exit(1);}

 if (pid1 == 0) // child1 process
 { seed1 = atoi (argv[1]);
 srand(seed1);
 close (pipe1[0]); // does not read from the pipe
 // generate random numbers and sent them to parent
 for (i=0; i<count; i++)
 { buffer[0] = rand() % 1000;
 write(pipe1[1], buffer, 4);
 }
 close(pipe1[1]);
 exit(0);
 } // end of child1 process

 // parent process continues
 else
 { // create the second pipe, and exit if it fails
 if (pipe(pipe2) < 0)
 { cout << "Pipe 2 cannot be created" << endl;

exit(1); }

 // create the second child
 pid2 = fork();
 if (pid2 == -1)
 { cerr << "The child process cannot be created." << endl;
 exit(1); }
 if (pid2 == 0) // child2 process
 { seed2 = atoi (argv[2]);
 srand(seed2);
 close (pipe2[0]); // does not read from the pipe
 // generate random numbers and sent them to parent
 for (i=0; i<count; i++)
 { buffer[0] = rand() % 1000;
 write(pipe2[1], buffer, 4);
 }
 close(pipe2[1]);
 exit(0);
 } // end of child2 process

 else
 { // Parent process continues. Close unused ends of pipes.
 close(pipe1[1]);

 close(pipe2[1]);
 // read the numbers sent by children
 for (i=0; i<count; i++)
 { read(pipe1[0], buffer, 4);
 cout << " The number received from child 1: "
 << buffer[0] << endl;
 read(pipe2[0], buffer, 4);
 cout << " The number received from child 2: "
 << buffer[0] << endl;
 }

 // close the pipes
 close(pipe1[0]);
 close(pipe2[0]);
 exit (0);
 } /* end of parent process */
 }
 }

COMPUTERS IN EDUCATION JOURNAL 5

SECOND PROJECT:
SYNCHRONIZATION BETWEEN

PROCESSES

The objective of this project is to

understand the impact of CPU scheduling,
understand timing issues, and become
familiar with some of the system calls. Recall
that the first project relied on two different
pipes to pass the random numbers to the
parent. The parent reads numbers from the
two pipes, in order, so it gets a random
number from each of the two children. In
this assignment, the two children share the
same pipe to pass the random numbers to
parent. Yet, during each iteration of the
parent loop, the parent gets a random
number from each of the two children.
Students are asked to modify Project #1 as
follows:

• The parent process creates two

children. Each child generates a
sequence of n random numbers in the
range 0 to 999. As each number is
generated the child passes its ID and the
random number to the parent.

• After sending its information, each child
sleeps for a while using usleep(…)
system call.

• There is only one pipe to pass random
numbers and IDs from children to
parent. (Both children use the same
pipe to pass information.)

• The parent prints the child's
information as received, in the form:
child ID, random number.

• The printout by the parent is such that
odd lines are from first child while even
lines are from second child. Use
additional pipes to make this happen.

• One child initializes the random
number seed to seed1 and the other
child to seed2.

Students are unsure how parent interleaves

printing of the random numbers when both
children use the same pipe to pass numbers
to the parent. Eventually they figure out the

necessary synchronization mechanisms using
extra "control" pipes. Often they come up
with different ways to solve the problem. For
example, parent signals first child to go
(through control pipe 1), reads the random
number then signals the second child to
proceed (through control pipe 2) before
reading random number again. Similarly,
the children wait on the control pipe before
sending random number to the parent.
Another possibility is to synchronize the two
children without parent involvement.

Since the second project is a simple

extension to the first project, we do not
provide the solution.

THIRD PROJECT: USE OF
SEMAPHORES FOR PROCESS

SYNCHRONIZATION

The objective of this project is to

understand the effect of CPU scheduling and
understand semaphores and their
applications. This project is a further
refinement to the second project. As before,
both children share the same pipe to pass
their random numbers to the parent.
However, this project uses semaphores to
provide for synchronization between the two
children. Note that they cannot use any other
pipes for control. Students are expected to
enhance their ability to use semaphore and
reuse existing C++ classes. Students make
sure that they destroy, under program
control, all of the semaphores prior to
exiting. All processes are to be completed
before the main program is finished. Since
UNIX semaphore implementation is
nontrivial, we provide students with a
relocatable module that contains an easy to
use Semaphore class (semaphore.o). Students
use constructor for Semaphore class. They
have access to some sample programs on
using semaphores. The following is the
project description and a possible solution to
this assignment. We also show a sample run
of the program.

COMPUTERS IN EDUCATION JOURNAL 6

 /**
 * Problem: Use of semaphores for process synchronization. *
 * Each child generates n random numbers and sends each number with*
 * its ID to the parent through a single pipe. Using semaphores *
 * for process synchronization the two child processes send their *
 * information (ID and random number) in an alternate way. *
 * The seed for random numbers and the count for random numbers are*
 * the command line arguments. *
 * *
 * The parent process performs a signal on each child’s semaphore *
 * and then reads from the pipe. Each child process first performs*
 * a wait on its semaphore then it sends the information to the *
 * parent process through the pipe. At the end the parent process *
 * deletes the semaphores. *
 **/
 #include <sys/types>
 #include <stdio>
 #include <iostream>
 #include <stdlib>
 #include <unistd>
 #include <errno>
 #include "/home/cs/dadfar/cs327/semaphore.h" // instructor file

 int main(int argc, char *argv[])
 { // check for the number of arguments
 if (argc != 4)
 { cout << "You must supply two seeds and the number of "
 << "random numbers." << endl;
 exit(1);
 }
 int pid1, pid2, seed1, seed2, i, count;
 int pipe1[2], buffer[2];
 count = atoi (argv[3]);
 // create the pipe, and exit if it fails
 if (pipe(pipe1) < 0)
 { cout << "The pipe cannot be created" << endl;
 exit(1);
 }
 // create two semaphores, called 0 and 1 for the children
 Semaphore semaphore(12345, 2);
 // initialize both semaphores to value 0
 semaphore.Init(0, 0);
 semaphore.Init(1, 0);
 // create the first child
 pid1 = fork();
 if (pid1 == -1)
 { cerr << "The child process cannot be created." << endl;
 exit(1); }

 //** Child1 ***
 if (pid1 == 0)
 { seed1 = atoi (argv[1]);
 srand(seed1);
 close (pipe1[0]); // does not read from the pipe
 pid1 = getpid();
 // wait for your turn by performing a wait on your
 // semaphore and then generate a random number
 // and send it to the parent along with your ID
 for (i=0; i<count; i++)
 { semaphore.Wait(0);
 buffer[0] = pid1;
 buffer[1] = rand() % 1000;
 write(pipe1[1], buffer, 8);
 }
 close (pipe1[1]);
 exit(0);
 }
 //**** end of child1 process ************************************

 // parent process continues
 else
 { // create the second child
 pid2 = fork();
 if (pid2 == -1)
 { cerr << "The child process cannot be created." << endl;
 exit(1);
 }

 //** Child2 ***
 if (pid2 == 0)
 { seed2 = atoi (argv[2]);
 srand(seed2);

COMPUTERS IN EDUCATION JOURNAL 7

 close (pipe1[0]); // does not read from the pipe
 pid2 = getpid();
 // wait for your turn and then send the info to the parent
 for (i=0; i<count; i++)
 { semaphore.Wait(1);
 buffer[0] = pid2;
 buffer[1] = rand() % 1000;
 write(pipe1[1], buffer, 8);
 }
 close (pipe1[1]);
 exit(0);
 } // end of child2 process
 //***

 else
 { // ******* parent process continues *******
 // close unused end of the pipe
 close(pipe1[1]);
 // Perform a signal on the children’s semaphores and
 // read the information sent by children.
 for (i=0; i<count; i++)
 { // ******* Signal child 1 and read from child 1.
 semaphore.Signal(0);
 read(pipe1[0], buffer, 8);
 cout << " The child ID is: " << buffer[0]
 << " and the number received is: " << buffer[1] << endl;
 // ******* Signal child 2 and read from child 2.
 semaphore.Signal(1);
 read(pipe1[0], buffer, 8);
 cout << " The child ID is: " << buffer[0]
 << " and the number received is: " << buffer[1] << endl;
 }
 // close the pipe and delete the semaphores
 close(pipe1[0]);
 semaphore.Destroy();
 exit (0);
 } /* end of parent process */
 }
 }

 /**
 $ g++ lab3key.cpp semaphore.o -o a.out
 $
 $ a.out 2000 3000 2
 The child ID is: 17557 and the number received is: 876
 The child ID is: 17558 and the number received is: 431
 The child ID is: 17557 and the number received is: 186
 The child ID is: 17558 and the number received is: 661
 $

 $ ipcs
 **/

FOURTH PROJECT: CLIENT/SERVER

COMMUNICATION

The objective of this project is to become

familiar with the concept of client/server
networking and understand how to set up
client/server connection. In a client/server
paradigm one application (client) actively
initiates communications by sending requests
to another application (server). The server
application is waiting passively to receive
specific type of messages and respond to

these incoming requests. You may refer to
other articles3 for a detailed discussion of
client/server communication concepts.

This project is similar to projects discussed

in an earlier paper2. By completing this
project students learn the difference between
a client and a server. Students are asked to
write the client for finger protocol (port # 79)
and then finger a user (supplied in command
line) and display the response from server.
UNIX client/server programming primitives
are a bit involved. We supply a relocatable
module which the students link to their
program. The instructor-supplied module
provides a "connectToHost" primitive which
in turn invokes the standard connect
primitive. The following is the project
description and a possible solution to this
assignment.

COMPUTERS IN EDUCATION JOURNAL 8

/**
* Problem: Use of Client/server networking. *
* In this assignment we write the client for finger protocol. *
* The following C++ client server routines have been provided by *
* the instructor. *
* int socket (AF_INET, SOCK_STREAM, 0): *
* Allocate a socket and return the socket number. The returned *
* value is used as the first parameter in the following routines:*
* int connectToHost (int socketNO, char * serverMachineName, *
* int serverPortNO): *
* Connect to serverMachineName at serverPortNO. Returns a *
* negative value upon error. *
* int read (socketNO, FromServer, maxLength)): *
* Read (up to maxLength bytes) from the server and store it in *
* FromServer. Actual number bytes read is returned. *
* int write (int socketNO, char *ToServer, int lengthOfToServer): *
* Write to the server lengthOfToServer bytes from the array *
* ToServer. Returns negative value upon error. *
* int close (int socketNO): *
* Close the connection. Returns < 0 upon error. *
* *
* To compile: *
* g++ lab4Client.cpp /home/cs/dadfar/cs327/lab4/clientLibrary.o *
* -o client -lsocket -lnsl *
* Run the program as: *
* client allegro.cs.bgsu.edu 79 anyUserYouWantToFinger *
**/

#include <stdio>
#include <iostream>
#include <cstring>
#include <unistd>
#include <sys/types>
#include <sys/socket>
#include "/home/cs/dadfar/cs327/lab4/clientServer.h"

int connectToHost(int socketNO, char * serverMachineName,
 int serverPortNO);
int connect(int s, struct sockaddr *name, int namelen);
int socketNO, n, bufferSize = 1024;
int main(int argc, char *argv[])
{ char FromServer[bufferSize];
 // check for the number of arguments and quit if it is not equal to 4
 if (argc != 4)
 { cout << "Usage: programname host 79 username" << endl;
 exit(1);
 }
 if ((socketNO = socket(AF_INET,SOCK_STREAM,0)) < 0) /* get a mailbox */
 { perror("socket");
 exit(1);
 }
 if (connectToHost(socketNO, argv[1], atoi(argv[2])) < 0)
 { perror ("connect error \n");
 exit(1);
 }
 // Send the information (request) to the server
 if (write(socketNO, argv[3], strlen(argv[3])) < 0)
 { perror ("writing to other machine");
 exit(1);
 }
 // send the end of line character
 if (write(socketNO, "\n", 1) < 0)
 { perror ("writing to other machine");
 exit(1);
 }

 /* receive from server the entire response */
 n = read(socketNO, FromServer, bufferSize);
 while (n > 0)
 { /* write on terminal one character at a time */
 for (int index = 0; index < n; index++)
 cout << FromServer[index];

 n = read(socketNO, FromServer, bufferSize);
 } /* end while */

COMPUTERS IN EDUCATION JOURNAL 9

 cout << endl;

 if (close(socketNO) < 0)
 cout << "Error closing connection.";
 return (0);
}

CONCLUDING REMARKS

In this paper, we described four projects

suitable for a course in operating systems and
data communications. We believe that
projects like these which provide hands-on
experience are necessary to reinforce
theoretical concepts. We feel that the overall
outcomes of these projects were both
interesting and beneficial to the students.
The projects are simple but they provide a
new experience to the students. For brevity
we did not include the complete code for the
instructor supplied routines, and the student
solutions. They can be obtained from the
authors.

REFERENCES

1. Dadfar, Mohammad B. , Brachtl,

Michael, and Ramakrishnan, Sub, "A
Simulation of Processor Scheduling
Algorithms" The American Society for
Engineering Education (ASEE) J.
Computers in Education, Vol. XIV, No.
1, January-March 2004, pp. 46-51.

2. Dadfar, Mohammad B. , Francis, Jeffrey,

and Ramakrishnan, Sub, "A Core
Computer Science Course to Introduce

Innovative Systems Concepts" The
American Society for Engineering
Education (ASEE) J. Computers in
Education, Vol. VIII, No. 1, January-
March 1998, pp. 27-33.

3. Ramakrishnan, Sub and Dadfar,

Mohammad B., "Client/Server
Communication Concepts for a Data
Communications Course," ASEE 1997
Annual Conference, 2520-02.

BIOGRAPHICAL INFORMATION

Mohammad B. Dadfar is an Associate Professor

in the Computer Science Department at Bowling
Green State University. His research interests
include Scheduling Algorithms and Computers in
Education. He currently teaches courses in data
communications, operating systems, and
computer algorithms. He is a member of ACM
and ASEE.

Sub Ramakrishnan is a Professor of Computer

Science at Bowling Green State University. From
1985-1987, he held a visiting appointment with
the Department of Computing Science, University
of Alberta, Edmonton, Alberta. Dr.
Ramakrishnan’s research interests include
distributed computing, performance evaluation,
parallel simulation, and fault-tolerant systems.

