
STEP BY STEP IMPLEMENTATION OF ETHERNET AND TCP-IP
PROTOCOLS ON AN EMBEDDED SYSTEM - Part I

 Tariqul Haque, PhD Michael Urbaniak
 Electrical Engineering Technology Ebtron, Inc
 Southeastern Community College Loris, SC 29569
 Whiteville, NC 28472

ABSTRACT

Integration of current internet and networking

technology with a microcontroller in an
advanced microprocessor class is a useful, and
practical learning tool . In the first part of this
paper we present hardware interfacing of an
ethernet controller chip with a microcontroller.
Then, in a tutorial fashion, detailed instructions
are presented for the development of a driver for
the ethernet system, which includes packet
reading and packet writing from and to buffers
of the ethernet controller chip. Part II of this
paper deals with protocol implementations.

INTRODUCTION

Ethernet technology has become a dominant

physical and data link layer connection
technique for computer networks and the
internet. But gradually this technology is also
finding applications for data and information
retrieval in industrial, medical, home
automation, building automation, and other
devices which utilize microcontrollers.
Embedded systems, whose applications
commonly include sensor data and sensor
control, are generally kept in places which are
difficult for frequent physical access but readily
accessible through ethernet connections.
Because of extensive use of ethernet in
connecting multiple devices for information
transmission, its speed, and ease of
implementation, the technology is now being
used in embedded systems. Implementation on
an embedded system of ethernet hardware and
protocols for data transfer is not as
straightforward as on a personal computer,
which are more prevalent in most publications.
This is caused by limited resources, such as low
speed, smaller size of data and address bus,

permanent storage capacity, temporary storage
capacity of microcontroller systems.

In this paper we first describe integration of

ethernet hardware in a microcontroller system,
then review basic software necessary to drive
the hardware, and, finally, using an example of
a HTTP server, we implement TCP-IP software
protocols for information exchange.

ETHERNET HARDWARE

The heart of ethernet hardware is presently a

single chip: the ethernet controller chip. There
are several 16-bit ethernet chips now available
commercially which basically perform identical
tasks and which conforms with IEEE 802.3
requirements. In our design, we have used a 16
bit ISA bus compatible ethernet chip, CS8900A,
from Cirrus Logic Inc. The CS8900A is fully
compliant with the IEEE ethernet standard; it
supports full duplex operation; it has built-in
separate transmit and receive buffer, 4K RAM;
and it incorporates a 10BASE-T transceiver.1
Although the chip is capable of handling 16-bit
data, for a 8-bit embedded system, only 8 bit of
the ethernet chip are utilized by grounding the
higher 8 data pins (D8-D15). Only 4 address
pins (A0-A3), out of 20, are used for addressing
16 internal registers, where two registers
working as a pair accept 2 bytes. In addition to
these 4 address pins, 3 control pins are also
required for generation of proper timing
signals. These control pins are labeled as IO_R
(Read timing), IO_W (Write timing) and
AD_EN (Address Enable timing). An 8-bit port
of any microcontroller can effectively service
these 4 address signals and 3 control signals,
and a second 8-bit port can serve the 8-bit data
bus of the ethernet chip. A microcontroller with
two available 8-bit I/O ports can generate all

COMPUTERS IN EDUCATION JOURNAL 70

necessary input and output signals for this
ethernet chip. Figure 1 illustrates connections of
a CS8900A chip to a 8-bit microcontroller.

 Figure 1: Circuit diagram to interface a CS8900A ethernet controller chip with a microcontroller.
Hardware connections with only 8 data lines, 4 address lines and 3 control lines are required for the
operation of the chip.

The only external part, except for a few
capacitors and pull-up resistors, is a 10BASE-T
transformer which provides connections with a

COMPUTERS IN EDUCATION JOURNAL 71

RJ45 connector. When the ethernet chip
CS8900A is used with an 8-bit embedded
system, a few functions of the chips are
sacrificed. For example, in 8-bit mode, external
IRQ, DMA, and EEPROM capabilities in the
normal configuration of the chip are ignored.
Also, I/O mode, instead of memory map mode,
becomes the default and only mode with 8-bit.

REGISTERS IN ETHERNET

CONTROLLER CHIP CS8900A

The ethernet chip CS8900A contains several 16-
bit internal control registers, whose addresses
range from 0000 to 0A00, and 16 access
registers, with addresses from 00 to 0F, which
are needed to write to and read from those
internal control registers in 8-bit I/O mode. A
few of these registers and their addresses are
shown in Table 1 and Table 2. In this paper, all
numbers used are in Hexadecimal (Hex) unless
indicated otherwise.

Register Address Register Address Register Address
IntReg 0022 LineCtl 0112 TxEvent 0128
RxCfg 0102 SelfCtl 0114 BusStat 0138
RxCtl 0104 BusCtl 0116 IAReg 0158
TxCfg 0106 TestCtl 0118
BufCfg 010A RxEvent 0124

Table 1: 16-bit internal registers (control registers) and their offset addresses

Address Description
00-01 Receive/Transmit Data Register 0
02-03 Receive/Transmit Data Register 1
04-05 TxCMD; Transmit Command Register
06-07 TxLength; Transmit Data Length Register
08-09 Interrupt Status Queue Register
0A-0B Packet Page Pointer: Address Pointer Register
0C-0D Packet Page Data Register 0
0E-0F Packet Page Data Register 1

Table 2: In I/O mode these sixteen 8-bit registers(access registers) are used to access the internal
registers. For this reason, only 4 address pins of CS8900A have physical connections with the
microcontroller. Base address is hardwired to 0300 and here only offset addresses are shown.

More explanations of these registers can be
found in reference 1. Each address of Table 2
will accept only one byte. For example, to
access the internal register of address 0138, 38
is first written to address 0A and then 01 is
written to 0B. Packet Page Data Register 0
(address 0C and 0D) is used for input/output of
control data in internal registers; and
Receive/Transmit Data Register 0 (address 00
and 01) is used for reading and writing user data
from and to the buffers.

BASIC SOFTWARE REQUIRED TO
DRIVE THE ETHERNET CHIP

ALGORITHM FOR SINGLE BYTE
READ/WRITE

An address or a data input must be written one
byte at a time. The timing diagrams of the
control signals AD_EN, IO_W, and IO_R can
be found in reference 1. The offset addresses of

COMPUTERS IN EDUCATION JOURNAL 72

the ethernet chip are only 4-bit long which are
generally connected to 4 pins of a
microcontroller port, they will be referred to as
Address Lines. The 8 data pins of the CS8900A,
connected to a 8-bit port of the microcontroller ,
which will be referred to as Data Port, make it
possible to place the data byte on the 8-bit port
and then send the control signals through
another port. The order in which the commands
for writing a byte to a 4-bit address are executed
are given in the algorithm. All algorithms in
this paper are shown in the form of sequential
instructions for the advantage of programmers.

♦ Place 8-bit Data (or half of an address) on

the Data Port of the microcontroller.
♦ Place 4-bit Address of an access register

on the Address Lines
♦ Introduce a delay of minimum 125 nsec
♦ Pull AD_EN pin LOW
♦ Pull IO_W pin LOW
♦ Introduce a delay of minimum 125 nsec
♦ Pull IO_W pin HIGH
♦ Pull AD_EN pin HIGH

The order of commands for reading a byte

from a register are

♦ Place the 4-bit address of a access

register on the Address Lines
♦ Pull AD_EN pin LOW
♦ Pull IO_R pin LOW
♦ Introduce a delay of minimum 250 nsec
♦ Read 8-bit data from the Data Port
♦ Pull IO_R pin HIGH
♦ Pull AD_EN pin HIGH

The time delay above depends on the speed of

microcontrollers. For example, for a 29.49
MHz microcontroller, a delay of 125 nsec and
250 nsec is sufficient for writing and reading
respectively.

ALGORITHM FOR 2-BYTE READ/WRITE

It is often necessary, for initialization process,
to read and write 2-byte long data into registers
whose addresses are also by 2-byte long.. But

address pins A8 and A9 are hardwired to 1,
creating a permanent address of x3xx. For this
reason only the offset addresses (00 to 0F) of
the access registers are used in all algorithms.
The sequence of commands for writing a 2-byte
data into a 2-byte address will have the
following steps in the given order.

♦ Write lower byte of the Address to lower

part of the Packet Page pointer (0A)
♦ Write higher byte of the Address to higher

part of the Packet Page pointer (0B)
♦ Write lower byte of the Data to lower part

of the Packet Page Data Register 0 (0C)
♦ Write higher byte of the Data to higher

part of the Packet Page Data Register 0
(0D)

For example, writing a data ABCD to an

address 1234 is accomplished in 4 steps:
Write 34 to access register address 0A
Write 12 to access register address 0B
Write CD to access register address 0C
Write AB to access register address 0D

An Algorithm for Reading a 2-byte data from

a 2-byte address will have the following steps.
♦ Write lower byte of the address to 0A
♦ Write higher byte of the address to 0B
♦ Read the lower byte of the data from

address 0C
♦ Read the higher byte of the data from

address 0D

In all these commands reading and writing of

single bytes are required. The procedures for
such operations are described in an earlier
section.

INITIALIZATION OF THE ETHERNET CHIP

We now describe an algorithm to set up the
ethernet chip with various parameters so that an
error free data exchange will take place through
the ethernet port. Initialization of the chip
consists of a 10 msec delay after Reset or
power on Reset and writing several 2-byte
words in control registers. All transmissions and
receptions by the chip takes place as 2-byte (16-

COMPUTERS IN EDUCATION JOURNAL 73

bit) data. Which is accomplished with a 8-bit
data bus by sending, with a few exceptions, the
lower byte first, followed by the higher byte.
One possible initialization sequence of the chip
after power on is summarized below with
comments within square brackets.

♦ Write 0x0040 to SelfCtl register.

[Software Reset of the chip]
♦ 10 millisecond delay
♦ Write 0x0000 to LineCtl register.

[Hardware is ethernet]
♦ Write 0x4000 to TestCtl register. [Full

Duplex operation]
♦ Write 0x0100 to RxCfg register.

[Generate interrupt for a good received
frame]

♦ Write 0x0D00 to RxCtl register: [Accept
broadcast frame, accept only if MAC
numbers match, accept only if CRC is
correct, and data length is valid]

♦ Write 0x8100 to TxCfg register. [Allow 16
collisions, generate interrupt when a frame
is transmitted]

♦ Write 6-byte MAC number to IAReg
register. [These 6 bytes are written as three
2-byte words in three attempts. For
example, a MAC number 12-34-56-78-
9A-BC is written as 9ABC, 5678, and
1234 into addresses IAReg, IAReg+2,
IAReg+4 respectively]

♦ Write 0x0000 to IntReg register. [Use
INTRQ0]

♦ Write 0x8500 to BufCfg register.
[Generate interrupt if MAC address is
accepted, interrupt if a frame is missed,
interrupt if ethernet chip is ready to accept
a frame from the embedded system]

♦ Write 0x00C0 to LineCtl register. [Enable
Transmitter and Receiver]

♦ Write 0x8000 to BusCtl register. [Enable
IRQ]

This completes the initialization process of the

ethernet chip CS8900A. More explanation of
the hex control bytes sent to the registers is
found in reference 1. A MAC number is a

unique identification number of a node in a
network.

ALGORITHM FOR READING A RECEIVED
FRAME

So far we have described the procedures to
read and write bytes to ethernet access registers,
to read and write 2-byte data in control registers,
and to show how the latter is used to initialize
the ethernet chip. The reception of a ethernet
packet is completely handled by the ethernet
chip in the background and is stored in the built-
in Receive Frame Buffer. We now present an
algorithm to read a complete packet from the
ethernet chip by the microcontroller. All single
byte addresses belong to access registers and all
double byte addresses belong to internal control
registers.

Repeatedly perform
♦ Read RxEvent register [A 2-byte read

command. Bit 8 indicates reception of a
packet]

Until bit 8 of RxEvent is 1.
♦ Read a byte from address 01. [Higher byte

of RxStatus register]
♦ Read a byte from address 00. [Lower byte

of RxStatus register]
♦ Read a byte from address 01. [Higher byte

of Data Length of the received packet]
♦ Read a byte from address 00. [Lower byte

of Data Length]
Now repeatedly perform
♦ Read a byte from address 00. [Lower byte

of a frame data]
♦ Read a byte from address 01. [Higher byte

of the data]
Until all data are read.

The higher byte must be read first for both

Status and Data Length registers. The last two
Read statements must be performed (Data
Length)/2 times because each pair of read
statement retrieves 2 bytes of data. In most
embedded systems, scarcity of RAM prevents
users from reading all bytes indicated by Data
Length. In such situations, only the bytes
needed to form a response may be read.

COMPUTERS IN EDUCATION JOURNAL 74

ALGORITHM FOR TRANSMITTING A
PACKET

Once a packet is written into the transmission
buffer of the ethernet chip, the chip handles all
necessary transmission procedures internally,
completely unattended by the microcontroller.
When the last byte of a packet is transferred to
the ethernet chip, the microcontroller is set free
and the CS8900A chip takes over the remaining
task of transmitting the packet over the network
media. The algorithm to write a complete packet
to the ethernet chip by the microcontroller
consists of following sequence of instructions.
♦ Write C0 to address 04. [Writes lower byte

of transmission command 00C0 to
TxCMD register.

♦ Write 00 to address 05. [Writes higher
byte of transmission command to TxCMD
register]

♦ Write lower byte of packet length to
address 06. [Lower byte written to
TxLength register]

♦ Write higher byte of packet length to
address 07. [Higher byte written to
TxLength register]

Now repeatedly perform
♦ Read BusStat Register. [2-byte read

command. Bit 8 indicates CS8900 is ready
for a packet]

Until bit 8 of BusStat register is 1

Now repeatedly perform
♦ Write lower byte of a frame data to

address 00. [Lower byte is written to
Receive/Transmit Data 0]

♦ Write higher byte of the data to address
01. [Higher byte is written to
Receive/Transmit

 Data 0]
Until all bytes are loaded into buffer.

Now repeatedly perform
♦ Read TxEvent Register. [2-byte read

command. Bit 8 indicates all bytes are
transmitted]

Until bit 8 of TxEvent register is 1.

The command byte 00C0 above sets up the
ethernet chip to append ethernet CRC, to start
transmission after all bytes are loaded into the
buffer, and to add padding bytes if length of the
packet is under 60. The length of the entire
packet must be entered into Transmit Length
Register before data are sent to the ethernet
chip. To transmit all bytes the repeated
operations must be performed (packet length)/2
times.

COMMENT

The methods presented in section 3 are

sufficient to initialize the ethernet chip and issue
commands necessary in the development of
most ethernet based communication protocols.
An ethernet controller chip, such as CS8900A,
receives the preamble bits, start bits, and CRC
bytes of an ethernet packet2, but discards them
when data are read by a microcontroller.
Although MAC numbers must be obtained from
IEEE, the MAC number of an unused Network
Interface Card (NIC) will suffice for
experimentation. 8-bit microcontrollers are
abundant in educational curricula as well as in
industry. Because of hardware and software
simplicities of 8-bit designs, and the limitless
application potentials, implementation of a 8-bit
ethernet system may be preferable in many
intermediate-to-advanced microprocessor
courses. In Part-II of this paper we will address
the problem of developing protocol software for
this ethernet system.

REFERENCES

1. Product Data Sheet, CS8900A, Cirrus Logic,

Inc. www.cirrus.com

2. Nathan Muller, Networking A to Z, McGraw-

Hill, 2003.

3. Jeremy Bentham, TCP/IP Lean, CMP Books,

2000.

COMPUTERS IN EDUCATION JOURNAL 75

http://www.cirrus.com/

	ETHERNET HARDWARE
	REGISTERS IN ETHERNET CONTROLLER CHIP CS8900A
	Register
	Address
	Register
	Address
	Register
	Address
	Address
	Description

	BASIC SOFTWARE REQUIRED TO DRIVE THE ETHERNET CHIP
	ALGORITHM FOR SINGLE BYTE READ/WRITE
	ALGORITHM FOR 2-BYTE READ/WRITE
	INITIALIZATION OF THE ETHERNET CHIP

	ALGORITHM FOR READING A RECEIVED FRAME
	ALGORITHM FOR TRANSMITTING A PACKET
	COMMENT

