
STEP BY STEP IMPLEMENTATION OF ETHERNET AND TCP-IP
 PROTOCOLS ON AN EMBEDDED SYSTEM - Part II

 Tariqul Haque, PhD Michael Urbaniak
 Electrical Engineering Technology Ebtron, Inc
 Southeastern Community College Loris, SC 29569
 Whiteville, NC 28472

ABSTRACT

In Part II of this paper we describe testing of
the ethernet system we designed in Part I1,
which requires such communication protocols
as ARP and ICMP. As an application we
present a new approach to investigate the fields
of IP and TCP protocols to create a basic
working HTTP server on an embedded system.
The server performs equally well with browsers
under a Microsoft Windows or a Linux host.

INTRODUCTION

When it comes to implementation of

communication protocols, most authors
approach the problem by explaining properties
of the fields of protocols. This is appropriate
when software is developed in a personal or
higher computer with a powerful operating
system to support it. But when software is
developed for an embedded system, instead of
field-level explanation, byte-level explanation
will be more appropriate for programmers. This
will allow programmers to pursue their effort in
C or C++ and also in Assembly language, if
necessary. First we describe testing of ethernet
hardware; then, we present detailed descriptions
on how an embedded system with ethernet
capability can serve HTML files.

ADDRESS RESOLUTION PROTOCOL

(ARP)

Connection between two computers by
ethernet is commonly tested by an application
called ‘ping’. An IP address (Internet Protocol)
of the destination computer is supplied on the

command line. Each computer with ethernet
connection must have a 6-byte long hardware
address (also known as Ethernet Address or
hardware MAC number). In addition to an IP
address the ping application also requires the
hardware address of the destination computer.
Since the source computer is not aware of the
ethernet address of the destination computer, a
pre-ping packet is sent to the destination
computer in order to retrieve its ethernet
address. This is known as an Address
Resolution Protocol or ARP packet. It is also
common for a computer to exchange ARP
information in the background with other
systems in a network without any user
intervention. All headers and associated fields
of protocols used in this paper are minimum
requirements or in compact forms for
successful communications between
computers.2 For this reason, the header
structures and data fields of various protocols
used in this paper may differ from those
generally found in technical books or many
websites on these topics.

A typical ARP packet, shown in block

diagram, contains an ethernet header, an ARP
header and padding bytes. All numbers used in
the protocol sections are in Hexadecimal (Hex)
unless indicated otherwise. Throughout this
paper our embedded system is the destination
and a computer communicating with our system
will be termed as the host computer or source
computer.

Ethernet Header

Destination
Ethernet address

6 Bytes

Source Ethernet
address
6 Bytes

Type/Length

2 Bytes

COMPUTERS IN EDUCATION JOURNAL 76

ARP Header
Hardware Type
2 Bytes

Protocol Type
2 Bytes

MAC length
 1 Byte

IP length
 1 Byte

Operation
 2 Bytes

Source Ethernet address
6 Bytes

Source IP address
4 Bytes

Destination Eth rnet address e
6 Bytes

Destination IP Address
4 bytes

Padding
Bytes

All frames in hexadecimal values, shown in

this paper, are taken from the MS Windows
environment. The essential part of an ARP
frame, received from a host computer, and
polled from the ethernet controller chip is
displayed byte by byte. The embedded system
used in this paper has an ethernet hardware
address of 00-C0-F0-34-AC-7B, and an IP
address of 0A 0A 01 64 (10.10.1.100).

A Received ARP Frame

FF FF FF FF FF FF 00 40 33 2E 99 4F 08 06 00 01
08 00 06 04 00 01 00 40 33 2E 99 4F 0A 0A 01 02
00 00 00 00 00 00 0A 0A 01 64 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20

The frame is sub-divided into constituent

headers, and bytes are also grouped to exhibit
their significance as described in the block
diagram of ARP packet above. Finally a
response packet is formed from these analysis.

Ethernet Header

1 FF FF FF FF FF FF 700 40 33 2E 99 4F 1308 06
 ARP Header
1500 01 1708 00 1906 2004 2100 01 2300 40 33 2E 99 4F
290A 0A 01 02

3300 00 00 00 00 00 390A 0A 01 64
 Padding Bytes
 4320 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20

Explanation of the bytes and groups of bytes
follow. A decimal number adjacent to each box
represents the position of the first byte in the
box in the entire packet. The first 14 bytes are
ethernet header.

 1FF FF FF FF FF FF These 6 bytes are the

ethernet address of the destination. An ethernet

address of FF FF FF FF FF FF is called a
broadcast address because the packet is accepted
by all nodes on the network [8]. The response
packet also uses FF FF FF FF FF FF as its
destination ethernet address.

 700 40 33 2E 99 4F These 6 bytes are the

ethernet address of the source computer. Since
roles of source and destination are reversed in
the response packet, these 6 bytes are replaced
with the ethernet address of the embedded
system.

1308 06 When this number is below 0600, it

represents the length of the packet. A number
above 0600 indicates the type of ethernet
protocol used. Below are a few commonly used
types4:

Code Type
0800 Internet Protocol
0806 ARP
0835 Reverse ARP

The bytes that follow ethernet header are ARP
header bytes.

1500 01 These 2 bytes represent the hardware

type used for this communication. For ethernet,
this value is 00 01.4 The same 2 bytes are
returned in response.

1708 00 These two bytes are used for type of

protocol address. For IP protocol version 4
(IPv4) this value is 08 00. The same 2 bytes are
returned in the response packet.

 1906 The length of ethernet address is 6 bytes;

hence, a value of 06 is returned in this byte
location.

COMPUTERS IN EDUCATION JOURNAL 77

2004 The length of IP address is 4 bytes. A

value of 04 is returned in this byte position.

2100 01 These two bytes represent the type

of operation is being requested.
 00 01: ARP request operation
 00 02: ARP response operation
Thus 00 02 must be returned by the

embedded system in the return packet .

2300 40 33 2E 99 4F The source ethernet

address, which will be returned as destination
ethernet address.

290A 0A 01 02 The source IP address, which

will be returned as destination (host) IP address.

3300 00 00 00 00 00 This byte locations are

reserved for the destination ethernet address.
Since the source system is unaware of the
destination Ethernet address, it sends 6 bytes of
zeros. In the return packet the embedded
software must replace these zeros with 00 40
33 2E 99 4F, the numbers received in positions
23-28.

390A 0A 01 64 Four bytes of destination IP

address. The address 0A 00 00 02, received in
positions 29-32, will replace these 4 bytes in the
return packet.

The remaining 18 bytes are padding bytes

which are returned as they are in the return
packet. With the explanations presented above
we now can form the entire return packet as

Ethernet Header

IP Header

1 FF FF FF FF FF FF 700 C0 F0 34 AC
7B 1308 06

1500 01 1708 00 1906 2004 2100 02 2300 C0
F0 34 AC 7B 290A 0A 01 64

3300 40 33 2E 99 4F 390A 0A 01 02

 4320 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20

Apart from interchanging the positions of
ethernet and IP addresses of source and
destination, the only other changes made are at
byte positions 21 and 22. These 2 locations now
have 00 02 to indicate that this is an ARP
response. There are only 60 bytes shown here
because 4 bytes of CRC are added by the
ethernet controller chip to make a total of 64
bytes, the minimum byte size of an ethernet
frame.

INTERNET CONTROL MESSAGE
PROTOCOL (ICMP)

When a ping command is issued from a host,

the ARP frames are exchanged. The source
computer then transmits an ICMP frame with a
few bytes of data to be returned exactly by the
responder. Most Windows system use a 74-byte
packet, but this packet length varies from
operating system to operating system. The
frame has two parts – protocol headers and data
to be echoed back. A complete ICMP frame
contains an Ethernet Header, an IP Header, an
ICMP header, and some data.2

 Destination Ethernet address
6 Bytes

Source Ethernet address
6 Bytes

Protocol Type
2 Bytes

Version +Header Length.
1 Byte

Service
1 Byte

Length of IP+TCP
2 Bytes

Ident value
2 Bytes

Flag, Fragment Offset.
2 Bytes

Time to live

1 Byte
Protocol

1 Byte
Checksum of IP Header

2 Bytes
Source IP Address

4 bytes
Destination IP Address

4 Bytes

COMPUTERS IN EDUCATION JOURNAL 78

 ICMP Header
Type
1 Bytes

Code
1 Bytes

Checksum
2 Bytes

ID Number
2 Bytes

Sequence Number
 2 Bytes

Echo Data

32 bytes

A typical ICMP packet received by an

embedded system will contain hex bytes of the
following values.

A Received ICMP (ping) Frame

00 C0 F0 34 AC 7B 00 40 33 2E 99 4F 08 00 45 00
00 3C CA 00 00 00 20 01 BA 47 0A 0A 01 02 0A 0A
01 64 08 00 47 5C 01 00 05 00 61 62 63 64 65 66
67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76
77 61 62 63 64 65 66 67 68 69

The ICMP packet can be sub-divided into

individual protocol headers to explicitly
demonstrate the constituents of a frame. Then
we shift our focus to individual byte or group of
bytes and their significance in order to form a
response packet.

 Ethernet Header

100 C0 F0 34 AC 7B 700 40 33 2E 99 4F
1308 00
 IP Header
1545 1600 1700 3C 19CA 00 2100 00 2320 2401 25
BA 47 270A 0A 01 02 310A A0 01 64
 ICMP Header
3508 00 3747 5C 3901 00 4105 00
43 Data to Return

61 62 63 64 65 66 67 68 69
6A 6B 6C 6D 6E 6F 70 71 72
73 74 75 76 77 61 62 63 64
65 66 67 68 69

First 14 bytes are Ethernet header.

100 AC C0 F0 34 7B This is the 6-byte

ethernet address of destination, in this case, the
embedded system. The number is already stored
in the ethernet chip during initialization, and is
used by the chip for comparison and rejection or
acceptance of a packet. The number should also

be stored in RAM by embedded system
software and retrieved for the response packet.

700 40 33 2E 99 4F These 6 bytes are the

hardware address of the host. These 6 bytes
must be copied into return packet as destination
hardware address.

1308 00 These 2 bytes represent protocol type

or frame length. For internet protocol its value is
08 00 [1].

The next 20 bytes are the IP header.

1545 This byte represents the IP version and

header length combined in a strange way. ‘4’ of
‘45’ is used for the IP version, IPV4.0. And ‘5’
of ‘45’ represents the length of IP header in 32-
bit words (or 4 bytes). For applications in an
embedded system, optional bytes in the IP
header are generally dropped making a header
of only 20 bytes. The IP header length then
becomes five 32-bit words (or 20 bytes). This
‘45’ is returned in the return package in the
same byte location.

1600 This byte is called service byte -

representing quality of service desired, such as
delay, reliability, control, priority, etc. For
normal operation this byte is 00 in the return
packet.

1700 3C Two important bytes for total length.

These 2 bytes represents the number of bytes
included in the packet, starting from the first
byte of the IP header to the last byte of the
packet. In the above example, the number of
bytes from 45 (byte position 15) to 69, is
decimal 60 (or hexadecimal 3C). In the return
packet, this bytes are changed depending on the
number of bytes being sent. This total length
never includes the ethernet header.

COMPUTERS IN EDUCATION JOURNAL 79

19CA 00 These 2 bytes represent Identification
value sent by a host for reassembling
fragmented data. Generally a random number
or a linearly increasing number is sufficient for
this field when no fragmentation is required.6 A
value of 00 00 in the return packet is also
acceptable for simple network environment.

2100 00 These 2 bytes represent Flag and

Fragmentation. If no fragmentation is used,
which is the normal case for embedded system,
a 40 00 or 00 00 is generally sent in the return
packet.3

2320 This byte is called ‘time to live’, the

number of nodes (routers) the packet is
supposed to pass through in the media until
discarded.3 Usual values of 20 to 80 are used.

2401 A very important byte. This byte tells the

receiver the type of protocol used for
encapsulated data within the frame. The receiver
must act depending on the value of this byte.
The return packet formed by the embedded
system depends on the value of this byte. This
also tells the receiver that the header and data
that follows the IP header is either ICMP or
TCP or UDP or any other. The values of a few
very common protocols used in ethernet
systems are:

 protocols values
 ICMP: 01
 TCP: 06
 UDP: 11 (dec 17)

This byte is returned as 01 in the return frame.

25BA 47 Two bytes of checksum. This

checksum is computed on the IP header bytes
only. The algorithm for any checksum
computation is described later.

270A 0A 01 02 In this example, the 4-byte

IP address of the host is 10.10.1.2. Embedded
software should copy these 4 bytes in the return
frame as destination IP address.

310A 0A 01 64 In this example, the 4-byte

IP address of destination is 10.10.1.100 . These

bytes are already stored in the embedded
software and are copied into the return packet
as source IP address.

The next 8 bytes are the ICMP (Ping)header.

3508 00 Although these 2 bytes separately

represent two different parameters, they are
generally used together in source and
destination frames. Here are a few meanings of
these bytes6:

type code representation
08 00 Echo Request
00 00 Echo Reply
00 03 Destination Unreachable

The host system will use 08 00 requesting an

echo, and the responding system must use 00
00.

3747 5C Checksum bytes. The checksum is

computed for all bytes starting from the first
byte of the ICMP header to the last byte of echo
data.

3901 00 Identification number. Used by a host

for request-response matching.

4105 00 Sequence number. This increasing

number is also used for matching. Identification
number and sequence number are returned in
the response packet without change for correct
matching.6

The next 32 bytes are ICMP data to be

returned exactly as received in order to verify
the reliability of ethernet connection. Some
operating systems use different number of bytes
than 21; it is thus necessary to capture all data
from the host computer and return them.

With this explanations of bytes and groups of

bytes received from a host system, the frame
sent by the embedded system in response to a
ICMP packet will take the following form.
This frame is formed after checking byte
number 24, which in this case is 01, indicating
that an ICMP (ping) frame is requested.

COMPUTERS IN EDUCATION JOURNAL 80

100 40 33 2E 99 4F 700 C0 F0 34 AC 7B
1308 00

1545 1600 1700 3C 1900 00 2140 00 2380 2401
25 E4 47 270A 0A 01 64 310A A0 01 02

3500 00 374F 5C 3901 00 4105 00

 43

61 62 63 64 65 66 67 68 69 6A
6B 6C 6D 6E 6F 70 71 72 73 74
75 76 77 61 62 63 64 65 66 67
68 69

The differences between a received packet and

a transmitted packet are summarized as:
♦ Source ethernet address and destination

ethernet address have interchanged their
byte positions.

♦ Source IP address and destination IP address
have interchanged their byte positions.

♦ Byte position 35 is changed from 08 to 00,
for the receiver to know this is an echo
reply.

♦ Checksums for return IP header is computed
and the values are inserted at positions 25
and 26.

♦ Checksums for return ICMP header is
computed and the bytes are inserted at
locations 37 and 38.

TRANSMISSION CONTROL PROTOCOL-

INTERNET PROTOCOL (TCP-IP)

The Transmission Control Protocol (TCP) is
intended for use as a highly reliable protocol
between hosts in computer communication
networks. The TCP is able to transfer a
continuous stream of data (bytes) in each
direction between two participating systems by
packaging the data into segments when
necessary. The TCP fits into a layered protocol
architecture and interfaces user data with a
lower level protocol such as Internet Protocol
(IP).

TCP-IP has the most dominant role in Internet

communications. For this reason, an example
application of TCP-IP protocols in internet

environment is appropriate for understanding
the inner workings of this protocols. A simple
internet application of an embedded system is
a web server that serves only HTML pages, also
known as HTTP server. The development of an
application software for an embedded system
which functions as a HTML page server is
described next in detail. This is an
implementation of the most essential part of
TCP-IP protocol which enables an embedded
system to successfully respond to a request for
a HTML page. The HTML page may contain
text, a jpg or gif picture, and/or a java applet
embedded in the page.

Communications between a host computer

requesting a HTML file and the responses from
a server (the embedded system) takes place in
four steps.2 These steps are illustrated in Figure
2.

Figure 2: Transmission of a single TCP-IP

packet requires 4 steps of information exchange
 between a host and a server.

In Step 1 the host sends a Synchronization

frame (with SYN flag); the embedded system

COMPUTERS IN EDUCATION JOURNAL 81

replies with a SYN and Acknowledgement
(ACK) frame. In Step 2 the host sends an ACK
frame but the embedded system sends nothing
in response. The host, in Step 3, sends a frame
with ACK and PSH flag , and requests a HTML
file. The embedded system, in response, sends
the entire HTML file in one frame, without
segmentation, and also includes ACK and
Finish (FIN) flags. Connection is terminated in
Step 4 when the host sends a frame with a ACK
and FIN flag, and the embedded system
responds with the ACK frame. Each frame,
whether sent by a host or a response by an
embedded system contains an ethernet header,
an IP header, a TCP header and, when needed,
TCP data, which are generally user data. The
complete packet structure is shown below.

Ethernet Header
Destination Ethernet address

 6 Bytes
Source Ethernet address
 6 Bytes

Protocol Type
 2 Bytes

IP Header

Version +Header Length
 1 Byte

Service
1 Byte

Length of IP+TCP
 2 Bytes

Ident value
2 Bytes

Flag, Fragment Offset
2 Bytes

Time to live

1 Byte
Protocol
1 Byte

Checksum of IP Header
 2 Bytes

Source IP Address
 4 bytes

Destination IP Address
 4 bytes

TCP Header

Source Port
 2 Bytes

Destination Port
 2 Bytes

Sequence Number
 4 bytes

Acknowledgement Number
 4 bytes

TCP Header Length

 1 Byte
 Flags
1 Byte

Window
2 Bytes

Checksum
 2 Bytes

Urgent Pointer
 2 Bytes

User Data
When Necessary

 Step 1

A typical frame with a SYN flag received
from a host, in Step 1, will have the following
values.

00 C0 F0 34 AC 7B 00 40 33 2E 99 4F 08 00 45 00
00 30 5B 04 40 00 80 06 89 4A 0A 0A 01 02 0A 0A
01 64 04 0B 00 50 02 39 B6 A2 00 00 00 00 70 02
20 00 8F 6F 00 00 02 04 05 B4 01 01 04 02

The bytes in the frame are now grouped
according to their fields.

 Ethernet Header

100 C0 F0 34 AC 7B 700 40 33 2E 99
4F 1308 00
 IP Header
1545 1600 1700 30 195B 04 2140 00 2380 2406
2589 4A 270A 0A 01 02 310A 0A 01 64
 TCP Header
3504 0B 3700 50 3902 39 B6 A2 4300 00
00 00 4770 4802 4920 00 518F 6F 5300 00

5502 04 05 B4 01 01 04 02

Ethernet and IP Header bytes are explained

before in connection with ICMP and ARP

frames. Explanation of the TCP header bytes
follows:

3504 0B Port number of the source. The same

port number is sent back to the host as
destination port number in return packet.

COMPUTERS IN EDUCATION JOURNAL 82

3700 50 Port number of destination. There are
many port numbers assigned for different
applications, a few of them are shown in the
table below. For more port numbers see the
reference.2,8

Operation Port Number (Decimal)
Echo 07 (7)
ftp 15 (21)
smtp 19 (25)
finger 4F (79)
http 50 (80)

The embedded system is the http server. Thus

00 50 will be sent as source port number in the
return packet.

3902 39 B6 A2 Sequence number of the host.

Sequence number and Acknowledgement
numbers are designed to keep track of number
of bytes sent and received by the host and the
embedded server. In the return frame the
sequence number of the host becomes the
acknowledgement number of the server, and
acknowledgement numbers of the host becomes
the sequence number of the server. The
sequence number is incremented by 1 whenever
a SYN, FIN or URG frame is received.3 For this
reason, the embedded server adds 1 to this
number and returns 02 39 B6 A3 as the
acknowledgement number.

4300 00 00 00 Acknowledgement number of

the host. In the first frame, the host sends all
zeros as the acknowledgement number. The
server can start with any number; but a
convenient number is 00 00 FF FF. Because of
a SYN frame, the host will add 1 to this number
and will send back 00 01 00 00 as the
acknowledgement number2 in the next frame.

4770 TCP Header length. Actual length is

determined by shifting the byte two positions to
the right. For this example, 1C is obtained when
70 is shifted 2 bit positions to the right. 1C (dec
28) is the TCP header length including 8
optional bytes. Another interpretation of the
number is there are 7 32-bit words.

4802 Flag. This byte is very important in each
packet (reception or transmission), because the
response depends on the value of this byte and
the embedded server can also keep track of
Steps with this byte. The following table shows
names of a few flags and their hexadecimal
values.

Flag Value Function
SYN 02 Synchronization
ACK 10 Acknowledgement
FIN 01 Finish
RST 04 Reset
PSH 08 Push
In the return packet a combination of SYN and

ACK flags, 12, is sent as 1 byte.

4920 00 Window size. This field is important

in the return frame, because the server can
notify the host the size of its receiving buffer
size in bytes. The buffer size does not have to
depend on the available RAM of the embedded
system, because most ethernet chips contain
built-in buffers for reception and transmission of
frames. For example, the ethernet controller
chip CS8900 has a buffer of size 1516 bytes. In
all return frames this field will be replaced with
hex number 05AA (dec. 1450).

518F 6F Checksum. Checksum is computed for

all bytes starting from the first byte of TCP
header to the last byte of TCP data, if any, and a
12-byte long Pseudo IP header. The Pseudo
header will have the following components.2

Server IP Address
0A 0A 01 64

Host IP
Address
0A 0A 01 02

Protocol
(TCP)
 00 06

TCP Header+Data
Length
 00 14 (if no data)

5300 00 Urgent pointer. This field in the return
frame is left unchanged.

5502 04 05 B4 01 01 04 02 Optional

bytes of TCP header [7]. Generally contains
information about maximum segment size. The
server is not required to send these bytes back.

With the above explanations the return packet

in Step 1 will take the following form.

COMPUTERS IN EDUCATION JOURNAL 83

100 40 33 2E 99 4F 700 C0 F0 34 AC 7B
1308 00

1545 1600 1700 28 1900 01 2140 00 2380 2406
25E4 55 270A 0A 01 64 310A 0A 01 02

3500 50 3704 0B 3900 00 FF FF 4302 39 B6
A3 4750 4812 4905 AA 51D6 77 5300 00

The bytes in fields that underwent major
changes in the return packet are summarized
below.

♦ No fragmentation is used (byte position 21).

For fragmentation, see [3][4].
♦ Starting server sequence number is 00 00

FF FF (position 39-42).
♦ 1 is added to the received sequence number

and returned as acknowledgement number
(pos 43-46).

♦ TCP header length is 50 (five 32-bit word or
decimal 20 bytes; byte position 47).

♦ Flag byte is 12 (SYN+ACK; byte position
48).

♦ Embedded system’s buffer size is 05 AA
(position 49-50).

 Step 2

The message ‘web site found waiting for
reply’ frequently appears on the status bar of a
web browser. This message is displayed when
Step 1 is completed. The TCP-IP packet sent by
the host at this stage is grouped into its various
fields for quick identification and displayed
below.
 Ethernet Header

100 C0 F0 34 AC 7B 700 40 33 2E 99 4F 1308 00
 IP Header

1545 1600 1700 28 195D 04 2140 00 2380 2406 2587
52 270A 0A 01 02 310A 0A 01 64

 TCP Header
3504 0B 3700 50 3902 39 B6 A3 4300 01 00 00

4750 4810 4921 80 51BA A2 5300 00

The data in each byte position is explained in

previous sections but a few byte positions are
elaborated.

Positions 17-18: Total length is 0028 (or
decimal 40). Length of IP and TCP header is 20
bytes each.

Position 24: Protocol type is 06 (TCP).
Positions 39-42: Sequence number. This is the

number sent by the embedded system in Step 1.
Positions 43-46: Acknowledgement number.

The host added 1 to 0000FFFF sent by the
server in step 1.

Position 47: TCP length is 50. Which is 5 32-
bit word or decimal 20 bytes.

Position 48: Flag is 10, an Acknowledgement
flag.

The embedded system recognize this packet
from the flag byte and sends no response but
wait for the next packet from the host.

Step 3

This is the most important and complicated
Step for a server because in this step a server not
only receives a larger packet, it must also
identify a request for a file from the host and
construct and transmit a larger packet with a
file. Because of the larger size of this packet,
only the header portions are displayed in
Hexadecimal and the remaining portion is
displayed in ASCII codes for the reason of
readability.
 Ethernet Header

100 C0 F0 34 AC 7B 700 40 33 2E 99 4F 1308 00
 IP Header

1545 1600 1701 35 195E 04 2140 00 2380 2406 2585 45
270A 0A 01 02 310A 0A 01 64

 TCP Header
3504 0B 3700 50 3902 39 B6 A3 4300 01 00 00

4750 4818 4921 80 5124 4E 5300 00

55 TCP Data in ASCII

GET / HTTP/1.1(CR+LF)
Accept: application/vnd.ms-excel, image/gif,
image/x-xbitmap, image/jpeg, image/pjpeg,
/(CR+LF)
Accept-Language: en-us(CR+LF)
Accept-Encoding: gzip, deflate(CR+LF)
User-Agent: Mozilla/4.0 (compatible; MSIE
5.5; Windows 98)(CR+LF)
Host: 10.10.1.100(CR+LF)
Connection: keep-Alive(CR+LF)
(CR+LF)

COMPUTERS IN EDUCATION JOURNAL 84

The ASCII codes of the above lines of text, in
Hexadecimal, are received right after the last
byte of TCP header. The bytes starting from
position 55 will be termed as data bytes.
(CR+LF), after each line above, represents two
bytes of ASCII codes for Carriage Return and
Line Feed, which are 0D 0A. The number of
characters in the box, including ‘spaces’ and
‘commas’, are exactly 269. Byte positions 17
and 18 of the received packet, which are used
for packet length including IP header and TCP
header but not Ethernet header, contain 0135
(decimal 309). When we subtract 40, the header
length for IP and TCP, from 309, we obtain 269
(or Hex 10D), which is the exact number of data
bytes in the packet. For this reason the numbers
in positions 17 and 18 are important in forming
the acknowledgement number in the transmitted
packet. Byte position 48 shows a combination
of ACK and PSH flag. PSH flag tells the
receiver to act on the packet immediately.

At this point the embedded server must read a

few bytes starting from position 55, which are
‘GET / HTTP….’. For example, if the host is

requesting a file named BLUE.HTML, the
received codes will be ‘GET /BLUE.HTML’.
But for a homepage, such as INDEX.HTML or
DEFAULT.HTML, only a single blank space
may appear after ‘/’, which is ‘GET / ‘.

Once the embedded server is able to determine

which file to transmit, the formation of the
return packet begins. The following two lines
of text of 44 characters, or their variations, must
precede every html file.

HTTP/1.0 200 OK(CR+LF)
Content-type: text/html(CR+LF)(CR+LF)

In this example a simple html file is composed

for demonstration. With this short html file the
return packet will take the following form.

Ethernet Header

100 40 33 2E 99 4F 700 C0 F0 34 AC 7B 1308 00

IP Header
1545 1600 1700 DC 1900 02 2140 00 2380 2406 25E3

A0 270A 0A 01 64 310A 0A 01 02
 TCP Header
3500 50 3704 0B 3900 01 00 00 4302 39 B7 B0

4750 4811 4905 AA 5182 94 5300 00
55

HTTP/1.0 200 OK(CR+LF)
Content-type: text/html(CR+LF)(CR+LF)
<html>
<head><title>Ebtron Inc.</title></head>
<body>
<center><h1>EBTRON
INC.

SOUTHEASTERN COMM
COLLEGE</h1></center>
</body>
</html>(space)

This simple default html file starts with the tag

<html> and finishes with the tag </html>. There
is no (CR+LF) at the end of a line in the html
file. In fact, the whole file can be written in one
line. One ‘space’ character is added at the end of
the file to make the number of characters even.
There are exactly 180 data bytes in the return
frame. These 180 data bytes and 40 header bytes
make a total of 220 bytes (or Hex 00DC). This
is reflected in the byte positions 17 and 18 of the
return packet. The other important change in
this return packet is the acknowledgement
number. As previously noted, the total number
of data bytes in the received frame in Step 3 is
010D (or Decimal 269). When 010D is added to
the received sequence number 0239B6A3, one
obtains 0239B7B0, which is sent as the
acknowledgement number as shown in byte
positions 43-46. The computation of sequence
number and acknowledgement number for a
return packet can be summarized as

♦ Subtract Hex 28 (decimal 40, assuming no

optional bytes are present in TCP header)
from the received number in positions 17-
18. Add the result to the sequence number
received in this Step. Insert the last result in
positions 43-46 for acknowledgement
number.

COMPUTERS IN EDUCATION JOURNAL 85

♦ Insert the received acknowledgement
number as sequence number without change.

♦ Add decimal 40 (number of bytes in IP and
TCP header) to the number of data bytes to
be transmitted. Insert the Hex result in
positions 17-18.

 Step 4

In the last Step host sends a ACK+FIN frame
with an acknowledgement number indicating
the number of data bytes it has received and
signaling an end of session. A typical frame in
this Step takes the form of

Ethernet Header

100 C0 F0 34 AC 7B 700 40 33 2E 99 4F 1308 00
 IP Header

1545 1600 1700 28 1962 04 2140 00 2380 2406 2582 52
270A 0A 01 02 310A 0A 01 64

 TCP Header
3504 0B 3700 50 3902 39 B7 B0 4300 01 00 B5

4750 4811 4920 CC 51B9 93 5300 00

In response, the embedded server transmits an

ACK frame and updates the acknowledgement
number.

Ethernet Header
100 40 33 2E 99 4F 700 C0 F0 34 AC 7B

1308 00
IP Header

1545 1600 1700 28 1900 04 2140 00 2380
2406 25E4 52 270A 0A 01 64 310A 0A 01 02

 TCP Header

3500 50 3704 0B 3900 01 00 B5 4302 39 B7 B1
4750 4810 4905 AA 51D4 B5 5300 00

This completes transfer of a simple html file

from an embedded server to a host. If the html
file refers to other files, such as image files,
communication continues from Step 3 where the
host requests the image file with another
‘GET…’ command. Other variations of the
Content-type line are2

Content-type: image/gif(CR+LF)(CR+LF)
[for GIF images]

Content-type: text/plain(CR+LF)(CR+LF)
[for UDP text or java class]

Efficient software will at first check byte
position 22 (or 21-22) in the received packet for
an ARP frame. If it is not an ARP frame, the
software should then check byte position 24 for
a ICMP, TCP, or UDP frame and respond
accordingly. The web server software should
also check byte position 48, the flag byte, to
keep track of the 4 Steps and construct its
responses accordingly. Some protocols also
require checking port numbers.

CHECKSUM COMPUTATIONS FOR ALL

PROTOCOLS

One of the most important parts of all

computer communication is checksum
computations over the bytes received or to be
transmitted. Checksum computation is also
sometimes the most inconvenient for many
embedded systems because of their RAM
limitations and the computation time required
before a quick response. But some pre-planning
can overcome both these obstacles.

All protocols described in this paper follow

identical procedures for computations of
checksum.2 The procedure is summarized
below, where the words ‘checksum data’ is used
to refer to all data over which checksum is being
computed.

♦ Take the first 2 bytes (16 bit word) from the

checksum data
♦ Add next 2 bytes of the checksum data. This

way continue adding next 2 bytes from the
data until an overflow (carry) occurs. Then
discard the carry but add 1 to the least
significant bit of the result of addition.

♦ When all 2-byte words are added, take 1’s
compliment of the result. This is the final
checksum.

A few important aspects of this checksum

computation must be noticed. (a) The total
number of bytes must be an even number. (b) 2
bytes of zeros, 00 00, will not affect the
checksum. For this reason, the byte positions
where checksum is inserted can be filled with 00
00 before checksum computation. (c) It does not

COMPUTERS IN EDUCATION JOURNAL 86

matter which 2 bytes are added first or last.
This allows us to pre-compute checksum of the
fixed portion of the packet (without 1’s
compliment), such as, a HTML file, a GIF file,
etc. and store the result. When formation of the
dynamic portion of the packet, such as protocol
headers (where the bytes change frequently) are
complete, the header data, 2 bytes at a time, are
added to the pre-computed checksum and
eventually 1’s compliment to the final
summation is performed. With this method,
computation of checksum of a large packet
containing a large file will appear to take the
same amount of time as needed for a 40-byte
header.

CONCLUSIONS

There are several freeware and shareware

software available on internet which are able to
capture the hexadecimal frames, displayed in
this paper, traveling through ethernet media.
Advanced features of the protocols, presented
in this paper, are not supported by this simple
algorithm for an embedded system. Server
software must be able to recover from any error
in communication, such as when the Steps get
out of sync. Static data, such as HTML files,
image files, etc. can be stored and transmitted
directly from flash or EPROM memory. Small
amount of variable user data can easily be
incorporated in a HTML file with some
preplanning of the file. This basic algorithm,
with some minor modification, can also be
extended to respond to UDP packets and even
DHCP packets and other TCP or IP based
protocols, such as MODBUS TCP, BACnet IP,
etc. The hardware and software techniques
presented in the paper will respond equally well
when the host computer runs under MS
Windows operating system or Linux operating
system.

REFERENCES

1. Tariqul Haque, Michael Urbaniak, Step by
Step Implementation of Ethernet and TCP-
IP Protocols on an Embedded System,
Computer in Education Journal,Volume
XIV, Number 4, 2004

2. Jeremy Bentham, TCP/IP Lean, CMP Books,

2000.

3. W. Richard Stevens, TCP/IP Illustrated,

Volume I, Addison-Wesley, 1994.

4. Ata Elahi, Network Communications

Technology, Delmar Thomson, 2001.

5. RFC 791 www.rfc-editor.org

6. RFC 792 www.rfc-editor.org

7. RFC 793 www.rfc-editor.org

8. www.etherimage.com/ethernet

BIOGRAPHICAL INFORMATION

Tariqul Haque received his Ph.D. in Electrical
Engineering in 1986 from Clarkson University,
Potsdam, NY. Since then he has served as a
faculty member at Suffolk University, Boston,
MA, and image processing specialist with
Kontron Electronik, GmbH. Currently he is a
faculty member at Southeastern Community
College, Whiteville, NC and a consultant with
Ebtron, Inc. His interests include
microprocessors, communications, image and
speech processing and Windows programming.

Michael J. Urbaniak graduated in 1984 from

Somerset County Technology Institute,
Bridgewater, NJ. For the last 20 years Mr.
Urbaniak has been involved in the design of
microcontroller based instrumentation
hardware and software. Currently he is senior
vice president of Ebtron Inc. Loris, SC, and is
involved in developing distributed network
sensors and controllers.

COMPUTERS IN EDUCATION JOURNAL 87

http://www.rfc-editor.org;/
http://www.rfc-editor.org;/
http://www.rfc-editor.org;/
http://www.etherimage.com/ethernet

	ABSTRACT
	Ethernet Header
	6 Bytes
	6 Bytes

	ARP Header
	2 Bytes
	2 Bytes
	6 Bytes
	4 Bytes
	6 Bytes

	A Received ARP Frame
	Ethernet Header
	6 Bytes
	6 Bytes
	1 Byte
	2 Bytes
	2 Bytes
	1 Byte
	1 Byte
	2 Bytes
	4 Bytes

	INTERNET CONTROL MESSAGE PROTOCOL (ICMP)
	1 Bytes
	1 Bytes
	2 Bytes

	A Received ICMP (ping) Frame
	TRANSMISSION CONTROL PROTOCOL-INTERNET PROTOCOL (TCP-IP)
	Ethernet Header
	6 Bytes
	IP Header
	1 Byte
	2 Bytes

	TCP Header
	Step 2
	Ethernet Header
	IP Header
	1545 1600 1700 28 195D 04 2140 00 2380 2406 2587 52 2
	TCP Header

	Step 3
	Ethernet Header
	IP Header
	1545 1600 1701 35 195E 04 2140 00 2380 2406 2585 45 27
	TCP Header
	Ethernet Header
	IP Header
	1545 1600 1700 DC 1900 02 2140 00 2380 2406 25E3 A0 27
	TCP Header

	Step 4
	Ethernet Header
	IP Header
	1545 1600 1700 28 1962 04 2140 00 2380 2406 2582 52 27
	TCP Header
	Ethernet Header
	IP Header
	1545 1600 1700 28 1900 04 2140 00 2380 2406 25E4 52 2
	TCP Header

	CHECKSUM COMPUTATIONS FOR ALL PROTOCOLS
	CONCLUSIONS

