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INTRODUCTION 
 

There are many applications of transient 
cooling. Consider, for example, a slab of 
metal to be heat treated in an oven. The slab 
is 2L thick, and its height and width are 
much larger than its thickness. The slab is 
initially at temperature Ti (K) and is placed 
in an oven at T∞ at time t = 0 (s). Both sides of 
the slab are heated by convection at the rate 
q = 2hAs(T∞ - Tx=L) where As is the surface 
area of one side of the slab (m2), Tx=L is the 
temperature at the surface of the slab, and h 
is the convection heat transfer coefficient 
(W/m2-K). We need to know how long it will 
take for the center of the slab at x = 0 to 
reach a desired temperature. The 
temperature within the slab at a location x at 
time t is the solution to 
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where k is the thermal conductivity of the 
slab material (W/m-K), ρ is the density 
(kg/m3), C is its specific heat (J/kg-K), and  
α=k/ρC is the thermal diffusivity (m2/s).  

 
The solution to this problem is T(x, t), but 

the partial differential equation (pde), 
boundary conditions (BCs), and initial 
condition (IC) have a number of parameters - 
k, ρ, C, h, Ti, T∞, L . The number of 
parameters can be reduced by defining 
dimensionless variables. In this case, the 
following definitions work well: 
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where Fo is the dimensionless time called 
Fourier number. Using these variables in the 
governing pde changes it to 
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and the IC and BCs become 
 
θ*(x*, 0) = 1   0
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where Bi = hL/k is the Biot number. The 
solution to the dimensionless problem is 
θ*(x*, Fo) subject to only 1 dimensionless 
parameter, Bi. 
 

L L 

x 

T∞ T∞



COMPUTERS IN EDUCATION JOURNAL 87  

The solution to this problem is an infinite 
series 
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where the eigenvalues λi are functions of Bi 
and are the roots of 

 
λi tanλi = Bi 

 
Each Ci can be calculated once λi is found. 
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Due to the difficulty in determining the 

values of λi, the solutions to this problem 
have historically been presented in the form 
of plots called Heisler charts. In recent years, 
many have replaced teaching use of the 
Heisler charts with teaching approximate 
solutions that are just the first term in the 
exact solution series. When Fo > ≈ 0.2, which 
corresponds to a small value of real time, the 
series above reduces to only the first term. 
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where λ1 and C1 are tabulated in heat 
transfer texts as a function of Bi. These are 
tabulated because solving for λ1 (the smallest 
root of λi tanλi = Bi) is so difficult. 
 

The one-term solution to this problem for a 
long solid cylinder and a solid sphere are 
very similar to the solution for a slab. 
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where r* = r/ro and Fo = αt/ro

2, where ro is 
the outer radius of the cylinder or sphere. λ1 
is again the first eigenvalue in a series 
solution and is a function of Bi = hro/k. J0 is a 
zero order Bessel function of the first kind. 

As with a slab, the first series coefficient C1 
can be calculated once λ1 is determined. 
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where J1 is a first order Bessel function of the 
first kind. The values of λ1 and C1 as a 
function of Bi are usually included in the 
same table with those for a slab in heat 
transfer texts.  
 

Though the one-term solutions are 
approximations, their accuracy is better than 
the Heisler charts due to the inaccuracy 
associated with reading the charts - 
compounded by the fact that the charts are 
semilog plots. In many texts, the charts no 
longer appear in the main text and are placed 
in the appendix. The availability of Bessel 
functions on calculators, in spreadsheets, and 
in computational packages increases the 
utility of the one term approximate solution. 
However, one drawback to the approximate 
solutions is in determining λ1. It must be 
found via the trial and error solution of a 
nonlinear equation for a given value of Bi, or 
it must be looked up in a table, often 
requiring interpolation. As a result, the 
solution to these kinds of problems is difficult 
to include in a program or in a spreadsheet. 
This paper presents easily programmable 
curve fits for λ1 as a function of Bi for each of 
the 3 geometries - slab, cylinder, and sphere. 

 
CURVE  FITS  FOR  FIRST  

EIGENVALUE 
 

The form used to curve fit λ1 was not 
obvious to the author. A few things had been 
tried over the years, with unsatisfactory 
results. The results of a paper by Chen and 
Kuo (1979) suggested the appropriate form. 
They developed approximate solutions for θ* 
for all three geometries using an integral heat 
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balance approach. The solutions they 
presented suggested a curve fit of the form 
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may work well, where a0, a1, a2, and a3 are 
curve fit parameters for each of the 3 
geometries. Tabulated values of λ1 (Incropera 
and DeWitt, 2002) were fit to this form using 
a nonlinear least squares method, giving the 
values shown in Table 1. 
 

 
Table 1. Curve Fit Parameters for Slab,   
Cylinder, and Sphere. 

 
 

 
 
 
 
 
 
 

 
 

Table 2a. θ*table - θ*curve fit for a Slab at x* = 1. 
 
 

 
 

 
 
 
 

 

Table 2b. θ*table - θ*curve fit for a Cylinder at r* = 1. 

 
 
 
 
 

 
RESULTING  SOLUTIONS 

 
A comparison between the curve fit results 

for λ1 and the tabulated values shows 
agreement to 3 or 4 decimal places with the 
tabulated values that are given rounded to 4 
decimal places. The corresponding values of 
C1 also agree to 3 or 4 decimal places 
compared to the tabulated values, which are 
also given rounded to 4 decimal places. 
Comparison of solutions for θ* using 
tabulated values and calculated values of λ1 
and C1 for wide ranges of Fo and Bi are 
shown in Tables 2a, 2b, and 2c. The values of 
θ* being compared range from 1 at Fo = 0 to 
0 as Fo → ∞. Differences of magnitude less 
than 1E-10 are shown as zero. 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 

       a0       a1        a2       a3 
slab 0.355172 0.995309 0.050421 3.550265 
cylinder 0.136699 0.497324 0.036019 3.963059 
sphere 0.073707 0.331704 0.027464 4.483979 

x*= 1.0                                          Fo 
  0.5 5 50 500 

0.01 8.245E-05 2.981E-04 1.589E-03 1.742E-04 
0.1 8.838E-05 6.648E-04 8.612E-05 0 
1 -2.360E-04 -4.338E-05 0 0 
10 -2.170E-04 -5.698E-08 0 0 

Bi 

100 -2.437E-04 -5.590E-09 0 0 

r*= 1.0 Fo 
  0.5 5 50 500 

0.01 7.676E-05 5.374E-04 2.119E-03 2.613E-06 
0.1 3.505E-04 1.133E-03 1.672E-06 0 
1 -3.742E-04 -2.299E-06 0 0 
10 -9.015E-05 0 0 0 

Bi 

100 4.062E-05 0 0 0 
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r*= 1.0 Fo 
  0.5 5 50 500 

0.01 8.747E-05 6.622E-04 1.690E-03 2.309E-08
0.1 4.011E-04 9.473E-04 1.642E-08 0 

1 -3.902E-04 -4.882E-08 0 0 
10 -2.823E-05 0 0 0 

Bi 

100 7.894E-06 0 0 0 
Table 2c. θ*table - θ*curve fit for a Sphere at r* = 1. 

 
 

CONCLUSIONS 
 

The curve fit form chosen gave an excellent 
fit to the tabulated values of λ1 for all three 
geometries. The resulting approximate 
solutions are essentially identical to those 
calculated using the tabulated values, which 
are more accurate than reading numbers 
from a Heisler chart. The curve fits allow 
cooling calculations to be automated by 
making possible the creation of spreadsheet 
functions and program functions that 
eliminate the need for using charts or looking 
up tabulated values. 
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