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ABSTRACT 

 
Although state diagrams tend to be very 

popular in state machine design, be it in 
conjunction with schematic capture or HDL-
type (Hardware Description Language) input, 
the authors have found the use of ASM 
(Algorithmic State Machine)  charts to be more 
useful and instructive. This article addresses this 
issue and shows an illustrative example. It also 
discusses the various obvious as well as some of 
the more subtle advantages of this approach. In 
addition in this lab-intensive course, “Digital 
Systems” which follows “Introduction to Digital 
Logic”, emphasis is put on the careful 
interpretation of simulation results, which 
otherwise the students either ignore or at best 
treat rather nonchalantly. The example used in 
this article illustrates both aspects. 
 

INTRODUCTION 
 
The lab for this course is equipped with twenty 

workstations and a dedicated server. Each 
workstation is equipped with a Pentium IV (1.0 
GHz), 256 MB of RAM, a 40 GB hard drive, a 
CD ROM read/write drive and a floppy drive. A 
university-wide antivirus program is maintained 
on the machines since the students may bring 
their designs stored on floppies to the lab. The 
textbook (Brown & Vranesic) contains a student 
copy of the software, which is amply sufficient 
for the designs done in this course, as well in 
it’s follow-up elective course “Programmable 
Devices”. The Altera software is stored on the 
server and sufficient network license tokens are 
available to be able to use all machines 
concurrently as well as a client PC in the 
instructor’s office. The software, MAX+II, is 
constantly updated to its latest version. It should 
be noted that no “MS Office” software is loaded 

on the machines to prevent the students from 
using the computers for report writing, since 
ample facilities for that exist elsewhere. Access 
to the lab is by keycard that the students 
registered in this course and others who use the 
lab may purchase for a small fee, so that they 
can use it any time and day outside scheduled 
lab hours when there are free stations. 

 
A variety of tool suites and hardware is 

available. In this case the choice was Altera’s 
MAX+II (version 10.1) and the Altera prototype 
board with a Flex 10k FPGA. For all the 
projects in the course, even small FPGAs (Field 
Programmable Gate Arrays) are more than 
adequate, so the choice of manufacturer was 
driven by the fact that Altera has an in-house 
developed and fully integrated tool suite, in 
which all parts work together seamlessly and 
there are no third parties involved. Also the 
excellent technical support, readily available to 
the instructors makes this an attractive choice. 
This is not to imply, however, that Max+II does 
not have a few annoying and unusual quirks. 

  
STATE  MACHINE  DESIGN  AND 

SIMULATION 
 
The first state machine in the course is a very 

simple one and is deliberately implemented with 
schematic capture. The design is done by using 
a state diagram and state table. The latter is then 
used to design the driver logic for each flip-flop 
and simplified by using Karnaugh maps. D-type 
flip-flops are used instead of T-type and JK-
type, for simplicity’s sake as well for the more 
important reason that the D-type is the one used 
in the FPGA (target technology).  

 
The point of this exercise is to introduce the 

students to the concept of state machines and to 
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make them aware of the steps in the 
implementation. Brief mention is made of 
Moore and Mealy machines, although the 
implementations often are a mixture of the two.  

 
When implementing the design with ICs that 

are wired together, it is desirable to simplify the 
driver circuits. However, when using FPGAs, 
the architecture of the logic modules is such, 
that it is not the complexity of the driver logic 
that is important but that the number of inputs 
be limited to four or five, depending on the LUT 
(look-up table) in the FPGA. This is usually the 
first introduction of the student to the design 
philosophy that it is important to know the 
hardware or target technology in order to be 
able to arrive at an efficient design and is 
emphasized throughout the course. In any case, 
the modular implementation can be depicted as 
shown in Fig-1. 
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Fig. 1. Modular block diagram of a state 

machine. 
 
This incidentally, also leads quite naturally to 

a brief mention that the combinational portion 
of the logic can be implemented with a ROM 
(read-only memory), in other words as a ROM-
centered design. This only requires a mental 
switch in terminology, i.e. think “data-in” 
instead of “address”. It is then pointed out that if 
the number of states and inputs stays the same 
and only the logic needs to be modified, it only 

requires reprogramming the ROM, which 
usually amounts to just editing the ROM-
contents file and recompiling the design. An 
important point that is made at the completion 
of this design is the by then obvious fact that it 
is awkward and time-consuming to begin with 
and difficult to make even the smallest 
modifications. Changing the number of states 
and/or the number of inputs and outputs for 
instance, as well as the transition conditions, 
usually requires a complete redesign. Finally the 
design is simulated functionally as well as with 
full timing information included and the 
hardware is programmed. This last step is highly 
satisfying for the students as it makes the design 
very real. It is also used as an important 
criterion by the instructor to sign off on the 
design as “working”. This is a particularly 
important step, since a successful timing 
simulation not always automatically guarantees 
a working design and some more 
troubleshooting may be necessary. 

 
From that point on, all designs that require a 

state machine are done using an HDL, to wit 
VHDL. The software also allows the use of 
Verilog, so that is a matter of preference. The 
thrust of this article is to emphasize the 
advantage and ease of use of the combination of 
ASM Charts and VHDL. ASM Charts and State 
Diagrams have much in common and in fact 
they contain exactly the same information as do 
State Tables and any one can be derived from 
any of the others. However, the ASM Chart 
shows more clearly the state transitions and 
signal flow and has the advantage that there is 
practically a one-to-one correspondence with 
the VLDL code, as is shown in Fig-2.  

 
Before we elaborate on one project using the 

above-mentioned approach, it should be pointed 
out that the students are made aware that there 
are essentially two different methods in the way 
the code can be written. One uses two processes, 
one dedicated to the clock circuitry, the other 
describing exclusively the state transitions. The 
single-process approach is one in which both 
parts of the state machine are combined. 
Although   the  two-process  method  requires  a  
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when state0 =>
  if in1='0' then
    ns<=state0;
  else
    ns<=state1;
  end if; 
  

when state1 =>
  if in2='0' then
    ns<=state1;
  else
    ns<=state1;
  end if;

when state3 =>
  if (in1='0' and in2='0') then
    ns<=state0;
  else
    ns<=state3;
  end if;

when state2 =>
  ns<=state3;

  end case;
end process pasm;

pasm: process(ps,in1,in2)
begin
  case ps is

set

y

n

y

n

in1='0'

in2='0'

in1='0'
in2='0'

y

n

state0

state1

state2

state3

out1='1'

out2='1'

out3='1'

 
Fig. 2. State-transition section of the state machine. 

 
little more code, it has the distinct advantage 
that the clock-related portion and the state 
transition aspects of the state machine are 
treated separately and thus modifications in one 
do not affect the other. There is also a more 
subtle advantage in that the principal statement 
in the clock process is written in the form 
“present-state <= next-state”, which is 
consistent with the one that describes a D-type 
flip-flop, i.e. “q <= d”. The student is familiar 
with that construct from previous simpler 
exercises. Additionally, the ASM chart and state  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
diagram are all written in the form “next-state 
<= previous-state”, which is much more 
intuitively obvious than in the single-process 
method, where they would have to be  written as 
“present-state  <=  next-state”. There is also a 
difference in the sensitivity lists. In the two-
process method, the sensitivity list for the 
transition process clearly shows, in addition to 
the present state, only the inputs that directly 
affect the transitions, while in the clock process 
it only contains the clock and asynchronous 
inputs, such as a set or clear and enable. 
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Finally, all the outputs are written as separate 
concurrent statements, i.e. outside the processes, 
using the “when – else” construct. This keeps 
the state-related process simple and avoids 
difficulties with initialization of the outputs. As 
a bonus, the Moore and Mealy outputs are 
handled essentially the same ways and can be 
easily changed if necessary, without affecting 
the state transition process.  

 
There are some further points to be made with 

the simulation. When the state machine arrives 
in state0 from state3, “out1”, which is supposed 
to appear only in state1, shows up as a short 
pulse as shown in Fig-3.  

 
Although some students may shrug this of with 
an “oh well”, the more curious ones will want  
to understand the reason. First it should be 
pointed out that although the pulse is very short, 
it is long enough to be captured by a directly 
following latch or flip-flop. Thus it should not 
be ignored. This leads to a discussion of state 
assignments. It was necessary to address this 
when doing schematic capture since the state 
assignments have to be made explicitly in order 
to construct the state table.     However, with the 
HDL method there is no mention of this issue, 
although it is the one that probably has the most  
effect on the implementation of the design. This 
does not mean that there are no state 
assignments;    they   just   are   hidden   in    the  

 

 
 

Fig. 3. Timing simulation of the entire state machine. 
 

 

statement “type state is (state0, state1, state3)”. 
They are automatically assigned the values, 
“00”, “01”, “10” and “11” respectively. When 
the state changes from state3 to state0, i.e. from 
“11” to “00”, the simulation shows that the 
value “10” apparently is the brief interim value, 
which seems to represent state1 since that one 
has output out1. 

 
The output with the “glitch” of 0.5ns duration 

is produced by the LUT (Look Up Table) that in 
the FPGA implements the dual-input AND gate 
with one input from each of the two flip-flops. 
Since the inputs of that gate switch from “11” to 
“00”, there apparently is an interim state “01” or 
“10” briefly present on the gate. It is tempting to 
think that this is due to the flip-flops not 
changing their outputs at exactly the same time. 
However, even though this might be possible in 
the actual hardware, where the characteristics of 
the flip-flops and gates in general, may differ, 
dependent on their location in the FPGA, the 
flip-flops as modeled in the simulator are ideal 
and identical. Thus they must change at the 
same time unless there is clock skew. It is 
unreasonable to assume, however, that adjacent 
flip-flops, as evident from the layout in the 
floorplanner, there would be 0.5ns clock skew. 
This is further confirmed by the fact that the 
timing analyzer shows that the delay from clock 
edge to output is identical for both flip-flops. 
This leaves just one source, i.e. the difference in  

 
 
 
 
 
 
 
 
 
 
 
 

0.5 ns glitch  
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the interconnect delays between the flip-flops 
and the AND gate. To prove this, the 
floorplanner was used to move one of the flip-
flops to a very different location, making one of 
the two flip-flop => AND gate connections 
much longer than the other. Recompilation and 
resimulation showed an increase in the glitch 
length from “0.5ns” to “1.4ns”, this confirming 
the assumption. 
 

It was  then discussed how the design might be 
changed to avoid this glitch. If there are no 
interim “01” or “10” signal values on the AND 
gate, the glitch cannot appear. This can be 
accomplished by changing the binary sequence 
of the state assignments to unit-step or Gray 
code. All this required was a change in the 
“type” statement from (state0, state1, state2, 
state3) to (state0, state1, state3, state2). 
Recompilation and resimulation indeed showed 
no more glitch. It was then pointed out that 
although in this case the Gray code state 
assignments solved the glitch problem, that it 
may be unavoidable in a more complex state 
machine where not all the transitions are in 
sequence and certainly for those encoded as 
one-hot machines in which always two bits 
change per transition.  

 
In preparation for an assignment we discuss a 

more complex state transition example. When 
there are three decision paths from a state one 
has the choice of two constructs both with 
respect to the code and the asm chart. An 
example of each is given in Fig. 4-a and Fig. 4-
b.  

 
The code shown in Fig. 4-a is simpler and so is 
the asm chart, however,   it is not obvious if all 
possibilities are covered, in other words if there 
are no dangling branches, which when 
synthesized,   would   cause   undesirable   extra 
flip-flops. Also the “elsif” does not allow 
pairing of the “end-if” statements.  In Fig. 4-b 
on the other hand, both the code and the asm 
chart section clearly show that all possibilities 
are covered, thus guarantying that no 
unnecessary  flip-flops will be implemented. 
There are of course exceptions, for instance 

when the state transitions depend on two 
variables, but the conditions are such that one  
condition  is the opposite of  the other, thus in 
essence there are only two paths or choices, 
which then can be easily depicted and coded 
with a single decision box. An example is x&y 
and x+y  (= x&y ). 

 
Next is an example of a student assignment 

which uses the constructs discussed above.  
 
“Design an alarm system for a residence that 

monitors the doors and windows. The alarm has 
five outputs: a green, an amber and a red light, a 
sustained note and a siren. Normally the alarm 
is in the ready state and shows a green light and 
opening and closing windows or doors has no 
effect. A binary code “1101” arms or disarms 
the system. When the system is armed, the green 
light goes off and the amber one goes on, 
however, if the correct code is entered within 30 
seconds, the alarm resets to the ready state. If in 
the armed state, a door or window is opened, the 
red light goes on and there is a sustained note, 
indicating that the system is armed. It can then 
be disarmed within 30 seconds, i.e. reset to the 
ready state, by entering the code. Otherwise the 
siren goes off and to reset the system the code 
must be entered.” 

 
Fig. 5 shows the segment of the asm chart and 

the corresponding code for the state sequence.. 
The complete code  can be found in Appendix 
A. The designs were implemented with a 
schematic as the top level, which included the 
timing and display modules. The Altera demo 
board was used to test the downloaded designs. 

 
Regardless of the fact that the authors 

emphasize at the beginning of the introduction 
of this topic,  that the state machine is strictly a 
controller, used to turn external modules on and 
off, the first returned assignments often include 
considerable functionality in the state machine 
itself. The students have then experienced that 
such a design is difficult to debug and modify 
and are more likely to appreciate and adopt  the 
controller philosophy in their next design. 
Typically an external module  requires as inputs 
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when Sm =>
  if x=’0’ and y=’0’ then
    ns <= Si;
  elsif x=’0’ and y=’1’ then
      ns <= Sm;
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      ns <= Sn;
  e d if;
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Fig. 4-a. Singe (nested) if asm transition diagram and associated code with logic expressions. 

 

when Sm =>
  if x=’1’  then
    ns <= Sn;
  else
    if y=’0’ then
      ns <= Si;
    else
      ns <= Sm;
    end if;
  end if;
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to Si

 
Fig. 4-b.Double if asm transition diagram and a sociated code with one if per condition. s 

 
a “reset” and an “enable” signal and produces as 
output a “done” signal. In Fig. 5 this is shown in 
the segment with states: “arming1”, “arming2” 
and “armed”. The first state outputs an 
asynchronous reset (arst) and immediately 
transitions to the next state which outputs a 
synchronous enable (ena) signal. This choice 
allows decoupling the state machine clock from 
the module clock, the former being usually 
much faster than the latter. The transition to the 
third state in this segment takes place when the 
module has indicated with its “done” signal, that  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
it has completed its task. This implementation 
serves a  large variety of  functions and both the 
three-state segment in the asm chart and the 
associated code become practically boilerplate 
and self-documenting code. This also works 
well if the external module is another state 
machine. Occasionally it is desirable to run both 
controllers at the same clock speed but this often 
causes timing problems, which can be avoided, 
however,  by triggering one state machine with 
the rising edge and the other on the falling edge 
of that same clock.    
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when ready =>
  if code=’0’ then
    ns <= ready;
  else
    ns <= arming1;
  end if;

when arming1 =>
  ns <= arming2;

when arming2 =>
  if tup=’1’ then
    ns <= armed;
  else
      ns <= arming2;
  end if;

when armed =>
  if opn’0’ then
    ns <= armed;
  else
    ns <= detect1;
  end if;

when detect1 =>
  ns <= detect2;

when detect2 =>
  if tup=’1’ then
    ns <= alarm;
  else
    if code=’0’ then
      ns <= detect2;
    else
      ns <= ready;
    end if;
  end if;

when alarm =>
  if code=’0’ then
    ns <= alarm;
  else
    ns <= ready;
  end if;

 
Fig. 5. ASM chart for the state transitions and 

code for the alarm system. 
 

CONCLUSIONS  AND  SUMMARY 
 

The instructors have found that one pitfall with 
introducing VHDL too soon, is that the students 
do not get an appreciation for the actual 
implementation of the design. That is one reason 
the first state machine is implemented strictly 
with schematic capture. The design with VHDL 
is a large step removed from the hardware, but 
knowledge and understanding of the limitations 
and the special features of the hardware are very 
necessary for an efficient design. It’s for that 
reason that throughout the course the philosophy 
“Know your Hardware” is strongly emphasized. 

Also by taking the time and making the effort to 
look at the details of a carefully scripted 
simulation, the students develop an appreciation 
for the large amount of  information  that  can   
be  obtained   from  
such an analysis, but that it is generally not easy 
or obvious and learn that there is much more to 
it than seeing what you want to see. 
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APPENDIX A 
 

-- 2-process state machine 
-- ~\max2work\hvdb\asm2.vhd 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
entity asm2 is 
port(arst,clk,in1,in2: in std_logic; 
   out1, out2, out3: out std_logic); 
end entity asm2; 

 
architecture a_asm1 of asm2 is 
type state is(state0,state1,state2,state3); 
 signal ps, ns: state; 
begin 
 
 -- clock with asynchronous reset: 
 pclk: process(arst,clk) 
 begin 
  if arst='1'  
   then ps <= state0; 
  else 
   if rising_edge(clk) then 
    ps <= ns; 
   end if; 
  end if; 
 end process pclk; 
 
 -- state transitions: 
 pasm: process(ps,in1,in2) 
 begin 
  case ps is 
   when state0 => 
    if in1='0' then 
     ns <= state0; 
    else 
     ns <= state1; 
    end if; 
   when state1 => 
    if in2='0' then 
     ns <= state1; 
    else 
     ns <= state2; 
    end if; 
   when state2 => 
     ns <= state3; 
   when state3 => 
 
    if (in1='0' and in2='0') then 
     ns <= state0; 
    else 
     ns <= state3; 
    end if; 
   when others => 
    ns <= state1; 
  end case; 
 end process pasm; 

 
-- outputs: 
out1 <= '1' when ps=state1 else '0'; -- Moore output 
out2 <= '1' when (ps=state1 and in2='1') else '0'; -- Mealy output 
out3 <= '1' when ps=state2 else '0'; -- Moore output 
 

end architecture a_asm1; 
 

Complete code for the alarm system. 
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