
ASM CHARTS IN VHDL

 Dr. R. Coowar Dr. H.v.d.Biggelaar
 University of Central Florida Professor Emeritus
 Engineering Technology Department University of Massachusetts Dartmouth
 P.O. Box 162450, Orlando FL 32816-2450 Electrial & Computer Enginering Dept.
 coowar@mail.ucf.edu

ABSTRACT

Although state diagrams tend to be very

popular in state machine design, be it in
conjunction with schematic capture or HDL-
type (Hardware Description Language) input,
the authors have found the use of ASM
(Algorithmic State Machine) charts to be more
useful and instructive. This article addresses this
issue and shows an illustrative example. It also
discusses the various obvious as well as some of
the more subtle advantages of this approach. In
addition in this lab-intensive course, “Digital
Systems” which follows “Introduction to Digital
Logic”, emphasis is put on the careful
interpretation of simulation results, which
otherwise the students either ignore or at best
treat rather nonchalantly. The example used in
this article illustrates both aspects.

INTRODUCTION

The lab for this course is equipped with twenty

workstations and a dedicated server. Each
workstation is equipped with a Pentium IV (1.0
GHz), 256 MB of RAM, a 40 GB hard drive, a
CD ROM read/write drive and a floppy drive. A
university-wide antivirus program is maintained
on the machines since the students may bring
their designs stored on floppies to the lab. The
textbook (Brown & Vranesic) contains a student
copy of the software, which is amply sufficient
for the designs done in this course, as well in
it’s follow-up elective course “Programmable
Devices”. The Altera software is stored on the
server and sufficient network license tokens are
available to be able to use all machines
concurrently as well as a client PC in the
instructor’s office. The software, MAX+II, is
constantly updated to its latest version. It should
be noted that no “MS Office” software is loaded

on the machines to prevent the students from
using the computers for report writing, since
ample facilities for that exist elsewhere. Access
to the lab is by keycard that the students
registered in this course and others who use the
lab may purchase for a small fee, so that they
can use it any time and day outside scheduled
lab hours when there are free stations.

A variety of tool suites and hardware is

available. In this case the choice was Altera’s
MAX+II (version 10.1) and the Altera prototype
board with a Flex 10k FPGA. For all the
projects in the course, even small FPGAs (Field
Programmable Gate Arrays) are more than
adequate, so the choice of manufacturer was
driven by the fact that Altera has an in-house
developed and fully integrated tool suite, in
which all parts work together seamlessly and
there are no third parties involved. Also the
excellent technical support, readily available to
the instructors makes this an attractive choice.
This is not to imply, however, that Max+II does
not have a few annoying and unusual quirks.

STATE MACHINE DESIGN AND

SIMULATION

The first state machine in the course is a very

simple one and is deliberately implemented with
schematic capture. The design is done by using
a state diagram and state table. The latter is then
used to design the driver logic for each flip-flop
and simplified by using Karnaugh maps. D-type
flip-flops are used instead of T-type and JK-
type, for simplicity’s sake as well for the more
important reason that the D-type is the one used
in the FPGA (target technology).

The point of this exercise is to introduce the

students to the concept of state machines and to

COMPUTERS IN EDUCATION JOURNAL 22

mailto:coowar@mail.ucf.edu

make them aware of the steps in the
implementation. Brief mention is made of
Moore and Mealy machines, although the
implementations often are a mixture of the two.

When implementing the design with ICs that

are wired together, it is desirable to simplify the
driver circuits. However, when using FPGAs,
the architecture of the logic modules is such,
that it is not the complexity of the driver logic
that is important but that the number of inputs
be limited to four or five, depending on the LUT
(look-up table) in the FPGA. This is usually the
first introduction of the student to the design
philosophy that it is important to know the
hardware or target technology in order to be
able to arrive at an efficient design and is
emphasized throughout the course. In any case,
the modular implementation can be depicted as
shown in Fig-1.

combinational

logic

inputs outputs

next
state

present
state

clock

arst

D-type
register

dq

Fig. 1. Modular block diagram of a state

machine.

This incidentally, also leads quite naturally to

a brief mention that the combinational portion
of the logic can be implemented with a ROM
(read-only memory), in other words as a ROM-
centered design. This only requires a mental
switch in terminology, i.e. think “data-in”
instead of “address”. It is then pointed out that if
the number of states and inputs stays the same
and only the logic needs to be modified, it only

requires reprogramming the ROM, which
usually amounts to just editing the ROM-
contents file and recompiling the design. An
important point that is made at the completion
of this design is the by then obvious fact that it
is awkward and time-consuming to begin with
and difficult to make even the smallest
modifications. Changing the number of states
and/or the number of inputs and outputs for
instance, as well as the transition conditions,
usually requires a complete redesign. Finally the
design is simulated functionally as well as with
full timing information included and the
hardware is programmed. This last step is highly
satisfying for the students as it makes the design
very real. It is also used as an important
criterion by the instructor to sign off on the
design as “working”. This is a particularly
important step, since a successful timing
simulation not always automatically guarantees
a working design and some more
troubleshooting may be necessary.

From that point on, all designs that require a

state machine are done using an HDL, to wit
VHDL. The software also allows the use of
Verilog, so that is a matter of preference. The
thrust of this article is to emphasize the
advantage and ease of use of the combination of
ASM Charts and VHDL. ASM Charts and State
Diagrams have much in common and in fact
they contain exactly the same information as do
State Tables and any one can be derived from
any of the others. However, the ASM Chart
shows more clearly the state transitions and
signal flow and has the advantage that there is
practically a one-to-one correspondence with
the VLDL code, as is shown in Fig-2.

Before we elaborate on one project using the

above-mentioned approach, it should be pointed
out that the students are made aware that there
are essentially two different methods in the way
the code can be written. One uses two processes,
one dedicated to the clock circuitry, the other
describing exclusively the state transitions. The
single-process approach is one in which both
parts of the state machine are combined.
Although the two-process method requires a

COMPUTERS IN EDUCATION JOURNAL 23

when state0 =>
 if in1='0' then
 ns<=state0;
 else
 ns<=state1;
 end if;

when state1 =>
 if in2='0' then
 ns<=state1;
 else
 ns<=state1;
 end if;

when state3 =>
 if (in1='0' and in2='0') then
 ns<=state0;
 else
 ns<=state3;
 end if;

when state2 =>
 ns<=state3;

 end case;
end process pasm;

pasm: process(ps,in1,in2)
begin
 case ps is

set

y

n

y

n

in1='0'

in2='0'

in1='0'
in2='0'

y

n

state0

state1

state2

state3

out1='1'

out2='1'

out3='1'

Fig. 2. State-transition section of the state machine.

little more code, it has the distinct advantage
that the clock-related portion and the state
transition aspects of the state machine are
treated separately and thus modifications in one
do not affect the other. There is also a more
subtle advantage in that the principal statement
in the clock process is written in the form
“present-state <= next-state”, which is
consistent with the one that describes a D-type
flip-flop, i.e. “q <= d”. The student is familiar
with that construct from previous simpler
exercises. Additionally, the ASM chart and state

diagram are all written in the form “next-state
<= previous-state”, which is much more
intuitively obvious than in the single-process
method, where they would have to be written as
“present-state <= next-state”. There is also a
difference in the sensitivity lists. In the two-
process method, the sensitivity list for the
transition process clearly shows, in addition to
the present state, only the inputs that directly
affect the transitions, while in the clock process
it only contains the clock and asynchronous
inputs, such as a set or clear and enable.

COMPUTERS IN EDUCATION JOURNAL 24

Finally, all the outputs are written as separate
concurrent statements, i.e. outside the processes,
using the “when – else” construct. This keeps
the state-related process simple and avoids
difficulties with initialization of the outputs. As
a bonus, the Moore and Mealy outputs are
handled essentially the same ways and can be
easily changed if necessary, without affecting
the state transition process.

There are some further points to be made with

the simulation. When the state machine arrives
in state0 from state3, “out1”, which is supposed
to appear only in state1, shows up as a short
pulse as shown in Fig-3.

Although some students may shrug this of with
an “oh well”, the more curious ones will want
to understand the reason. First it should be
pointed out that although the pulse is very short,
it is long enough to be captured by a directly
following latch or flip-flop. Thus it should not
be ignored. This leads to a discussion of state
assignments. It was necessary to address this
when doing schematic capture since the state
assignments have to be made explicitly in order
to construct the state table. However, with the
HDL method there is no mention of this issue,
although it is the one that probably has the most
effect on the implementation of the design. This
does not mean that there are no state
assignments; they just are hidden in the

Fig. 3. Timing simulation of the entire state machine.

statement “type state is (state0, state1, state3)”.
They are automatically assigned the values,
“00”, “01”, “10” and “11” respectively. When
the state changes from state3 to state0, i.e. from
“11” to “00”, the simulation shows that the
value “10” apparently is the brief interim value,
which seems to represent state1 since that one
has output out1.

The output with the “glitch” of 0.5ns duration

is produced by the LUT (Look Up Table) that in
the FPGA implements the dual-input AND gate
with one input from each of the two flip-flops.
Since the inputs of that gate switch from “11” to
“00”, there apparently is an interim state “01” or
“10” briefly present on the gate. It is tempting to
think that this is due to the flip-flops not
changing their outputs at exactly the same time.
However, even though this might be possible in
the actual hardware, where the characteristics of
the flip-flops and gates in general, may differ,
dependent on their location in the FPGA, the
flip-flops as modeled in the simulator are ideal
and identical. Thus they must change at the
same time unless there is clock skew. It is
unreasonable to assume, however, that adjacent
flip-flops, as evident from the layout in the
floorplanner, there would be 0.5ns clock skew.
This is further confirmed by the fact that the
timing analyzer shows that the delay from clock
edge to output is identical for both flip-flops.
This leaves just one source, i.e. the difference in

0.5 ns glitch

COMPUTERS IN EDUCATION JOURNAL 25

the interconnect delays between the flip-flops
and the AND gate. To prove this, the
floorplanner was used to move one of the flip-
flops to a very different location, making one of
the two flip-flop => AND gate connections
much longer than the other. Recompilation and
resimulation showed an increase in the glitch
length from “0.5ns” to “1.4ns”, this confirming
the assumption.

It was then discussed how the design might be
changed to avoid this glitch. If there are no
interim “01” or “10” signal values on the AND
gate, the glitch cannot appear. This can be
accomplished by changing the binary sequence
of the state assignments to unit-step or Gray
code. All this required was a change in the
“type” statement from (state0, state1, state2,
state3) to (state0, state1, state3, state2).
Recompilation and resimulation indeed showed
no more glitch. It was then pointed out that
although in this case the Gray code state
assignments solved the glitch problem, that it
may be unavoidable in a more complex state
machine where not all the transitions are in
sequence and certainly for those encoded as
one-hot machines in which always two bits
change per transition.

In preparation for an assignment we discuss a

more complex state transition example. When
there are three decision paths from a state one
has the choice of two constructs both with
respect to the code and the asm chart. An
example of each is given in Fig. 4-a and Fig. 4-
b.

The code shown in Fig. 4-a is simpler and so is
the asm chart, however, it is not obvious if all
possibilities are covered, in other words if there
are no dangling branches, which when
synthesized, would cause undesirable extra
flip-flops. Also the “elsif” does not allow
pairing of the “end-if” statements. In Fig. 4-b
on the other hand, both the code and the asm
chart section clearly show that all possibilities
are covered, thus guarantying that no
unnecessary flip-flops will be implemented.
There are of course exceptions, for instance

when the state transitions depend on two
variables, but the conditions are such that one
condition is the opposite of the other, thus in
essence there are only two paths or choices,
which then can be easily depicted and coded
with a single decision box. An example is x&y
and x+y (= x&y).

Next is an example of a student assignment

which uses the constructs discussed above.

“Design an alarm system for a residence that

monitors the doors and windows. The alarm has
five outputs: a green, an amber and a red light, a
sustained note and a siren. Normally the alarm
is in the ready state and shows a green light and
opening and closing windows or doors has no
effect. A binary code “1101” arms or disarms
the system. When the system is armed, the green
light goes off and the amber one goes on,
however, if the correct code is entered within 30
seconds, the alarm resets to the ready state. If in
the armed state, a door or window is opened, the
red light goes on and there is a sustained note,
indicating that the system is armed. It can then
be disarmed within 30 seconds, i.e. reset to the
ready state, by entering the code. Otherwise the
siren goes off and to reset the system the code
must be entered.”

Fig. 5 shows the segment of the asm chart and

the corresponding code for the state sequence..
The complete code can be found in Appendix
A. The designs were implemented with a
schematic as the top level, which included the
timing and display modules. The Altera demo
board was used to test the downloaded designs.

Regardless of the fact that the authors

emphasize at the beginning of the introduction
of this topic, that the state machine is strictly a
controller, used to turn external modules on and
off, the first returned assignments often include
considerable functionality in the state machine
itself. The students have then experienced that
such a design is difficult to debug and modify
and are more likely to appreciate and adopt the
controller philosophy in their next design.
Typically an external module requires as inputs

COMPUTERS IN EDUCATION JOURNAL 26

outm

x,y

outn

x

Sm

Sn

x.yx.y

when Sm =>
 if x=’0’ and y=’0’ then
 ns <= Si;
 elsif x=’0’ and y=’1’ then
 ns <= Sm;
 else
 ns <= Sn;
 e d if;

n

to Si

Fig. 4-a. Singe (nested) if asm transition diagram and associated code with logic expressions.

when Sm =>
 if x=’1’ then
 ns <= Sn;
 else
 if y=’0’ then
 ns <= Si;
 else
 ns <= Sm;
 end if;
 end if;

outm

outn

x

1

0

0

1

Sm

Sn

y

to Si

Fig. 4-b.Double if asm transition diagram and a sociated code with one if per condition. s

a “reset” and an “enable” signal and produces as
output a “done” signal. In Fig. 5 this is shown in
the segment with states: “arming1”, “arming2”
and “armed”. The first state outputs an
asynchronous reset (arst) and immediately
transitions to the next state which outputs a
synchronous enable (ena) signal. This choice
allows decoupling the state machine clock from
the module clock, the former being usually
much faster than the latter. The transition to the
third state in this segment takes place when the
module has indicated with its “done” signal, that

it has completed its task. This implementation
serves a large variety of functions and both the
three-state segment in the asm chart and the
associated code become practically boilerplate
and self-documenting code. This also works
well if the external module is another state
machine. Occasionally it is desirable to run both
controllers at the same clock speed but this often
causes timing problems, which can be avoided,
however, by triggering one state machine with
the rising edge and the other on the falling edge
of that same clock.

COMPUTERS IN EDUCATION JOURNAL 27

arming2

ready

arming1

detect1

detect2

alarm

green

code

arst, amber

amber, note, ena

tup

red
armed

opn

red, arst

red, note, ena

tup

code

red, siren

code

when ready =>
 if code=’0’ then
 ns <= ready;
 else
 ns <= arming1;
 end if;

when arming1 =>
 ns <= arming2;

when arming2 =>
 if tup=’1’ then
 ns <= armed;
 else
 ns <= arming2;
 end if;

when armed =>
 if opn’0’ then
 ns <= armed;
 else
 ns <= detect1;
 end if;

when detect1 =>
 ns <= detect2;

when detect2 =>
 if tup=’1’ then
 ns <= alarm;
 else
 if code=’0’ then
 ns <= detect2;
 else
 ns <= ready;
 end if;
 end if;

when alarm =>
 if code=’0’ then
 ns <= alarm;
 else
 ns <= ready;
 end if;

Fig. 5. ASM chart for the state transitions and

code for the alarm system.

CONCLUSIONS AND SUMMARY

The instructors have found that one pitfall with
introducing VHDL too soon, is that the students
do not get an appreciation for the actual
implementation of the design. That is one reason
the first state machine is implemented strictly
with schematic capture. The design with VHDL
is a large step removed from the hardware, but
knowledge and understanding of the limitations
and the special features of the hardware are very
necessary for an efficient design. It’s for that
reason that throughout the course the philosophy
“Know your Hardware” is strongly emphasized.

Also by taking the time and making the effort to
look at the details of a carefully scripted
simulation, the students develop an appreciation
for the large amount of information that can
be obtained from
such an analysis, but that it is generally not easy
or obvious and learn that there is much more to
it than seeing what you want to see.

REFERENCES

1. Fundamentals of Digital Logic with VHDL
Design. S. Brown and Z. Vranesic,
McGraw-Hill, ISBN 0-07-012591-0.

2. VHDL for Programmable Logic. K. Skahill,

Addison-Wesley, ISBN 0-201-89573-0.

3. Altera Max plus 2 software and hardware
and documentation available from their
University Program. Web site
www.altera.com.

4. Three-Day VHDL workshop for industry at

UCF – Dr. H.v.d.Biggelaar.

BIOGRAPHICAL INFORMATION

Rosida Coowar, Ph.D, is an Associate

Professor in the Department of Engineering
Technology at the University of Central Florida,
Orlando, FL. She teaches a variety of courses
including Digital Systems Design,
Programmable Digital Devices, Applied Quality
Assurance and Applied Reliability. Her research
interests include applied statistics and
simulation in the improvement of processes and
systems. She is a member of the IEEE, ASEE
and Tau Alpha Pi.

Hans v.d.Biggelaar, Ph.D, is Professor

Emeritus from the Electrical and Computer
Engineering Department of the University of
Massachusetts Dartmouth where he was
Director of the VLSI Laboratory. He consults in
the area of digital electronics and VHDL. He is
a member of Sigma Xi, Eta Kappa Nu and
Senior Life member of the IEEE, a member of
the National Association of Flight Instructors
and an FAA Safety Counselor.

COMPUTERS IN EDUCATION JOURNAL 28

http://www.altera.com/

APPENDIX A

-- 2-process state machine
-- ~\max2work\hvdb\asm2.vhd

library ieee;
use ieee.std_logic_1164.all;

entity asm2 is
port(arst,clk,in1,in2: in std_logic;
 out1, out2, out3: out std_logic);
end entity asm2;

architecture a_asm1 of asm2 is
type state is(state0,state1,state2,state3);
 signal ps, ns: state;
begin

 -- clock with asynchronous reset:
 pclk: process(arst,clk)
 begin
 if arst='1'
 then ps <= state0;
 else
 if rising_edge(clk) then
 ps <= ns;
 end if;
 end if;
 end process pclk;

 -- state transitions:
 pasm: process(ps,in1,in2)
 begin
 case ps is
 when state0 =>
 if in1='0' then
 ns <= state0;
 else
 ns <= state1;
 end if;
 when state1 =>
 if in2='0' then
 ns <= state1;
 else
 ns <= state2;
 end if;
 when state2 =>
 ns <= state3;
 when state3 =>

 if (in1='0' and in2='0') then
 ns <= state0;
 else
 ns <= state3;
 end if;
 when others =>
 ns <= state1;
 end case;
 end process pasm;

-- outputs:
out1 <= '1' when ps=state1 else '0'; -- Moore output
out2 <= '1' when (ps=state1 and in2='1') else '0'; -- Mealy output
out3 <= '1' when ps=state2 else '0'; -- Moore output

end architecture a_asm1;

Complete code for the alarm system.

COMPUTERS IN EDUCATION JOURNAL 29

	CONCLUSIONS AND SUMMARY

