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ABSTRACT 

 
Optimization problems are typically taught 

graphically in college algebra and later in 
calculus through differentiation. We have a 
straightforward optimization problem, optimal 
location of a facility whose set up through 
mathematical modeling is easy but whose 
solution via traditional calculus is nearly 
impossible. This is the type problem where 
technology is required to achieve solutions. 

 
INTRODUCTION 

 
Consider a small company that is planning to 

install a central computer with cable links to 
five departments. According to their floor plan, 
the peripheral computers for the five 
departments will be situated as shown by the 
dark circles in Figure 1. The company wishes to 
locate the central computer so that the minimal 
amount of cable will be used to link to the five 
peripheral computers. Assuming that cable may 
be strung over the ceiling panels in a straight 
line from a point above any peripheral to a point 
above the central computer, the distance 
formula may be used to determine the length of 
cable needed to connect any peripheral to the 
central computer. Ignore all lengths of cable 
from the computer itself to a point above the 
ceiling panel immediately over that computer. 
That is, work only with lengths of cable strung 
over the ceiling panels. 

 
The coordinates of the locations of the five 

peripheral computers are listed in Table 1. 
 

 
 
Figure 1. The Grid for the Five Departments 

    
    X Y 

15 60 
25 90 
60 75 
75 60 
80 25 

 
 
 
 
 
 
Table 1. Grid Coordinates of Five 

Departments 
 
Assume the central computer will be 

positioned at coordinates (m, n) where m and n 
are integers in the grid representing the office 
space. Determine the coordinates (m,n) for 
placement of the central computer that minimize 
the total amount of cable needed. Report the 
total number of feet of cable needed for this 
placement along with the coordinates (m,n). 

COMPUTERS IN EDUCATION JOURNAL 30  

mailto:wfox@fmarion.edu
mailto:wrichardson@fmarion.edu


THE  MODEL 
 
This is a multivariable optimization problem. 

We want to minimize the sum of the distances 
from each department to the placement of the 
central computer system. The distances 
represent the cable lengths assuming that the 
straight line is the shortest distance between two 
points. Using the distance formula, 
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where d represents the distance (cable length 

in feet) between the location of the central 
computer (x,y) and the location of the first 
peripheral computer (X1, Y1). Since we have 
five departments we define 
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We  wish to minimize the sum of the distances 

given by 
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Traditional calculus suggests taking the 

derivative of the function, Dist(x,y) first with 
respect to x and then with respect to y, setting 
the partial derivatives equal to zero,  and solving 
for x and y  to find the stationary points. Using 
the locations of the five peripheral computers 
X=[ 15 25 60 75 80 ]  and Y=[ 60  90  75  60  
25 ], the objective function  

Dist(x,y) becomes , which is 

expressed below with the help of the computer 
algebra system, MAPLE. 
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Dist(x,y)= 

 −  +  +  − x2 30 x 3825 y2 120 y  −  +  +  − x2 50 x 8725 y2 180 y + 

 −  +  +  − x2 120 x 9225 y2 150 y  −  +  +  − x2 160 x 7025 y2 50 y +  + 

 −  +  +  − y2 120 y 9225 x2 150 x + 

 

 
 
 

The  partial derivatives of the function 
Dist(x,y) with respect to x and  y are: 

 
> d4f1:=diff(d4,x);

     =
∂

∂
x

yxDist ),(  

dfx  − 2 x 30
2  −  +  +  − x2 30 x 3825 y2 120 y

 − 2 x 50
2  −  +  +  − x2 50 x 8725 y2 180 y

 +  := 

 − 2 x 120
2  −  +  +  − x2 120 x 9225 y2 150 y

 − 2 x 160
2  −  +  +  − x2 160 x 7025 y2 50 y

 +  + 

 − 2 x 150
2  −  +  +  − y2 120 y 9225 x2 150 x

 + 

 

 
 df4f2:=diff(d4,y);  

     =
∂

∂
y

yxDist ),(  

 − 2 y 120
2  −  +  +  − x2 30 x 3825 y2 120 y

 − 2 y 180
2  −  +  +  − x2 50 x 8725 y2 180 y

 + 

 − 2 y 150
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 − 2 y 50
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 +  + 

 − 2 y 120
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These are now very complicated expressions 

with square roots in the denominators that are 
non-trivial. Closed form analytical solutions to 

these partial derivatives, 0),(
=

∂
∂

x
yxDist   and  

0),(
=

∂
∂

y
yxDist , will not be obtained by 

students using traditional paper and pencil 
methods. 

 
SOLUTIONS METHODS AVAILABLE 

WITH TECHNOLOGY 
 

In previous work, Fox and Richardson1 
suggested other methods when traditional 
calculus fails to meet our needs. These options 
as well other heuristic approaches to obtaining 
“good”  results will be illustrated. We note that 
the definition of “good” may depend upon the 
course in which this material is presented. 
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USING  MAPLE AND THE SECOND 
PARTIAL TEST 

 
If the stipulation requiring integer coordinates 

as solutions is relaxed, the MAPLE commands 
and the second partials tests can be used to find 
the stationary point that yields the absolute 
minimum in this case. The MAPLE fsolve 
command is used to solve the equations, 

0),(
=

∂
∂

x
yxDist   and  0),(

=
∂

∂
y

yxDist , resulting 

in the stationary point (56.81841102, 
68.07515715) for which Dist(x,y) = 
157.6634722 feet. The determinant of the 
Hessian matrix, the matrix of second partials, 
for the objective function Dist(x,y) was first 
determined using the Maple Commands hessian 
and det and then evaluating at the stationary 
point  (56.81841102, 68.07515715) with the 
following results: 

 
> fsolve({d4f1=0,df4f2=0},{x,y}); 
            { , = }x 56.81841102  = y 68.07515715  
>evalf(subs({x = 56.81841102,  
                      y = 68.07515715},d4)); 
                           157.6634723
> with(linalg): 
Warning, the protected names norm and trace 

have been redefined and unprotected 
> 
Hessian:=subs((x=56.81841102,y=68.0751575,              
matrix(2,2,[ddfxx,ddfxy,ddfxy,ddfyy]))); 

         

 := Hessian ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0.1416584422 -0.01488222755
-0.01488222755 0.1096294944  

> det(Hessian); 
0.01530846270  

 
Since the principal minors are all positive 

(0.1416584422, 0.1096294944, and 
0.01530846270) then we are guaranteed a 
minimum number of feet of cable 
(157.6634722) if the central computer is located 
at the point represented by (56.81841102, 
68.07515715) on the grid shown in figure 1. A 
plot of the function Dist(x,y) is shown in figure 
2. 

 

 
Figure 2. Plot of the Distance Function,Dist(x,y) 

 
THE  STEEPEST  DESCENT/ASCENT  

ALGORITHMS 
  
We implement a procedure in MAPLE that 

used the well-known method of steepest ascent 
to maximize a function of two variables. Since 
we want to minimize our function, we will 
multiply our function by –1 and maximize it. 

 
Algorithm: To find a maximum solution to 

given a multivariable unconstrained function, 
f(x) 

 
INPUT: starting point x0; tolerance, t 
OUTPUT: Approximate x*, and f(x*) 
Step 1.   Initialize the tolerance, t >0. 
Step 2. Set x=x0 and define the   gradient 

at that point. 
   ∇f(x0) 
Step 3. Calculate the maximum of the 

new function f(xi+ti ∇f(xi)), 
where ti > 0, by finding the value 
of ti. 
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Step 4. Find the new xi point by 
substituting ti into 

  xi+1 = xi + ti ∇f(xi)
   
Step 5.  If the length (magnitude) of x, 

defined by 

|| x||= 2
1

22
2

2
1 )...( nxxx +++ , is less 

than the tolerance specified, then 
continue.   

                       Otherwise, go back to Step 3. 
Step 6.  Use x*  as the approximate 

stationary point and compute, 
f(x*), the estimated  maximum of 
the function. 

STOP 
 
Because the MAPLE procedure Steepest was 

written as a maximization routine, the negative 
of the objective function must be used in order 
to find its  maximum value, which is the true 
function’s minimum value. The MAPLE code 
that follows stores the coordinates of the grid 
locations of the peripheral computers in vectors 
X and Y, defines the objective function (-1) * 
Dist(x,y) as function of variables x1 and x2 
(needed for routine Steepest), and calls routine 
Steepest with the following arguments: 

 
100= maximum number of allowed iterations 
0.05= tolerance value, tol 
(0,0) = starting point (x,y), X0
Dist = objective function definition 

 
Maple Input 
> f:=-(sqrt((x1-15)^2+(x2-60)^2)+sqrt((x1-

25)^2+(x2-90)^2)+sqrt((x1-60)^2+(x2-
75)^2)+sqrt((x1-80)^2+(x2-25)^2)+sqrt((x2-
60)^2+(x1-75)^2)); 

f  −  +  +  − x12 30 x1 3825 x22 120 x2  −  +  +  − x12 50 x1 8725 x22 180 x2−  −  := 

 −  +  +  − x12 120 x1 9225 x22 150 x2  −  +  +  − x12 160 x1 7025 x22 50 x2 −  − 

 

 −  +  +  − x22 120 x2 9225 x12 150 x1 − 

> 
(kt,MP,z1,z2,z3):=STEEPEST(100,.05,0,0,f): 

 
---------------------------------------------------------- 

 
             Initial Condition: (  0.0000,  0.0000) 
 

Iter  Gradient Vector G   magnitude G     x[k]        Step Length 
 

 1      (  2.8702,  3.6375)         4.6335     (0.0000,  0.0000)   19.0907 
 2      (   .2868,  -.2263)            .3654      (54.7946, 69.4424)  6.7062 
 3      (   .0119,   .0150)             .0192      (56.7180, 67.9247) 

 
                     Approximate Solution: ( 56.7180, 67.9247) 
                     Maximum Functional Value:             -157.6652 
                  Number gradient evaluations:                     4 
                  Number function evaluations:                      3 
 
The values kt, MP, z1, z2, z3 returned from 

routine Steepest are not needed here. In three 
iterations routine Steepest determined an 
approximate stationary point that is very close 
to the actual stationary point determined using 
the Second Partials Test. Here the minimum 
value was found to be approximately 157.6652 
at the point (56.7180, 67.9247). 

 
NEWTON’S  METHOD 

 
A second MAPLE procedure was written that 

uses Newton’s method to optimize 
(maximize/minimize) a function of two 
variables. The specific algorithm shown here 
uses Cramer’s rule to implement Newton’s 
method.2 

 
INPUT: x(0), y(0), N, Tolerance 
OUTPUT: x(n), y(n) 
Step 1. For n= 1 to N do 

Step 2. Calculate the new estimate for 
x(n) and y(n) as follows: 
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Step 3. If ((x(n)-x(n-1))2 + (y(n)-y(n-1))2 )1/2 
      tolerance, 
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    Then Stop 
    Else , Go back to Step 2. 

STOP 
 
After providing MAPLE with the vectors X 

and Y that contain the grid locations of the 
peripheral computers and defining the objective 
function Dist(x,y), the MAPLE procedure 
Newtons was called with the following 
arguments: 

 
100= maximum number of allowed iterations 
0.05= tolerance value, tol 
(40,50) = starting point (x,y), X0 
Dist = objective function definition 
 

MAPLE Input: 
 
> X:=vector([15,25,60,75,80]): 
> Y:=vector([60,90,75,60,25]): 
>Dist:=sum(sqrt((x1-X[i])^2+(x2Y[i])^2),i=1..5); 
Dist  −  +  +  − x12 30 x1 3825 x22 120 x2  −  +  +  − x12 50 x1 8725 x22 180 x2 +  := 

 −  +  +  − x12 120 x1 9225 x22 150 x2  −  +  +  − x12 150 x1 9225 x22 120 x2 +  +  

 

 −  +  +  − x12 160 x1 7025 x22 50 x2 + 
 (kt,MP,z1,z2,z3):=Newtons(Dist,100,0.05,40,50): 

 
 

MAPLE Output: 
 
   initial values x=  40.000          y=  50.000 
 

iteration 1: new x=59.1490788   new y=69.2508722  
Hessian: [.053      .008  ] 

             eigenvalues:   [   .051   .089 ]        [.008      .088  ] 
 
iteration  2: new x=57.2869316    new y=68.3324568 

Hessian: [.207    .013  ] 
              eigenvalues:   [   .086      .208 ]       [.013   .088  ] 
iteration  3 : new x=56.8385891    new y=68.0778746 

Hessian: [.153    -.013  ] 
               eigenvalues:    [  .103   .157 ]    [-.013       .106  ] 
iteration  4 : new x=56.81844271    new y=68.0751727 

Hessian: [.142   -.015  ] 
               eigenvalues:    [    .104    .148 ]   [-.015     .109  ] 
 
final new x=  56.8184427    final new y=  68.0751727 
final fvalue is 157.663472200 

 
In four iterations the MAPLE procedure 

Newtons found  the approximate stationary point 
(56.8184427, 68.07512727) corresponding to 

the functional value approximately 
157.6634722. The consistently positive 
eigenvalues provide the sufficient conditions to 
ensure the value (157.6634722) is a minimum 
for the objection function. 

 
PROGRAMMING 

 
Recall that initially integer coordinates that 

placed the central computer optimally within the 
grid (figure 1) were requested. Until now this 
fact has been  ignored.     A  method  that  would 
address   this,     integer programming,   is   only 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
covered at the end of our mathematical 
programming course and would be too advanced 
for most undergraduate classrooms. However, 
integer solutions can easily be found using a 
short computer program that computes and 
compares the amount of cable needed for each 
of the 101 x 101 grid positions with integer 
coordinates (this is implicit numeration of 
integer programming). In fact, this heuristic 
technique has been used by the authors in  an 
introductory Fortran 90 programming course for 
which calculus is not even a prerequisite. An 
illustration using MAPLE appears below.  
 

> restart; 
> Computer:=proc(m::integer,n::integer, f) 
>   local disthold, xhold,yhold,i,j,dist; 
>   disthold:=infinity; 
>   for i from 0 to m do 
>      for j from 0 to n do 
>         dist:=evalf(f(i,j)); 
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>         if (dist < disthold) then 
>             disthold:=dist; 
>             xhold:=i;        
>             yhold:=j; 
>         end if; 
>      end do; 
>   end do; 
> print( xhold, yhold, disthold); 
> end: 
>  
> X:=vector([15,25,60,75,80]): 
> Y:=vector([60,90,75,60,25]): 

>Dist:=(x,y)->sum(sqrt((x- X[i])^2+(y 
Y[i])^2),i=1..5); 

 := Dist  → ( ),x y ∑
 = i 1

5

 + ( ) − x Xi
2

( ) − y Yi
2  

>Computer(100,100,Dist); 
 
MAPLE Output: 

, ,57 68 157.6663224  
 

Our computer program provides the integer 
solution as the  coordinates of (57, 68) with a 
functional value  f(57,68)= 157.6663224. 

 
SUMMARY 

 
This problem has a non-integer solution of 

x=56.81841102, y=68.07515715, 
d=157.6663224, which can be found using our 
numerical methods or by using  MAPLE 
commands to implement the seconds partials 
test.    The solution  x=57, y=68, and  dist= 
157.663224 was determined if the integer 
coordinates are required.  The problem, which 
was relatively simple to set up, quickly became 
difficult to solve without resorting to 
technology. 
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