
COMPUTERS IN EDUCATION JOUNAL 33

INTRODUCING NEURAL STUDIO:
AN ARTIFICIAL NEURAL NETWORKS SIMULATOR

FOR EDUCATIONAL PURPOSES

Malek Adjouadi, Ph. D., Director
Melvin Ayala, Ph.D.

Center for Advanced Technology and Education
Electrical & Computer Engineering Department,

Florida International University
10555 W. Flagler Street, Miami, FL, 33174

Email addresses: Adjouadi@fiu.edu, Melvin.Ayala@fiu.edu

ABSTRACT

This work has been motivated by the
increasing effort currently required in
educational institutions while using
computational tools for teaching Artificial
Neural Networks (ANN). An appropriate and
user-friendly programming tool is proposed
with the aim to redress the situation in this
important information science discipline.
The programming environment is established
with added capabilities over professional
packages. The programming tool named
Neural Studio is a user-friendly solution for
the Windows platform developed at the
Electrical & Computer Engineering
department at Florida International
University, which allows designing and
studying the behavior of ANNs without the
need for program-code writing. The interface
provides graphic modules for network
design, a pattern editor, a backpropagation
training module as well as modules for
feature maps, clustering, and memory
association, among other possibilities. The
software was written in Borland Delphi,
which uses object PASCAL code, a high level
programming language with an easy syntax
and created for educational purposes.

INTRODUCTION

Artificial Intelligence (AI) with its many

corollaries has become a key technology in
many of today's novel applications in the
design of intelligent machines, especially
intelligent programs for achieving specific
goals in ways that are computationally

effective. New areas of information
processing and understanding (fuzzy logic,1
evolutionary computation and genetic
algorithms,2 expert systems3 and Artificial
Neural Networks (ANN)4) often become
powerful resources for solving practical
problems, such as pattern recognition,
association and classification, forecast
studies, and control applications, etc. Even
commercial products with some kind of AI-
value added, ranging from industrial
machines, cars, up to household appliances
have now found wide acceptance in the
market place.5

Among all the disciplines of AI, which are

all challenging, ANNs is the one discipline
that is most intriguing. This is in part
because ANN designs are an attempt at
modelling the functionality of the human
brain and its neuronal connectivity. It should
also be noted that since 1958, when
Rosenblatt introduced the perceptron,6 the
theory of ANN has been substantially
enriched, both theoretically and in the
domain of applications.

A widely accepted principle in pedagogy is

that effective learning can be achieved by
training.7 With only a few exceptions, most of
the examples needed to cover the most
important topics of ANNs require working
with considerable amounts of data so that a
problem can be understood and its solution
interpreted. With the computational
requirements comes the need for
programming skills in neural networks
required to automate the analysis and

COMPUTERS IN EDUCATION JOURNAL 34

interpretation of these large data sets. The
objective behind the development of Neural
Studio is to remove the programming
language requirement in the effective
teaching of ANNs. To this end, lecture time
allocation and laboratory training for the
students are improved. Skilled programmers
will find in Neural Studio a platform for
advancing their skills in real-world
applications.

In this information era, the theory of ANNs

can only be efficiently applied to practical
problems with the use of computers.
Therefore, considerable amounts of
programming tools have been developed and
can be found in universities, industry, and in
the marketplace as a whole. The list of
packages available is extensive.8

Observations made on ANNs course

outlines from different universities led to the
conclusion that MATLAB’s ANN toolbox9 is
the most prevalent tool in the teaching of this
discipline.10 Unfortunately, this toolbox
requires knowledge about a scripting
language that is quite similar to the C
language.11 Teaching ANNs with this tool
requires students to acquire knowledge of a
programming language, which adds to the
level of difficulty in the learning process.
Consequently, the criteria of avoiding the
requirement of a programming language in
teaching ANNs is not yet met with MATLAB.

After conducting research on other

available tools, the following issues were
noted by the authors:

• There are no tools for unlicensed use in

academia,
• There are not enough academically

oriented tools albeit licensed that are of
value to the student,

• There is lack of information about the
features and the use of the tools (users
guide being difficult to read and lacking
concise descriptions of desirable features),

• Some tools are not designed to run under
the Windows operating system (often
opting for UNIX, LINUX or other
platforms),

• Some tools are only suited for specific
areas of study (e.g., economics, business),

• No open source tools have been found.

An assessment of desired features for an
educational tool could be summarized as
follows:

• Convenient and user-friendly interface:

The windows should allow users to
interact with the system primarily
through mouse clicks, making keyboard
inputs only occasionally.

• Removed requirement for programming:
This feature is necessary to remove the
constraints imposed by powerful tools
such as MATLAB, which provides a
neural networks toolbox but still requires
knowledge about a pseudo-language
based on C.

• Open source: Easy to understand source
code of key calculation processes must be
made available from within the
application.

• Demonstration modules: Examples on
how to use the programming tool must be
given.

• Freeware: Enhanced accessibility for
educational institutions must be provided.

• Compatibility with Windows operating
system: The software designed needs to
run under the Windows operating system,
which is widely used in academia.

• Stopping options: Options to stop the
calculations at specified points of the
algorithms need to be included (to allow
viewing intermediate results to test for
convergence issues or for additional
debugging opportunities).

• Stand-alone application: The stand-alone
application ensures that the tool box is
not dependent of another application.

• Configurable display: Configurable
display capabilities (graphics, charts,
plots, and options to turn the software

COMPUTERS IN EDUCATION JOURNAL 35

into a high-speed calculation tool) should
be made available.

Seeking to realize these aforementioned

features as described above in an integrated
teaching tool for ANNs was precisely the
motivation for developing Neural Studio. In
subsequent sections, this integrated
programming tool will be described and
special emphasis will be given to its enhanced
features.

NETWORK DESIGN WITH

NEURAL STUDIO

The programming tool was primarily

developed for educational purposes, for use
in postgraduate teaching. Further
improvements were made, especially in
speeding up calculations and providing
different types of graphical outputs. In
retrospect, the programming platform that
was chosen for developing the application
was Borland Delphi,12 which uses object
PASCAL,13 a code easy to understand. The
Delphi language was deemed appropriate for
this work because it provides a large library
of efficient components for creating charts
and other graphical outputs. The compiled
Delphi code is also fast and computationally
efficient under the proposed design
configuration.

Neural Studio’s main window is illustrated

in Figure 1 and is designed to contain an
editor for a multilayer network. It also
consists of information panels, editing and
processing tools, a table for network input
and a corresponding results table. Program
users are able to freely design the network
and to customize the neurons as well as their
interconnections. Interconnections can be
established by drag and drop operations
between neurons. Neurons are represented
with circles and interconnections are
represented by lines drawn between pairs of
neurons.

Details of the network components (neurons

and their interconnections) as well as global

configuration features can be viewed and
edited in the network inspector (NI).
Selections can be done by clicking on
components in the drawing area as well as by
selecting objects from a list in the NI. Once a
specific neuron or weight is clicked on, the NI
changes its appearance, showing the features
of the selected object. The object can also be
selected using the selection box located at the
top of the NI. Clicking on the drawing
surface somewhere outside all neurons and
weights takes the user back to the network
configuration panel.

Educators and experienced users should

note that for better performance, the training
set should be normalized. Special attention
should be dedicated to the selection of the
activation functions for the output neurons
during supervised training since the network
outputs must be capable of reaching the
declared targets. Otherwise, convergence
problems, such as local minima traps, or even
monotonically increasing errors, can occur.

MODULES RELATED TO
SUPERVISED TRAINING

Supervised training occurs when the

network outputs are compared with the
targets and the resulting output errors are
used as reference for updating weights and
biases.

Neural Studio applies the back-propagation

method14 for the training of the feed-forward
networks placed in the main window. The
training is performed in a training module as
shown in Figure 2, and information about
how to carry out this process is taken from
the network design. The data used for
training is taken from the pattern module.

Graphical outputs can be customized in the

training module depending on the nature of
the problem addressed. For example, the
simple problem of approximating a
multidimensional input/output relation can
be visualized by plotting a pair of
input/output neurons. In classification

COMPUTERS IN EDUCATION JOURNAL 36

problems, animated charts enhance the
results by showing classification regions with
multiple boundaries. Errors of different types
can be graphically traced along the
iterations.

Perhaps the most important feature of

Neural Studio suitable for teaching purposes
is its ability to approximate different one-
dimensional mathematical functions. These
functions can be parameterized and used for
network training. During this process,
animated graphical outputs can be obtained,
thus allowing program users to understand
how the training process works and how the
network’s ability to generalize is influenced
by the number of iterations.

The training module also allows

customizing the output charts. Additionally,
as was stated earlier, the iterations in this
module can be temporarily stopped at any
time, thus allowing program users to look
into intermediate results, such as current
status of neurons and weights.

MODULES RELATED TO

UNSUPERVISED TRAINING

During unsupervised learning, the network

is not trained towards specified outputs.
Instead, the network seeks to find patterns or
regularity in the input data. The mapping
implies clustering of the data. Neural Studio
offers two separate modules for this type of
training: Kohonen Feature Maps and
Clustering Networks.

The Kohonen feature map15 is a map

resulting from plotting the two-dimensional
weights of the neurons in a special type of
network. No supervision is performed during
training. The training set can be taken from
the pattern module as well as from a training
set generator available in the module. Figure
3 shows a snapshot of this module.

Cluster analysis is a technique driven by the

large size of the data sets involved in the
solution of practical problems. This approach

clusters the data together into groups,
attempting to put similar ones together. This
can reveal patterns hidden in the data.
Predictions can then be made by comparing
recent data with the different identified
clusters. This type of training requires only
the input and determines by itself which
classes exist in the input and which input
belongs to which class.

The technique used here is to calculate a

multidimensional feature map where each
neuron represents one cluster. As with the
Kohonen feature maps, the winner-takes-all
method is used. The algorithm outputs the
centroids of the clusters it determines. In
Figure 4, a dataset example is grouped into 7
different clusters. In a second program stage,
the algorithm is recalled and all the patterns
are presented to the clusters and assigned to
the best matching cluster using the Euclidean
distance as grouping criterion.

OTHER MODULES

Neural Studio introduces a module

dedicated to memory association, which
allows auto-association as well as hetero-
association of patterns. This module given in
Figure 5 imposes no limit on network size
and lets the users choose from a list the
weight adjustment rule as well as the type of
activation functions. An additional module
for simulating fixed weight networks such as
Boltzman and Cauchy machines as well as a
Support Vector Machine module is also
included in the Neural Studio design.

An important condition for enhancing the

teaching process is to allow program users to
know the details behind the calculations,
especially the utilized formulas and the step
sequences related to the calculation
algorithms. A code-insight module has been
created specifically to allow users to look
inside the code related to the most important
program tasks. This possibility is useful for
advanced program users as well as for users
who want to know details about a specific

COMPUTERS IN EDUCATION JOURNAL 37

algorithm to enhance their programming
skills.

Another attractive feature of Neural Studio

is a small assistant placed as an on-top-
window which tells new program users how
to use the most important modules in an
optimal fashion.

Neural Studio also offers several modules

for configuration and results interpretation
to constitute a comprehensive ANN teaching
tool.

CONCLUSIONS

The programming tool described in this

paper provides an easy-to-use tool for
teaching Artificial Neural Networks. At the
same time, it can be used as a powerful tool
for practical studies. Many of its features
make the tool suitable for teaching without
the necessity for any special programming
skills. Furthermore, it provides demos and
customizing options which display detailed
results during and after the calculation
processes. At the same time, the developed
program code related to the most important
program tasks is available from within the
application. Interested users can look into the
sources and learn the details of the different
algorithms used. The software package can
be configured to produce high-speed
calculations, a feature which makes it
attractive for practical applications.

Further improvements are foreseen in the

area of interface development for an open-
loop control of an industrial process using a
data acquisition card. A trained network via
Neural Studio will then perform a control
function. Such a tool could find usage in
industrial processes with real-time
requirements.

A programming package presently under

development by the same authors is a neuro-
fuzzy controller, which will be linked to
Neural Studio to establish an interface for
close-loop-control.

Although Neural Studio is far from covering

all aspects of the ANN theory and
application, the authors believe they have
made a contribution towards the improved
teaching of artificial neural networks at
educational institutions.

BIBLIOGRAPHY

1. Zadeh, L.A., “Fuzzy Logics and

Approximate Reasoning”, Synthese 30
(1975), 407-428.

2. Vose, M.D., “Simple Genetic Algorithm:

Foundations & Theory”, MIT Press,
1999.

3. Agogino, A., “Introduction to Expert

Systems”, University of California
Berkeley, 1999.

4. Haykin, S., "Neural Networks: A

Comprehensive Foundation", Macmillan
Co., New York, 1994.

5. Hirota, K.; Sugeno, M., “Industrial

Applications of Fuzzy Technology in the
World”, World Scientific Publishing
Company, Inc., 1995.

6. Rosenblatt, F., “The Perceptron: a

Probabilistic Model for Information
Storage and Retrieval in the Brain”,
Psych. Rev, (65), pp. 386-408, 1958.

7. Brown, H.D, “Teaching by Principles: An

Interactive Approach to Language
Pedagogy”, Englewood Cliffs, New
Jersey, Prentice Hall Regents, 1994.

8. Artificial Neural Networks: Available

Software. Pacific Northwest National
Laboratory [Online]:
http://www.emsl.pnl.gov:2080/proj/neuro
n/neural/systems/shareware.html

9. “Neural Network Toolbox for Use with

MATLAB”, User’s Guide, Version 3.0,
TheMathWorks, Inc., 1998.

COMPUTERS IN EDUCATION JOURNAL 38

10. L. Shuntian, “The Analysis and Design of
Systems Using MATLAB: Neural
Network”, Xidian University Press, 1998.

11. Kernighan, B.W.; Ritchie, D.M., “The C

Programming Language”, Prentice Hall,
Inc., 1988.

12. Pacheco, X.; Teixeira, S.; Intersimone, D.,

“Delphi 6 Developer's Guide”, SAMS,
2001.

13. “Learn Object Pascal With Delphi”,

Wordware Publishing, 2000.

14. Johansson, E.M.; Dowla, F.U.; Goodman,

D.M., “Backpropagation Learning for
Multi-Layer Feed-Forward Neural
Networks Using the Conjugate Gradient
Method”, IEEE Transactions on Neural
Networks, 1991.

15. Kohonen, T., “The Self-Organizing

Map", Proceedings of the IEEE, No.
78(9), pp. 1464-1480, 1990.

ACKNOWLEDGEMENTS

This research was supported by the

National Science Foundation Grants EIA-
9906600 and HRD-0317692, and the Office of
Naval Research Grant N00014-99-1-0952.

BIOGRAPHICAL INFORMATION

Malek Adjouadi obtained his B.S. in
Electrical Engineering from Oklahoma State
University in 1978, his M.E. and Ph.D.
degrees both from the Univ. of Florida in
1981 and 1985, respectively. Dr. Adjouadi is
currently serving as Associate Professor and
is founder and Director of the Center for
Advanced Technology and Education
established by NSF and ONR grants at the
Electrical & Computer Engineering
Department from Florida International
University. His interests include computer
vision, image processing, human computer
interfaces, and applications of Neuroscience.

Melvin Ayala obtained his Bachelor in

Industrial Engineering in 1984 and his Ph.D.
in 1987 at the Zittau Engineering Institute,
Germany. He has served as a Professor and
researcher in Cuba and Brazil. Dr. Ayala is
currently working as a Research Associate
with the Electrical & Computer Engineering
Department at Florida International
University, and is currently serving as
manager of the Center for Advanced
Technology and Education. His fields of
interest are in software development, pattern
recognition, image/signal processing,
artificial neural networks and fuzzy logic.

Figure 1: Neural Studio‘s main window, displaying the network editor and the input/output panel

COMPUTERS IN EDUCATION JOUNAL 39

Figure 2: Snapshot of the supervised training module during a training session
to approximate a parameterised sine function

Figure 3: Module for Kohonen feature maps analysis:
A dataset with a circular 2D distribution is being applied to the map

COMPUTERS IN EDUCATION JOURNAL 40

Figure 4: Neural Studio’s clustering module. The training patterns are taken from the
patterns module

Figure 5: Module for pattern association while performing character codifications

