
THE RELATIVELY SIMPLE COMPUTER SYSTEM SIMULATOR –
 A VISUALIZATION TOOL FOR COMPUTER SYSTEM

ORGANIZATION AND ARCHITECTURE

John D. Carpinelli
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
Newark, NJ 07102

ABSTRACT

Software simulation packages are available for

many topics covered in undergraduate
engineering programs. These tools are strong in
terms of computation, allowing students to
design systems and to simulate their behavior.
However, most tools are not designed to help
students visualize and learn basic concepts.
This paper presents the Relatively Simple
Computer System Simulator. This visualization
tool uses animation to show how a small
computer system, consisting of a
microprocessor, memory, and an input/output
device, functions as it processes instructions.
The source and executable files for this
simulator are available without cost under the
terms of the GNU General Public License.

INTRODUCTION

Having students take an active role in their

learning is a desirable goal for educators.
Students that take an active role in their learning
understand and retain their material better,
whereas students who sit passively in lecture
courses often have difficulty paying attention to
what is being taught, and will have greater
difficulty learning the material. Simulation
software is one way to actively engage students
in their own education. Simulation in and of
itself is not a goal. The goal is to improve
student learning; simulation is a strategy used to
achieve that goal.

Most simulation software is designed to allow

students to design and simulate systems.
Consider, for example, the topics taught in a
course on computer architecture. Most
textbooks for computer organization and

architecture have some type of simulator
available.1,2,3 (One notable exception4 does not
offer a simulator.) However, these simulators
only accept program input and output results,
such as the contents of memory and registers
after each instruction. These simulators show
students the final results of operations that occur
within a computer, but not the actions that cause
each operation to occur. They do not show how
data moves from one place to another, only that
it does so. Visualization, often achieved using
simple animation, is a powerful means to
illustrate how a system performs its functions.
For example, animation can be used to show
data flowing from one system component to
another, providing students with a more
intuitive understanding of how a system
performs its functions.

This paper describes the Relatively Simple

Computer System Simulator. This visualization
tool simulates a small computer system at the
level of complexity that might be found in a
consumer appliance. The next section describes
the system that is simulated, and the following
section describes the functions of the
visualization tool. Other visualization tools
developed through this program are also
introduced.

THE SYSTEM UNDER SIMULATION

The Relatively Simple Computer System

Simulator is designed to work with a computer
system having a fixed architecture. Students
would typically study the system on paper, and
then use the simulator to enhance their
understanding of how it functions. The system
consists of a microprocessor, the Relatively
Simple CPU (introduced as an instruction aid in

COMPUTERS IN EDUCATION JOURNAL 36

the textbook Computer Systems Organization
and Architecture5), 64K - 1 bytes of memory,
and a bi-directional, memory-mapped I/O port
at address FFFFH. This system uses a 16-bit
address bus and an 8-bit data bus. READ and
WRITE signals output from the CPU comprise
the system's control bus. The system is shown in
a screen shot taken from the simulator in Figure
1.

The instruction set architecture for this CPU

includes three registers that can be controlled
directly by the programmer. The accumulator,
AC, is an 8-bit register. As in many
microprocessors, the accumulator of this CPU
receives the result of any arithmetic or logical
operation. It also provides one of the operands
for arithmetic and logical instructions that use
two operands, and the sole operand for

Figure 1: Relatively Simple Computer System architecture

one-operand instructions. All data loaded from
memory is loaded in to the accumulator and all
data written to memory comes from AC.
Register R is an 8-bit general purpose register. It
supplies the second operand of all 2-operand
arithmetic and logical instructions, and can be
used to store data that the accumulator will soon
need to access. Finally, there is a 1-bit zero flag,
Z. The Z flag is set whenever an arithmetic or
logical instruction is executed. If the result of
the instruction is 0, then Z is set to 1 to indicate
that a zero result was generated. Otherwise it is
set to 0. There are no instructions which
explicitly set Z to 0 or 1.

There are several other registers in this CPU
which are not a part of the instruction set
architecture, but which the CPU uses to perform
the internal operations needed to fetch, decode,

COMPUTERS IN EDUCATION JOURNAL 37

and execute instructions. These registers are
fairly standard, and are found in many CPUs.
The Relatively Simple CPU contains the
following registers.

• A 16-bit Address Register, AR, which

supplies an address to memory via address
pins A[15..0]

• A 16-bit Program Counter, PC, which
contains the address of the next instruction
to be executed or the address of the next
required operand of the instruction

• An 8-bit Data Register, DR, which
receives instructions and data from
memory and transfers data to memory via
data pins D[7..0]

• An 8-bit Instruction Register, IR, which
stores the opcode fetched from memory

• An 8-bit Temporary Register, TR, which
temporarily stores data during instruction
execution

Table 1: Instruction set for a Relatively Simple CPU

The instruction set for this CPU contains 16
instructions. Although it is possible to encode
these instructions using only four bits, this CPU
uses an 8-bit opcode because the instruction set
is expanded later in the textbook as other topics,
such as interrupts, are introduced. The
instructions in this instruction set architecture
represent instructions and instruction types
commonly found in processors of this level. The
instruction set for the Relatively Simple CPU is
shown in Table 1.

The LDAC, STAC, JUMP, JMPZ and JPNZ

instructions all require a 16-bit memory address,
represented in the instruction code as Γ. Since
each byte of memory is 8 bits wide, these
instructions each require three bytes in memory.
The first byte contains the opcode for the
instruction and the last two bytes contain the
address. The low-order half of the address is
stored in the second byte of the instruction code,
and the high-order half is stored in the third
byte.

 Instruction Operation
NOP No operation
LDAC Γ AC = M[Γ]
STAC Γ M[Γ] = AC
MVAC R = AC
MOVR AC = R
JUMP Γ Goto Γ
JMPZ Γ IF (Z=1) THEN Goto Γ
JPNZ Γ IF (Z=0) THEN Goto Γ
ADD AC = AC + R, Set Z to 1 if result = 0 else set Z to 0
SUB AC = AC - R, Set Z to 1 if result = 0 else set Z to 0
INAC AC = AC + 1, Set Z to 1 if result = 0 else set Z to 0
CLAC AC = 0, Set Z to 1
AND AC = AC ^ R, Set Z to 1 if result = 0 else set Z to 0
OR AC = AC ∨ R, Set Z to 1 if result = 0 else set Z to 0
XOR AC = AC ⊕ R, Set Z to 1 if result = 0 else set Z to 0
NOT AC = AC′, Set Z to 1 if result = 0 else set Z to 0

COMPUTERS IN EDUCATION JOURNAL 38

VISUALIZATION TOOL FUNCTIONS

The Relatively Simple Computer System

Simulator is a Java applet that runs in any web
browser with the Java 2 Virtual Machine
version 1.4 plug-in, freely available online.6
The multimedia quick-start guide requires the
Macromedia Flash plug-in.7

After starting the simulator, it presents the

opening screen, shown with annotations in
Figure 2.

Typically, the user starts by entering an

assembly language program in the program
text area and assembling the program. The
simulator lists any errors encountered, and the
user corrects and re-assembles the program until
it assembles properly. Once this is done, the
user may view the contents of memory and the
value at the I/O device. The user may also

Figure 2: Relatively Simple Computer System Simulator opening screen (annotated)

modify the contents of both memory and the I/O
port; this is useful for entering data to be used
by the program. The user may select either a
hard-wired or microcoded control unit for the
visualization.

The user may simulate and visualize the

behavior of the system in one of several modes.
The user can execute a program in its entirety,
only viewing the contents of the registers and
memory after the program has terminated. This
is useful when the user is primarily concerned
with creating working code rather than
visualizing the functions of the system.
Also, the user can set breakpoints within
the program, continuously executing code until
a breakpoint is reached. For more detailed
simulation of instructions, the user can also
execute individual instructions, as well as step
through the operations which occur during
individual clock cycles as the instruction is

COMPUTERS IN EDUCATION JOURNAL 39

fetched, decoded, and executed. In every mode,
the user may trace the execution of some or all
of the instructions. Using the trace option, the
user may display the contents of all registers or
only those registers in the instruction set
architecture, either after every instruction or
after every clock cycle.

The "View System" button in Figure 2 brings
up a separate window with the system display,
as shown in Figure 1. This window illustrates
the system, as well as the contents of the
registers, within the Relatively Simple CPU.
The user can view all registers within the CPU,
or only the AC, R, and Z registers in its
instruction set architecture. The user simulates
the execution of the assembly language program
using this window.

Regardless of the execution mode, the user

starts the system by specifying the memory start
address. The simulator then animates the flow
of data on the address and data buses using dots
that move along the bus in the direction of data
flow. The simulator also highlights the signals
on the control bus when they are active by
displaying them in red. This is done for every
clock cycle of every instruction to give students
a more intuitive feel for how data moves
between components within a computer system
as it fetches, decodes, and executes instructions.
To facilitate continuous mode execution, the
user may disable animation, such as when
checking to see whether or not a program
produces the correct results.

OTHER SIMULATORS

We have developed several

simulators/visualization tools at the New Jersey
Institute of Technology for computer
architecture education. This paper has
described the Relatively Simple Computer
System Simulator. This simulator and its source
code are available on the companion web site
for the textbook on which it is based.8,9 Other
simulators developed through this project are

listed below; their source and executable code
are also available at these same web sites, and
are also freely available under the terms of the
GNU General Public License.10

RELATIVELY SIMPLE CPU SIMULATOR:
This simulator11 illustrates the flow of data
between components within the Relatively
Simple CPU as it fetches, decodes, and executes
instructions. It also uses animation to illustrate
data flow and highlights asserted control signals
to give users a more intuitive feel for how the
CPU works. As with the Relatively Simple
Computer System Simulator, it allows the user
to enter and simulate the execution of programs
in direct mode, using breakpoints, or by single
stepping, either by instruction or by clock cycle.

VERY SIMPLE CPU SIMULATOR: Before
presenting the Relatively Simple CPU in5, an
even simpler, 4-instruction CPU is presented
and designed. This simulator12 functions like the
Relatively Simple CPU simulator for this
simpler CPU.

PROGRAMMABLE LOGIC DEVICE
SIMULATOR: This simulator illustrates how a
generic, low-density PLD functions. The user
selects the number of inputs and outputs, up to
four for each, and makes and breaks connections
within the PLD to “program” functions into the
device.

WALLACE TREE SIMULATOR: Wallace
Trees are combinatorial logic circuits used to
multiply binary integers. Constructed using
Carry-Save Adders, they are a fast, efficient
method to implement multiplication. Since
these adders do not propagate carry values
between bits, they are faster than parallel adders
and can produce multiplication products faster
than other multiplication hardware. This
simulator13 allows students to multiply binary
values with 4, 6, or 8 bits, illustrating the
functions of each component within the Wallace
tree and how it generates the final product of
these values.

COMPUTERS IN EDUCATION JOURNAL 40

ACKNOWLEDGMENTS

Development of the Relatively Simple

Computer System Simulator was supported by
the National Science Foundation through the
Gateway Engineering Education Coalition, and
the United States Department of Education via
the Ronald E. McNair Postbaccalaureate
Achievement Program.

Additional funding for development of the

other visualization tools created through this
project was provided by the New Jersey Center
for Multimedia Research and through the New
Jersey Institute of Technology’s Provost's
Challenge Grant Program.

REFERENCES

1. Patterson, D. and J. Hennessy. Computer
Organization & Design: The
Hardware/Software Interface, 2nd edition,
San Francisco: Morgan Kaufmann
Publishers, 1998.

2. Stallings, W. Computer Organization and

Architecture, 5th edition, Upper Saddle
River, NJ: Prentice Hall, 2000.

3. Tanenbaum, A. Structured Computer

Organization, 4th edition, Upper Saddle
River, NJ: Prentice Hall, 1999.

4. Mano, M. Computer Systems Architecture,

3rd edition, Upper Saddle River, NJ:
Prentice Hall, 1993.

5. Carpinelli, J. Computer Systems

Organization and Architecture. Reading,
MA: Addison-Wesley, 2001.

6. URL: java.sun.com; Sun Microsystems

Corporation web site for Java tools and
utilities.

7. URL: www.macromedia.com; Macromedia

Corporation web site.

8. URL: www.awl.com/carpinelli; Companion
web site for Computer Systems Organization
and Architecture.

9. URL: www.awl.com/info/carpinelli;

Companion web site for Computer Systems
Organization and Architecture.

10. URL: www.gnu.org; GNU General Public

License.

11. Carpinelli, J. “The Relatively Simple CPU

Simulator,” ASEE Computers in Education
Journal, vol. XII, no. 2, April-June 2002,
pp. 20-26.

12. Carpinelli, J. “The Very Simple CPU

Simulator,” Proceedings of the 2002
Frontiers in Education Conference, Boston,
MA, November 2002.

13.Carpinelli, J. and M. Dokachev. “The

Wallace Tree Simulator,” Proceedings of the
2003 American Society for Engineering
Education Conference, Nashville, TN, June
2003.

BIOGRAPHICAL INFORMATION

John D. Carpinelli is an associate professor of

Electrical and Computer Engineering, and
Computer and Information Sciences, at New
Jersey Institute of Technology. His research
interests include interconnection networks,
computer architecture, parallel processing,
distance learning, and computer simulation. He
is the author of the textbook Computer Systems
Organization and Architecture (Addison-
Wesley, 2001).

COMPUTERS IN EDUCATION JOURNAL 41

	ABSTRACT
	INTRODUCTION
	THE SYSTEM UNDER SIMULATION
	VISUALIZATION TOOL FUNCTIONS
	OTHER SIMULATORS
	ACKNOWLEDGMENTS
	REFERENCES

