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ABSTRACT 
 

This paper describes a design methodology 
useful for team-based (cooperative) and 
problem- based embedded systems education. 
The design methodology includes a detailed 
design convention and formalized hardware 
and code design reviews where the quantity 
and nature of each design errors are 
documented. Reviews are held before design 
implementation and dramatically reduce 
development time by aborting the far too 
common cycle of develop, test, change, and 
test again. The design methodology presented 
here yields a high-quality product within a 
short design cycle, while mimicking design 
methodologies found in industry. 
Furthermore, data obtained in design 
reviews can be used to improve the 
instruction quality and track the maturity of 
the student design skills. An added benefit of 
the methodology is development and exercise 
of the students' teaming and communication 
skills often neglected by traditional 
engineering curricula. The proposed 
methodology has been used in a senior-level 
embedded systems course at Mississippi State 
University. In this course, student teams 
design, build, and troubleshoot a 
microcontroller-based project composed of 
common embedded systems peripherals, 
including I/O and electromechanical devices, 
industry standard communication networks, 
and complex digital integrated circuits. The 
target design is progressive requiring each 
successive subsystem to be incorporated 
without disturbing previously completed 
subsystems. Details of the methodology as it 
relates to this course offering, sample design 
review forms, collected data and discussion 

are presented. Course evaluations were 
obtained from students and external 
reviewers, and the results show that offering 
was well received and achieved its 
educational objectives. 

 
INTRODUCTION 

 
Embedded computer systems are quietly 

changing our world — the way we eat, play, 
work, and live. Embedded systems are used 
in a diverse range of products including 
home appliances, automobiles, toys, and 
medical equipment. Embedded systems are 
located at the “front line” where technology 
interacts with the physical world. These 
systems measure temperature, motion, 
human response, and other inputs. They also 
control motors and other devices, and deliver 
information for human consumption. The 
movement of the last two decades toward 
more ubiquitous computing systems will 
continue and embedded systems will become 
even more prominent in every aspect of 
technology and life.6  Engineers comfortable 
with common embedded systems 
components, embedded systems design, and 
embedded system functions, such as data 
acquisition, processing, and delivery, will be 
well equipped for the future. 

 
Approaches to embedded systems education 

are as varied as the programs that contain 
them. Most approaches have student teams 
specifying, designing, and implementing their 
own designs. While this situation simulates 
professional engineering practice, the 
experience very likely is the student’s first 
exposure to the design process.4 Not 
surprisingly, careful and resource intensive 
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supervision is required if designs are to be 
successful. Structured laboratory experiences 
(each student or group of students perform 
rigid and contrived experiments) require less 
faculty resources but do little to develop 
student   design   and   project    management  
skills .10,12 A compromise between the two 
approaches has been created by the author.2 

 
The embedded systems design experience 

described in2  strives to develop professional 
skills that will serve students well in their 
careers in addition to the “traditional” 
technical skills the student expect. 
Overarching goals of the experience are to 
expose the student to a realistic embedded 
systems design environment and to develop 
the student’s teamwork and lifelong learning 
skills. The design experience strives to 
emulate situations found in industry. 
Students work in cooperative design teams 
composed of students with diverse technical 
backgrounds and skill sets. Students must 
develop teamwork and communication skills. 
Lifelong learning skills are promoted 
through the design experience’s problem-
based learning approach. 

 
In an initial offering of the experience 
described in 0, student teams commonly 
reported “pulling all-nighters” in the lab. 
Rarely were the marathon sessions spent in 
hardware   design   or  trouble-shooting.      A  
 

 
Figure 2._Waterfall development process 

 
 

questioning of the students revealed that 
much of the effort was in software 
programming, testing, debugging, and 
further testing.   Designs made excruciatingly 
slow progress toward meeting the system 
requirements. The author (the course 
instructor) was aghast. This cohort was 
exceptional well qualified by prior experience 
(obtained via cooperative education rotations 
in industry) and high marks in prerequisite 
courses. Further investigation revealed the 
cohort was utilizing a disturbing 
development cycle, best described as “trial-
and-error”. The development cycle employed 
by the students was ad hoc and chaotic. Using 
the Software Engineering Institute’s 
Capability Maturity Model (CMM), the 
students’ process was textbook CMM Level 
1.14  (See Fig.1 ). 
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Figure 1._ “Processless” development (CMM 
Level 1) 
 

In the following sections, the design 
experience is reviewed briefly. Observations 
from the initial offering are presented. Then, 
improvements to the design experience are 
suggested. Finally, faculty and student 
assessment results from a second offering of 
the course are presented and discussed. 
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DESIGN  EXPERIENCE 
 
Before creating the design experience, input 

from faculty, alumni, and employers was 
solicited. It was agreed that it was important 
that students, in addition to learning about 
embedded systems, (i) experience an 
environment as close to industry as possible, 
(ii) practice interpersonal and 
communication skills, and (iii) develop 
lifelong learning skills. These goals are what 
Waitz and Barrett term “implicit 
curriculum”,      those     educational     topics  
students are expected to know (often 
requested by employers and alumnae/i), but 
not taught in any course.16  

 
The design experience is offered at the 

senior and introductory graduate students as 
a sixteen- week semester three credit-hour 
course. The course was organized into two 
hours lecture and three hours laboratory 
each week. Since the later design tasks 
require much time, lecture periods are 
scheduled for every meeting early in the 
semester to cover subject material required 
in the laboratory portion of the course. 
Therefore, three hours of lecture and three 
hours of laboratory were given in the first 
portion of the semester. Later, lectures were 
culled back to one hour per week with some 
informal meetings occurring in the design 
lab. The author’s university requires 
students to own their own laptop computer. 
Freeware tools and round-the-clock access to 
the design lab gives student teams flexibility 
to set working hours to accommodate busy 
schedules. 

 
DESIGN  ENVIRONMENT 

 
Simulating an industrial-like working 

environment increases the realism of the 
project    and   student    perception    of    the 
relevance of their education.4       Design tools  
and practice should mimic their industrial 
counterparts as closely as university 
constraints allow. Design software tools 

should include “industrial-strength” features 
such as real-time in-circuit debugging and 
field programmability, while being low cost 
or free and easily to install and operate.  

 
Constituent employers noted that new 

engineering graduates are not accustomed to 
or not willing to follow design specification 
and conform to corporate design practices 
such as design and coding conventions. The 
experience in2  was created, in part, to give 
students exposure to strict design 
specifications and conventions and the need 
to follow them faithfully. The teams are 
required to design according to a progressive 
design specification. The design specification 
is “progressive” as the complete design is 
divided into distinct tasks of subsystem 
design. Each week, the team creates and 
incorporates the week’s design into the 
system. All previous tasks must continue to 
function as described in their specifications. 
Some have suggested that long retention 
learning and skill adoption does not take 
place until skills are internalized and used as 
a part of a “professional persona”.13  The 
progressive specification used in the 
experience leads to this internalization. 

 
Teams are required to design according to 

specified hardware and software 
programming conventions. Hardware design 
conventions include specific rules on 
integrated circuit placement on breadboards, 
wiring color conventions, and limitations on 
wiring resistances and loading capacitances. 
Programming conventions require students 
to follow specific variable, subroutine, macro, 
and library naming rules. Memory usage is 
strictly specified, and all code written is to be 
as hardware, memory, peripheral, and 
frequency independent as possible. Hardware 
design and software programming 
conventions facilitate cooperative designs 
where subsystems created by individual 
students can be combined together. 
Furthermore, design conventions facilitate 
and ease intra- team, inter-team, and team-
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instructor communication during design 
reviews. This cooperative, team-based design 
flow approximates the cooperative learning 
technique called “jigsaw”.11  

 
Finally, the importance of specification and 

design conventions adherence is further 
reinforced as the lab progresses. After the 
first few tasks are complete and students 
have confidence in their hardware and 
software design skills, existing intellectual 
property (IP), such as circuit and software 
libraries, is incorporated into the design. 
Component manufacturers provide a portion 
of the IP with the remainder created by 
students in previous course assignments. 

 
COOPERATIVE  DESIGN  SKILLS 

 
In data taken from employers hiring 

graduates from the author’s institution, a 
common request is that engineering 
education should work to improve teamwork 
and communication skills. Other educators 
have heard similar comments from various 
industries.8  ABET Criterion 3(d) and 3(g) 
have similar requirements.1  Students must 
practice those workplace social skills like 
conflict resolution and polite communication 
of potentially painful critical design review 
comments. Interpersonal skills are exercised 
further with team-building active learning 
exercises during lectures and with group 
homework assignments.11  Furthermore, 
students learn interdependence and group 
accountability. 

 
LIFELONG  LEARNING  SKILLS 

 
ABET’s Criteria 3(i) requires that 

engineering programs demonstrate that 
graduates have a commitment and ability for 
lifelong learning.1  Programs must strive to 
make students aware that they are 
responsible for their own learning, not the 
teacher. In effect, university education is the 
start of a professional education, not the 
culmination. When confronted with the 

realization that they are responsible for their 
own learning, students often feel self-doubt 
and lack self-confidence. Students can 
progress through seven steps similar to those 
associated with trauma and grief.17 Often, 
these steps are manifested as resistance to 
any instructional pedagogy that deviates 
from passive learning. Student resistance 
fades as their abilities and confidence grow .3 

 
Student are required to critically read and 

understand component datasheets. The 
student must comprehend the design from a 
detailed specification. Reconciling datasheet 
information with the design specification 
requires all six levels in Bloom’s Taxonomy: 
identification of design requirements 
(knowledge), interpretation of same 
(comprehension), derivation of possible real-
time and resource constraints (analysis), 
generation of solutions (application), 
implementation of designs (synthesis), and 
selection of a suitable design (evaluation). 

 
All homework and lab designs are 

performed as student teams with a single 
deliverable per team. Students must function 
effectively in a group working together 
toward a common goal. Cooperative learning 
and design teams are a proven technique to 
facilitate these skills.11,13 Much research 
shows that each experience in a sound 
cooperative learning environment benefits 
the students in many ways. Students learn to 
rely on themselves and one another. The 
instructor becomes one resource, not the one-
and-only resource.11,15  Therefore, lifelong 
learning skills are honed. 

 
OBSERVATIONS  FROM  INITIAL  

OFFERING 
 
In keeping with the tenet of lifelong 

learning that students are responsible for 
their own learning, students must be held 
responsible for assessing instructional 
effectiveness. Student assessment aids in 
maturation of team citizenship3 and 
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promotes reflective evaluation.10  Student-
based assessments were taken three ways in 
the initial course offering. First, students 
provided qualitative mid-semester course 
evaluations and suggestions. Specifically, 
they provided feedback on what instructional 
methods are and are not “working” for them, 
which course topics have been clearly 
understood, and which topics are still 
confused. Students were encouraged to 
provide suggestions to improve the 
remainder of the course. I adopted my 
teaching style as much as possible to further 
engage the students in the assessment 
process. Second, students provided weekly 
quantitative team citizenship and 
participation assessments of their teammates 
and themselves. This assessment provides the 
individual accountability required in 
cooperative learning and prevents academic 
“hitchhiking”.11  “Hitchhikers” and 
“overachievers” will exist within any 
cooperative effort. That fact, in itself, is a 
valuable lesson for students to learn. I have 
used a simple “autorating” scheme, much 
like the one in,9  for years with much success. 
Each team’s design task is evaluated as a 
whole. Each team member receives an 
individual score computed from the team’s 
score adjusted by a “citizenship” factor 
computed from the team’s evaluation forms.9 
Finally, students were asked to assess the 
course as a whole at the end of the semester. 
They evaluated the skills they obtained and 
the course’s perceived relevance. To the 
statement “I have become more competent in 
the (embedded systems) subject area because 
of this course”, the students agreed with a 
mean score of 4.56 on a Likert scale, where 1 
is “strongly disagree” and 5 is “strongly 
agree”. In the final course evaluations, a 
significant number of students cited 
“integration and application of material 
learned in prior courses” as the most 
enjoyable part of the experience. One student 
reported that the course made them realize 
that they had “actually learned something” 
during their years in school. 

Faculty reviewers, usually the student’s 
senior design project advisor, were asked to 
evaluate the design experience effect upon 
the student. Reviewers observed that the 
cohort exhibited average or better abilities in 
the areas described by objectives given in.2 
Many influences are involved in a student’s 
education, and the design experience 
described here is only a part of that 
education. However, I take some pride in 
learning that several external faculty 
reviewers commented that many students 
from this cohort executed some of the most 
successful capstone projects in recent years. 
Finally, students in this initial offering were 
seen in the student common areas 
brainstorming capstone design project ideas, 
collaborating, and studying for many 
different courses. This continued in the 
semesters following the course offering. I 
interpret this as evidence that students have 
realized some value-added benefit to 
cooperative learning and have started to 
internalize the interpersonal and 
communication skills. 

 
The cohort taking the initial offering was 

exceptionally well prepared. Most students 
had GPAs placing them in the top of the 
class. Every team was successful in meeting 
the design specification fully. Many teams 
implemented extra features. However, their 
effort was not efficient. Many students spent 
unbelievably long hours in the lab. Working 
through the night until the wee hours was 
common. My TA and I were perplexed. Our 
prototype effort during the previous semester 
was arduous work, but we did not spend the 
hundreds of person-hours that these “all-
star” teams were exerting. Questioning the 
students exposed that the long hours were not 
spent in hardware design or troubleshooting. 
Most of their time was in software 
programming, testing, debugging, and 
further testing. In general, the team would 
write code for the task, download onto the 
target hardware, and run it. As expected, it 
would often crash. The latest code changes 
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would be examined, and a rapid decision 
formed as to the cause. A single line of code is 
changed, and the process begins a new. Most 
teams were developing the code in an 
evolutionary, trial-and-error process. They 
seldom gave any thought to the ramifications 
brought about by changing one line of code. 
When that “fix” didn’t work, they changed 
another line of code. After several hours, 
their software modifications created a 
multitude of defects that they hoped to find 
in testing. My discovery of their methods 
came late in the semester. I vowed to take 
corrective action in the next offering. 

 
TAKE  TWO — DESIGN  EXPERIENCE 

IMPROVEMENTS 
 

In order to impose a more thoughtful, 
systematic, and repeatable design process in 
the second offering of the embedded systems 
design course, I turned to proven IEEE 
Software Engineering Standards. Most 
introductory software engineering texts, 
like14, provide an excellent introduction. 
 

ADDING  “PROCESS”  TO   SOFTWARE 
DEVELOPMENT 

 
In the university environment, the “time-to-

market” is approximately 16 weeks. This 
short duration makes it difficult to motivate, 
train, and deploy a full-featured industrial 
software development process with students 
possessing a limited software engineering 
background. The foremost learning objective 
of the offering described here is embedded 
systems, to include hardware, software, and 
interfacing.2  However, a main objective of 
the experience is to create a realistic team-
based design environment. Toward this end, 
I added requirements based very loosely on 
two IEEE software engineering standards to 
the course’s second offering. Specifically, 
IEEE Standard 1028 (Software Reviews), and 
IEEE Standard 982.1 (Software Development 
Metrics) were selected to transform the first 
offering’s development process in Fig. 1  into 

the more mature and reproducible 
development process in Fig. 2. While the 
academic calendar restrains us from 
deploying a full feature process, the additions 
described give our development process at 
least some elements in CMM Levels 2 and 
3.14  

 
ADDING  FORMAL  DESIGN  REVIEWS  
TO  THE DEVELOPMENT  PROCESS 

 
IEEE Standard 1028 defines five different 

types of review for software development. In 
the interest of time and to facilitate teaming 
and communication skills, I chose to 
implement only one review, the “Inspection”. 
In the course offering described here, these 
inspections are called “Code Design 
Reviews”. These reviews create a peer 
evaluation of code before it is deployed. 
During the review, “impartial” reviewers 
(team members who did not author the code) 
try to identify software defects, deviations 
from standards and requirements, and 
determine the code’s behavior as written, not 
its intended behavior. The goal of this design 
review process is to identify as many defects 
as possible. (Fixes are made by the code 
author at a later time.) 

 
In the design review process, there are four 

well-defined design review roles: coordinator, 
author, reader, and recorder. Ideally, each 
role is played by a different team member. 
The role of the coordinator is to facilitate 
communication, schedule meetings, and 
ensure the process is successful. The author is 
the person who wrote the code and, 
ulimately, corrects the defects identified by 
the other team members. The reader and 
recorder act as impartial code reviewers (in 
addition to the coordinator) and have major 
roles during the design review meeting. 

 
For the software development portion of the 

project, the “development activities” block in 
Fig. 2 involves five steps: 
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• Planning (coordinator and author) 
Code design review planning involves the 
coordinator and the author. After the 
author creates a cleanly compiled code 
module, the author requests a code design 
review meeting be scheduled and sends 
the code module to the coordinator. The 
coordinator determines a time and 
location for the meeting that is suitable 
for all team members, and sends each 
team member the code to be reviewed. 
For each week’s design task described in2, 
there might be several significant code 
modules being written. Therefore, the 
coordinator might be dealing with 
multiple authors, or the team may select 
to rotate the coordinator role for each 
code author. In either case, most teams 
elect to hold a single code design reviews 
meeting where the design review roles 
rotate depending on the code being 
inspected. 
 

• Preparation (entire team) 
Each team member prepares for the 
meeting by reading and inspecting the 
candidate code before the meeting. The 
author is encouraged to do so as well. In 
fact, one study has shown that upwards of 
90% of code defects are identified during 
the preparation step before the actual 
code design review meeting 0. 

 
• Design Review Meeting (entire team) 

The coordinator’s role is to keep the 
review meeting on task and to ensure 
attendance by all team members. 
 
The reader is to do just that: read the 

written code’s behavior aloud. The reader 
must be vigilant to paraphrase the code’s 
behavior as written, not the code’s intent. 
Therefore, the reader should never be the 
author. The reading should be 
comprehensive; the review critiques 
everything about the code: instructions, 
headers, comments, formatting, coding 
conventions, and data interfaces. 

The recorder maintains written record of 
the code review meeting findings. Sample 
design review meeting forms are given in 
the Appendix. 

 
The code’s author is present only to 

clarify questions that cannot be 
ascertained from the code itself. (Requests 
for the author to clarify the code is usually 
a sign of poorly design work.) Under ideal 
conditions, the author will not be required 
to say anything. Another important task of 
the coordinator is to ensure that the design 
review is impersonal. The author and 
his/her ability is not be critiqued, only the 
written code is under review. The author 
should never be placed into a situation 
where he/she feels forced to defend 
themselves. 

 
• Rework (author) 

At the end of the design review meeting, 
the team determines whether the severity 
and number of defects warrants 
additional design review inspections. If so, 
the author uses the defect summary form 
to correct all defects identified and 
submits the corrected code to the 
coordinator who schedules another design 
review meeting as specified in the 
previous steps. If defects are few and 
minor in nature, the team may opt for the 
author to correct the defect independently 
and proceed to the follow-up step. 
 

• Follow-up (coordinator) 
After the author has corrected the defects 
identified in the meeting. The revised 
code is sent to the coordinator again. 
Using the defect forms previously 
completed, the coordinator determines if 
the author has corrected the defects 
satisfactorily. If corrections do not appear 
satisfactory to the coordinator, he/she can 
request additional rework by the author. 
When the coordinator is satisfied with the 
code, the coordinator approves the code 
to proceed to testing and deployment in 
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the lab. 
 

I imposed one additional constraint on the 
design teams. The code design review process 
is to be done after compilation, but before 
testing. After the author has completed the 
code module in question and obtained an 
error-free and warning-free compilation, 
then, and only then, can he/she request the 
coordinator arrange a design review meeting. 
The students are instructed that the code in 
question should not be run on the simulator, 
or programmed onto the hardware before 
the design review. The compiler is used to 
check syntax. The author verifies code 
functionality mentally. A quick “test-drive” 
of the code in simulation or in reality is not 
allowed until after the follow-up step in the 
code design process. This requirement is 
imposed to force the student to mentally 
check and cross-reference every action 
written in the code. Too often, students (and 
mature programmers, as well) write code 
thinking if that some esoteric, unexpected 
behavior is created that it will be caught in 
testing. In short, programmers often put off 
thinking about details until after the code has 
taken shape. Of course, data has shown, time 
and again, that correcting defects at later 
stages of development is much more 
expensive than if corrected earlier.14  Since 
simulation and testing are not allowed before 
peer review, the code’s author will spend the 
time to think through the code and its effects 
fully so as not to be embarrassed. 

 
MEASURING  THE  PROCESS 

 
Software development metrics can increase 

productivity, identify development process 
shortcomings, increase software quality, and 
aid in development planning.14  Furthermore, 
students’ confidence in abilities can be 
increased by comparing their own metrics to 
published values in the literature. As most 
educators will attest, students do not always 
believe or follow advise gleaned from the 
instructor’s experience. In the first offering, 

students listened attentively to stories from 
my industrial experience in embedded 
systems design. However, few were willing to 
commit the energy to implement many of the 
guiding principles created from these 
examples. Most students were content to use 
their own development process even though 
my experiences show that they are defective 
or inefficient. Software metrics provide 
“hard” and indisputable evidence. 

 
Many development metrics in IEEE Std. 

982.1 are used and obtained very naturally 
with the design reviews discussed in the 
previous section. During the design reviews, 
students were asked to record 

 
• Defects 

Recorded by author, task, type (see forms 
in Appendix), and severity 

• Person-hours 
Recorded by team member, task, and 
activity (design, development, review, and 
testing) 

• Output 
Recorded as Lines of Code (LoC) by team 
member as author, task, and routine 

 
Each team member maintains their own 

records. Students are required to compute 
several metrics in a variety of ways. Coding 
efficiency is measured in LoC/workday, 
where a workday is defined as eight person-
hours of effort. Assuming a contract hourly 
wage of $75/hour, each student determines 
their development cost in $/LoC. Code 
quality is measured as number of defects per 
thousand LoC. 

 
At several points during the semester, I 

collect data from each team and compare the 
productivity of each team at the next lecture. 
This allows me to (i) give feedback to each 
student to ensure quality data collection, (ii) 
identify teams with a poor team dynamic, (iii) 
promote a friendly competition between 
teams to operate with maximum efficiency 
and lowest coding defect rate, and (iv) 
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motivate engaging discussion on ethical, 
economic, and design methodology issues. 
 

OBSERVATIONS  AND  DISCUSSION 
 
An inventory of the students’ abilities was 

taken during the initial course meeting. Each 
student completed the survey form in the 
Appendix. Students provided information on 
their performance in the prerequisite classes, 
an introductory microprocessors course and 
an introductory electronics course. The 
students gave a self-assessment of their 
ability to perform seven skills needed during 
the design experience. The students were 
asked to provide additional information 
detailing any prior experience with 
embedded systems design. Students were to 
describe their pre-course impressions of the 
course content and objectives. Finally, 
student expectations were measured to 
determine their motivation for taking the 
course and what they expected to learn. 

 
The cohort consisted of eighteen seniors 

majoring in electrical engineering (EE) and 
computer engineering (CPE). All eighteen 
were men1. Eight students were pursuing EE 
degrees and ten were pursuing CPE degrees. 
Table 1 shows the results from the skills 
portion of the abilities survey. Students 
ranked their own abilities on a scale from 1 
(never heard/done it) to 5 (expert/guru). Each 
table entry is the average score with standard 
deviation in parentheses. 
 

Table 1: Abilities Survey Results 
 

                                                           
1   Women earn a little more than 10% of EE and CPE bachelor degrees at MSU. The two offerings of the elective class described here 
have enrolled exactly one woman out of 36 students (2.8%). Why women are not enrolling is an open question. 

The substantial number of required 
computer  science courses  in  the CPE 
degree  
program undoubtedly led to the strong high-
level language (HLL) programming skills 
among the cohort (A1). Students felt less 
comfortable with their assembly language 
programming abilities (A2) gained in the 
microprocessors course. These students’ 
observations agree with the observations 
leading to this course’s learning objectives.2 
Most students reported a “casual knowledge” 
or less in the “hands-on” skills (A5-A7). 
Again, student self-assessment agrees with 
the faculty observation leading to the 
creation of this course.2 Several students 
reported some substantial previous hardware 
and/or embedded system design experiences, 
mostly from cooperative education rotations 
in industry. The students were nearly 
unanimous in desiring additional hardware 
design experience, specifically interfacing 
digital   computers   to  “real-world”  devices. 
The phrases “build a device that does 
‘something’” and “get my hands dirty” 
appeared in numerous student responses. 
Several students cited the gaining the ability 
to “build their own robots” as an ultimate 
objective for the course. 

 
At the course conclusion, students were 

asked to take an optional online survey. The 
online survey was built, in large part, using 
the assessment infrastructure developed for 
EC2000   accreditation   at   Mississippi  State  

 
 

 
 
 

 Ability Before (N=18) After (N=15) 
A1 programming in HLL (C, C++, Java, etc.) 3.61 (0.608) 3.67 (0.724) 
A2 programming in assembly 3.17 (0.514) 3.93 (0.458) 
A3 programming user or human-machine interfaces 2.11 (1.079) 2.53 (1.187) 
A4 knowledge of a networking protocol (serial, I2C, CAN, etc.) 2.78 (1.114) 2.86 (0.770) 
A5 figuring out datasheets 3.39 (0.608) 3.93 (0.594) 
A6 hardware design 2.94 (0.873) 3.73 (0.961) 
A7 Soldering 3.06 (1.060) 3.67 (1.1047) 
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University.7  The survey questioned the 
students concerning frequency of selected 
actions, their perceived progress in abilities, 
and change in confidence levels.  About  83% 
 (15 out of 18) of the class participated in the 
survey. The ability survey questions in Table 
1 were asked again. The results are given in 
the rightmost column of Table 1. Student 
report a negligible increase for ability A1. 
This is expected as HLLs were used only as 
pseudocode to express ideas, program flow, 
or documentation. The design experience 
concentrated on assembly language, 
interfacing, and hardware design skills.2  The 
students report a substantial increase in these 
abilities (A2, A5-A7). 

 
 In the online survey, students were asked to 

rate the frequency of several actions. 
Frequencies are rated from 0 (never) to 3 
(very often/almost always). Table 2 shows the 
results ordered by average score with 
standard deviation given in parentheses. 
Students felt the design environment was 
“often”   like   what   they   thought   industry  

 
Table 2: Task Frequency Survey Results 

 

Table 3: Learning Objective Prog
would use. A significant portion of the cohort 
felt that they were “very often” called upon 
to work and communicate as a team and 
given assessment of each team member’s 
contribution. 

 
Students rated their personal progress in 

each of the course objectives formulated in.2 
Responses are rated from 0 (none) to 3 (a 
great deal). Table 3 shows the survey results 
ordered by average score. Students 
unanimously felt their understanding of 
embedded systems increased “a great deal”. 
This learning objective constitutes the 
“information transfer” expected by students. 
However, it is interesting to note a large 
increase in appreciation for the value of 
design documentation. My past experience 
has shown that students often dismiss these 
documents initially and express these feelings 
aloud. It seems that by the semester end, the 
students have bought into using these 
documents in the design process. As hoped, 
students responded that their abilities to 
learn   on   their  own,   work  in  teams,   and  

 
 

 
Progress made, BECAUSE OF THIS COURSE, in your ... (N=15) Score (0 to 3) 
understanding of embedded systems and components 3.00 (0.000) 
your appreciation of the usefulness of design documents like specifications and  
coding conventions 

2.80 (0.414) 

ability to troubleshoot systems involving hardware 2.73 (0.458) 
ability to create a system to meet a detailed design specification 2.67 (0.488) 
ability to read, understand, and apply datasheets 2.60 (0.910) 
skill to work in an engineering design team 2.60 (0.632) 
ability to troubleshoot systems involving software 2.53 (0.640) 
ability to apply and effectively use existing intellectual property, like software 

   libraries or circuits 
2.47 (0.640) 

ability to evaluate and justify competing designs against a specification 2.40 (0.737) 
skill in assessing the performance of yourself and others 2.00 (1.000) 
ability to motivate others to achieve their maximum potential 1.67 (1.175) 

In THIS COURSE, ... (N=15) Score (0 to 3) 
I had to make critical assessments of my work, other’s work, and our relative contributions 2.67 (0.617) 
I had to learn to work and communicate with others to accomplish my tasks 2.60 (0.632) 
I use knowledge or skills learned in previous/other classes 2.53 (0.640) 
I had to supplement material learned in lecture with self-study 2.20 (0.941) 
the design environment is very similar to what I know/envision industry to be like 2.07 (0.829) 
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troubleshoot     were      improved     by      the  
experience. Time constraints prohibited us 
from doing many of the team-building 
exercises I had planned. However, students 
note “some” improvement in their ability to 
motivate others. 
 

Students were also asked to rate their 
change in confidence, due to the taking the 
course, in several areas. Students rated the 
change from –2 (decreased greatly) to +2 
(increased greatly).  A  student  rating of zero 
denotes no change in confidence. Table 4 
shows the results ordered by average score. 
In Table 4, students report the greatest 
ability increases in teaming and leadership 
skills. Design ability increases lagged slightly. 
While in Table 3, students rated their 
progress in teaming behind some design 
abilities. I would propose that students rated 
their  absolute ability  levels in  Table 3, while 
Table 4 represents their perceived ability 
improvement. This interpretation leads me to 
think that students felt quite confident in 
their abilities with the mechanics and subject 
matter in the design experience. However, 
they were not as confident in their teaming 
skills, although they thought they were very 
much improved. 

 
I wish to convey a couple anecdotes about 

the design review process and the 
documentation required to support it. As 
expected, I encountered some initial 
resistance from the students. I was prepared 
and countered their resistance with many 
examples from the literature to support 
(quantitatively) the effectiveness of reviews. 
Of   course,   some  students  continued to   be 
 

Table 4: Confidence Change Survey Results 

 
skeptical of this process that they argued was 
a waste of time. They, as students are oft to 
do, wanted to dive in and design — a design 
process I termed “hacking”. I insisted the 
students humor me and follow the prescribed 
procedure for a few weeks. I promised we 
would discuss, evaluate, and incorporate any 
improvements they could suggest. (By the 
way, this is an excellent way to give students 
ownership and responsibility of their own 
learning.) After the first lab design task, one 
team was elated to give a testimonial. It went 
something like this: “We did not simulate, 
emulate, or download our code before the 
review process. Our review found several 
bugs in the code and hardware wiring errors. 
Each error was fixed and certified by the 
team. Our very first attempt at downloading 
our code onto the hardware was a success, 
and we were done with the lab in record 
time.” For the remainder of the semester, this 
team insisted on following the design 
procedures exactly. This team consistently 
finished assignments first and with high 
quality. Clearly, this team had internalized 
the design review process and made it a part 
of their “professional persona”. 

 
The end of the semester brings a much 

more complex design task to the team: 
integration of several different subsystem. 
This complex task helps to “sell” the 
methodical and documented design process 
to most of the remaining skeptics. But, I had 
one last trick up my sleeve to convince them. 
Money. That always gets the students’ 
attention. After all designs were completed 
and design metrics were accumulated, I had 
each team use their coding efficiency, defect-
production rate, and time expended to 
determine a Manufacture’s Suggested Retail 

Changes, as a result of TAKING THIS COURSE, in your .... (N=15) Score (-2 to +2) 
confidence in your ability to work in a design team has ... 1.27 (0.884) 
confidence in your ability to lead a design team has ... 1.20 (1.014) 
confidence in your ability to design, build, and troubleshoot hardware has ... 1.20 (0.676) 
confidence in your ability to design, build, and troubleshoot software has ... 1.13 (0.640) 
Self-reliance in learning new concepts or skills has.... 1.13 (0.516) 
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Price (MSRP) for the  
 

design, assuming several different potential 
sales volumes. A sample analysis is given in 
the Appendix. This exercise was more 
successful than I could have ever imagined. 
Students immediately recognized that the 
age-old adage “time is money” is very much 
true. They also appreciated that the design 
metrics could help them to monitor an 
ongoing design process and to make more 
accurate schedules in future projects. I am 
looking forward to incorporating similar 
exercises into my other courses. 

 
Further analysis of and reflection on the 

survey data is required, but initial inspection 
indicates the design experience was successful 
in teaching the “implicit curriculum” of 
teaming, communication, and lifelong 
learning skills. Also, students gained 
appreciation for a more formal and realistic 
design flow. The students felt the experience 
was realistic, and this heightens their 
perception of the relevance of their 
education. 

 

CONCLUSIONS 
 
In order to meet the current and future 

needs for embedded systems engineers, the 
author has created an embedded systems 
design experience that emulates industrial 
situations as much as possible. The student 
teams build a progressively more complex 
design using formal and documented design 
reviews and collect data to monitor their 
design performance. The student’s response 
is an increased engagement and higher 
perceived relevance of the educational 
experience. The team-based approach also 
develops the student’s teamwork and lifelong 
learning skills  
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Code Design Review
Error Listing FormUNIVERSITY

ELECTRICAL AND COMPUTER ENGINEERING

Project _____________________________________ Author _______________________________

Function Name(s)_________________________________________ Date ____________________

Recorder _______________________________________________________________________

Location Error description Major Minor
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Code Design Review
Summary FormUNIVERSITY

ELECTRICAL AND COMPUTER ENGINEERING
Project ______________________________________ Author _______________________________

Function Name ____________________________________________Date_____________________

Major bugs are ones that will result in a problem that the customer will see. Minor bugs are those that include
spelling errors, non-compliance with coding conventions, and poor workmanship that does not lead to a major error.

Time Code Design Review Started: ___________________________ Ended: ___________________

Recorder __________________________________________________________________

Num. of Errors Error Type

Major Minor

Code does not follow coding conventions

Function size and complexity are unreasonable

ISR size, complexity, execution time are unreasonable

Unclear expression of ideas in code

Poor encapsulation

Function prototype not correctly used

Data types do not match

Uninitialized variable at function start

Uninitialized variable going into loop

Poor logic - will not function as needed

Poor or missing comments

Error condition not caught or ignored

Switch statement without a default case

Incorrect syntax

Non-reentrant code in dangerous places

Slow code in speed-critical area

Interrupts are not masked during possible critical code

Other:

Other:
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 Project MSRP Analysis          
            
 Units sold (for amortization) 100   10000   1000000   
 Manuf costs % of BoM costs 100%  Manufacturing costs as percentage of BoM   

 Manufacturer margin 35%  
Manufacturer's profit (as percentage of 
TMC)   

 Distributor margin 30%  Distributor's profit (as percentage of distributor's cost)  
 Retailer margin 40%  Retailer's profit (as percentage of retailer's cost)  
            
                       
            
 NRE costs  $      18,750.00  obtain from Team semester metrics   
            
  Manufacturer          
    Development cost/unit   $    187.50    $       1.88     $       0.02  
    BoM cost (Given by instructor)   $     48.30    $     48.30     $     48.30  

  
  Estimated manufacturing 
costs   $     48.30    $     48.30     $     48.30  

       (labor, F&A on manuf.,  packaging, etc.)         
  Total manufactured cost (TMC)   $    284.10    $     98.48     $     96.62  
    Margin   $     99.44    $     34.47     $     33.82  
            
    Manufacturer's sales price   $    383.54    $    132.94     $    130.44  
            
  Distributor          
    Distributer's cost   $    383.54    $    132.94     $    130.44  
    Margin   $    115.06    $     39.88     $     39.13  
            
    Distrbutor's sales price (wholesale)  $    498.60    $    172.82     $    169.57  
            
  Retailer          
    Retailer's cost   $    498.60    $    172.82     $    169.57  
    Margin   $    199.44    $     69.13     $     67.83  
            
    Retailer's sales price (MSRP)   $    698.03    $    241.95     $    237.39  
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