
COMPUTERS IN EDUCATION JOURNAL 41

DESIGN METHODOLOGY SUITABLE FOR TEAM-BASED
EMBEDDED SYSTEMS EDUCATION

J.W. Bruce

Department of Electrical and Computer Engineering
Mississippi State University, Mississippi State, MS 39762-9571

jwbruce@ece.msstate.edu

ABSTRACT

This paper describes a design methodology
useful for team-based (cooperative) and
problem- based embedded systems education.
The design methodology includes a detailed
design convention and formalized hardware
and code design reviews where the quantity
and nature of each design errors are
documented. Reviews are held before design
implementation and dramatically reduce
development time by aborting the far too
common cycle of develop, test, change, and
test again. The design methodology presented
here yields a high-quality product within a
short design cycle, while mimicking design
methodologies found in industry.
Furthermore, data obtained in design
reviews can be used to improve the
instruction quality and track the maturity of
the student design skills. An added benefit of
the methodology is development and exercise
of the students' teaming and communication
skills often neglected by traditional
engineering curricula. The proposed
methodology has been used in a senior-level
embedded systems course at Mississippi State
University. In this course, student teams
design, build, and troubleshoot a
microcontroller-based project composed of
common embedded systems peripherals,
including I/O and electromechanical devices,
industry standard communication networks,
and complex digital integrated circuits. The
target design is progressive requiring each
successive subsystem to be incorporated
without disturbing previously completed
subsystems. Details of the methodology as it
relates to this course offering, sample design
review forms, collected data and discussion

are presented. Course evaluations were
obtained from students and external
reviewers, and the results show that offering
was well received and achieved its
educational objectives.

INTRODUCTION

Embedded computer systems are quietly

changing our world — the way we eat, play,
work, and live. Embedded systems are used
in a diverse range of products including
home appliances, automobiles, toys, and
medical equipment. Embedded systems are
located at the “front line” where technology
interacts with the physical world. These
systems measure temperature, motion,
human response, and other inputs. They also
control motors and other devices, and deliver
information for human consumption. The
movement of the last two decades toward
more ubiquitous computing systems will
continue and embedded systems will become
even more prominent in every aspect of
technology and life.6 Engineers comfortable
with common embedded systems
components, embedded systems design, and
embedded system functions, such as data
acquisition, processing, and delivery, will be
well equipped for the future.

Approaches to embedded systems education

are as varied as the programs that contain
them. Most approaches have student teams
specifying, designing, and implementing their
own designs. While this situation simulates
professional engineering practice, the
experience very likely is the student’s first
exposure to the design process.4 Not
surprisingly, careful and resource intensive

COMPUTERS IN EDUCATION JOURNAL 42

supervision is required if designs are to be
successful. Structured laboratory experiences
(each student or group of students perform
rigid and contrived experiments) require less
faculty resources but do little to develop
student design and project management
skills .10,12 A compromise between the two
approaches has been created by the author.2

The embedded systems design experience

described in2 strives to develop professional
skills that will serve students well in their
careers in addition to the “traditional”
technical skills the student expect.
Overarching goals of the experience are to
expose the student to a realistic embedded
systems design environment and to develop
the student’s teamwork and lifelong learning
skills. The design experience strives to
emulate situations found in industry.
Students work in cooperative design teams
composed of students with diverse technical
backgrounds and skill sets. Students must
develop teamwork and communication skills.
Lifelong learning skills are promoted
through the design experience’s problem-
based learning approach.

In an initial offering of the experience
described in 0, student teams commonly
reported “pulling all-nighters” in the lab.
Rarely were the marathon sessions spent in
hardware design or trouble-shooting. A

Figure 2._Waterfall development process

questioning of the students revealed that
much of the effort was in software
programming, testing, debugging, and
further testing. Designs made excruciatingly
slow progress toward meeting the system
requirements. The author (the course
instructor) was aghast. This cohort was
exceptional well qualified by prior experience
(obtained via cooperative education rotations
in industry) and high marks in prerequisite
courses. Further investigation revealed the
cohort was utilizing a disturbing
development cycle, best described as “trial-
and-error”. The development cycle employed
by the students was ad hoc and chaotic. Using
the Software Engineering Institute’s
Capability Maturity Model (CMM), the
students’ process was textbook CMM Level
1.14 (See Fig.1).

development
activities

system
specification

system
deployment

Figure 1._ “Processless” development (CMM
Level 1)

In the following sections, the design
experience is reviewed briefly. Observations
from the initial offering are presented. Then,
improvements to the design experience are
suggested. Finally, faculty and student
assessment results from a second offering of
the course are presented and discussed.

system
specification

system
deployment

system
requirements

architecture
design

detailed
design

development
activities

unit testing system testing

scope
of the

experience
described

here

“Construction” phase

COMPUTERS IN EDUCATION JOURNAL 43

DESIGN EXPERIENCE

Before creating the design experience, input

from faculty, alumni, and employers was
solicited. It was agreed that it was important
that students, in addition to learning about
embedded systems, (i) experience an
environment as close to industry as possible,
(ii) practice interpersonal and
communication skills, and (iii) develop
lifelong learning skills. These goals are what
Waitz and Barrett term “implicit
curriculum”, those educational topics
students are expected to know (often
requested by employers and alumnae/i), but
not taught in any course.16

The design experience is offered at the

senior and introductory graduate students as
a sixteen- week semester three credit-hour
course. The course was organized into two
hours lecture and three hours laboratory
each week. Since the later design tasks
require much time, lecture periods are
scheduled for every meeting early in the
semester to cover subject material required
in the laboratory portion of the course.
Therefore, three hours of lecture and three
hours of laboratory were given in the first
portion of the semester. Later, lectures were
culled back to one hour per week with some
informal meetings occurring in the design
lab. The author’s university requires
students to own their own laptop computer.
Freeware tools and round-the-clock access to
the design lab gives student teams flexibility
to set working hours to accommodate busy
schedules.

DESIGN ENVIRONMENT

Simulating an industrial-like working

environment increases the realism of the
project and student perception of the
relevance of their education.4 Design tools
and practice should mimic their industrial
counterparts as closely as university
constraints allow. Design software tools

should include “industrial-strength” features
such as real-time in-circuit debugging and
field programmability, while being low cost
or free and easily to install and operate.

Constituent employers noted that new

engineering graduates are not accustomed to
or not willing to follow design specification
and conform to corporate design practices
such as design and coding conventions. The
experience in2 was created, in part, to give
students exposure to strict design
specifications and conventions and the need
to follow them faithfully. The teams are
required to design according to a progressive
design specification. The design specification
is “progressive” as the complete design is
divided into distinct tasks of subsystem
design. Each week, the team creates and
incorporates the week’s design into the
system. All previous tasks must continue to
function as described in their specifications.
Some have suggested that long retention
learning and skill adoption does not take
place until skills are internalized and used as
a part of a “professional persona”.13 The
progressive specification used in the
experience leads to this internalization.

Teams are required to design according to

specified hardware and software
programming conventions. Hardware design
conventions include specific rules on
integrated circuit placement on breadboards,
wiring color conventions, and limitations on
wiring resistances and loading capacitances.
Programming conventions require students
to follow specific variable, subroutine, macro,
and library naming rules. Memory usage is
strictly specified, and all code written is to be
as hardware, memory, peripheral, and
frequency independent as possible. Hardware
design and software programming
conventions facilitate cooperative designs
where subsystems created by individual
students can be combined together.
Furthermore, design conventions facilitate
and ease intra- team, inter-team, and team-

COMPUTERS IN EDUCATION JOURNAL 44

instructor communication during design
reviews. This cooperative, team-based design
flow approximates the cooperative learning
technique called “jigsaw”.11

Finally, the importance of specification and

design conventions adherence is further
reinforced as the lab progresses. After the
first few tasks are complete and students
have confidence in their hardware and
software design skills, existing intellectual
property (IP), such as circuit and software
libraries, is incorporated into the design.
Component manufacturers provide a portion
of the IP with the remainder created by
students in previous course assignments.

COOPERATIVE DESIGN SKILLS

In data taken from employers hiring

graduates from the author’s institution, a
common request is that engineering
education should work to improve teamwork
and communication skills. Other educators
have heard similar comments from various
industries.8 ABET Criterion 3(d) and 3(g)
have similar requirements.1 Students must
practice those workplace social skills like
conflict resolution and polite communication
of potentially painful critical design review
comments. Interpersonal skills are exercised
further with team-building active learning
exercises during lectures and with group
homework assignments.11 Furthermore,
students learn interdependence and group
accountability.

LIFELONG LEARNING SKILLS

ABET’s Criteria 3(i) requires that

engineering programs demonstrate that
graduates have a commitment and ability for
lifelong learning.1 Programs must strive to
make students aware that they are
responsible for their own learning, not the
teacher. In effect, university education is the
start of a professional education, not the
culmination. When confronted with the

realization that they are responsible for their
own learning, students often feel self-doubt
and lack self-confidence. Students can
progress through seven steps similar to those
associated with trauma and grief.17 Often,
these steps are manifested as resistance to
any instructional pedagogy that deviates
from passive learning. Student resistance
fades as their abilities and confidence grow .3

Student are required to critically read and

understand component datasheets. The
student must comprehend the design from a
detailed specification. Reconciling datasheet
information with the design specification
requires all six levels in Bloom’s Taxonomy:
identification of design requirements
(knowledge), interpretation of same
(comprehension), derivation of possible real-
time and resource constraints (analysis),
generation of solutions (application),
implementation of designs (synthesis), and
selection of a suitable design (evaluation).

All homework and lab designs are

performed as student teams with a single
deliverable per team. Students must function
effectively in a group working together
toward a common goal. Cooperative learning
and design teams are a proven technique to
facilitate these skills.11,13 Much research
shows that each experience in a sound
cooperative learning environment benefits
the students in many ways. Students learn to
rely on themselves and one another. The
instructor becomes one resource, not the one-
and-only resource.11,15 Therefore, lifelong
learning skills are honed.

OBSERVATIONS FROM INITIAL

OFFERING

In keeping with the tenet of lifelong

learning that students are responsible for
their own learning, students must be held
responsible for assessing instructional
effectiveness. Student assessment aids in
maturation of team citizenship3 and

COMPUTERS IN EDUCATION JOURNAL 45

promotes reflective evaluation.10 Student-
based assessments were taken three ways in
the initial course offering. First, students
provided qualitative mid-semester course
evaluations and suggestions. Specifically,
they provided feedback on what instructional
methods are and are not “working” for them,
which course topics have been clearly
understood, and which topics are still
confused. Students were encouraged to
provide suggestions to improve the
remainder of the course. I adopted my
teaching style as much as possible to further
engage the students in the assessment
process. Second, students provided weekly
quantitative team citizenship and
participation assessments of their teammates
and themselves. This assessment provides the
individual accountability required in
cooperative learning and prevents academic
“hitchhiking”.11 “Hitchhikers” and
“overachievers” will exist within any
cooperative effort. That fact, in itself, is a
valuable lesson for students to learn. I have
used a simple “autorating” scheme, much
like the one in,9 for years with much success.
Each team’s design task is evaluated as a
whole. Each team member receives an
individual score computed from the team’s
score adjusted by a “citizenship” factor
computed from the team’s evaluation forms.9
Finally, students were asked to assess the
course as a whole at the end of the semester.
They evaluated the skills they obtained and
the course’s perceived relevance. To the
statement “I have become more competent in
the (embedded systems) subject area because
of this course”, the students agreed with a
mean score of 4.56 on a Likert scale, where 1
is “strongly disagree” and 5 is “strongly
agree”. In the final course evaluations, a
significant number of students cited
“integration and application of material
learned in prior courses” as the most
enjoyable part of the experience. One student
reported that the course made them realize
that they had “actually learned something”
during their years in school.

Faculty reviewers, usually the student’s
senior design project advisor, were asked to
evaluate the design experience effect upon
the student. Reviewers observed that the
cohort exhibited average or better abilities in
the areas described by objectives given in.2
Many influences are involved in a student’s
education, and the design experience
described here is only a part of that
education. However, I take some pride in
learning that several external faculty
reviewers commented that many students
from this cohort executed some of the most
successful capstone projects in recent years.
Finally, students in this initial offering were
seen in the student common areas
brainstorming capstone design project ideas,
collaborating, and studying for many
different courses. This continued in the
semesters following the course offering. I
interpret this as evidence that students have
realized some value-added benefit to
cooperative learning and have started to
internalize the interpersonal and
communication skills.

The cohort taking the initial offering was

exceptionally well prepared. Most students
had GPAs placing them in the top of the
class. Every team was successful in meeting
the design specification fully. Many teams
implemented extra features. However, their
effort was not efficient. Many students spent
unbelievably long hours in the lab. Working
through the night until the wee hours was
common. My TA and I were perplexed. Our
prototype effort during the previous semester
was arduous work, but we did not spend the
hundreds of person-hours that these “all-
star” teams were exerting. Questioning the
students exposed that the long hours were not
spent in hardware design or troubleshooting.
Most of their time was in software
programming, testing, debugging, and
further testing. In general, the team would
write code for the task, download onto the
target hardware, and run it. As expected, it
would often crash. The latest code changes

COMPUTERS IN EDUCATION JOURNAL 46

would be examined, and a rapid decision
formed as to the cause. A single line of code is
changed, and the process begins a new. Most
teams were developing the code in an
evolutionary, trial-and-error process. They
seldom gave any thought to the ramifications
brought about by changing one line of code.
When that “fix” didn’t work, they changed
another line of code. After several hours,
their software modifications created a
multitude of defects that they hoped to find
in testing. My discovery of their methods
came late in the semester. I vowed to take
corrective action in the next offering.

TAKE TWO — DESIGN EXPERIENCE

IMPROVEMENTS

In order to impose a more thoughtful,
systematic, and repeatable design process in
the second offering of the embedded systems
design course, I turned to proven IEEE
Software Engineering Standards. Most
introductory software engineering texts,
like14, provide an excellent introduction.

ADDING “PROCESS” TO SOFTWARE
DEVELOPMENT

In the university environment, the “time-to-

market” is approximately 16 weeks. This
short duration makes it difficult to motivate,
train, and deploy a full-featured industrial
software development process with students
possessing a limited software engineering
background. The foremost learning objective
of the offering described here is embedded
systems, to include hardware, software, and
interfacing.2 However, a main objective of
the experience is to create a realistic team-
based design environment. Toward this end,
I added requirements based very loosely on
two IEEE software engineering standards to
the course’s second offering. Specifically,
IEEE Standard 1028 (Software Reviews), and
IEEE Standard 982.1 (Software Development
Metrics) were selected to transform the first
offering’s development process in Fig. 1 into

the more mature and reproducible
development process in Fig. 2. While the
academic calendar restrains us from
deploying a full feature process, the additions
described give our development process at
least some elements in CMM Levels 2 and
3.14

ADDING FORMAL DESIGN REVIEWS
TO THE DEVELOPMENT PROCESS

IEEE Standard 1028 defines five different

types of review for software development. In
the interest of time and to facilitate teaming
and communication skills, I chose to
implement only one review, the “Inspection”.
In the course offering described here, these
inspections are called “Code Design
Reviews”. These reviews create a peer
evaluation of code before it is deployed.
During the review, “impartial” reviewers
(team members who did not author the code)
try to identify software defects, deviations
from standards and requirements, and
determine the code’s behavior as written, not
its intended behavior. The goal of this design
review process is to identify as many defects
as possible. (Fixes are made by the code
author at a later time.)

In the design review process, there are four

well-defined design review roles: coordinator,
author, reader, and recorder. Ideally, each
role is played by a different team member.
The role of the coordinator is to facilitate
communication, schedule meetings, and
ensure the process is successful. The author is
the person who wrote the code and,
ulimately, corrects the defects identified by
the other team members. The reader and
recorder act as impartial code reviewers (in
addition to the coordinator) and have major
roles during the design review meeting.

For the software development portion of the

project, the “development activities” block in
Fig. 2 involves five steps:

COMPUTERS IN EDUCATION JOURNAL 47

• Planning (coordinator and author)
Code design review planning involves the
coordinator and the author. After the
author creates a cleanly compiled code
module, the author requests a code design
review meeting be scheduled and sends
the code module to the coordinator. The
coordinator determines a time and
location for the meeting that is suitable
for all team members, and sends each
team member the code to be reviewed.
For each week’s design task described in2,
there might be several significant code
modules being written. Therefore, the
coordinator might be dealing with
multiple authors, or the team may select
to rotate the coordinator role for each
code author. In either case, most teams
elect to hold a single code design reviews
meeting where the design review roles
rotate depending on the code being
inspected.

• Preparation (entire team)
Each team member prepares for the
meeting by reading and inspecting the
candidate code before the meeting. The
author is encouraged to do so as well. In
fact, one study has shown that upwards of
90% of code defects are identified during
the preparation step before the actual
code design review meeting 0.

• Design Review Meeting (entire team)

The coordinator’s role is to keep the
review meeting on task and to ensure
attendance by all team members.

The reader is to do just that: read the

written code’s behavior aloud. The reader
must be vigilant to paraphrase the code’s
behavior as written, not the code’s intent.
Therefore, the reader should never be the
author. The reading should be
comprehensive; the review critiques
everything about the code: instructions,
headers, comments, formatting, coding
conventions, and data interfaces.

The recorder maintains written record of
the code review meeting findings. Sample
design review meeting forms are given in
the Appendix.

The code’s author is present only to

clarify questions that cannot be
ascertained from the code itself. (Requests
for the author to clarify the code is usually
a sign of poorly design work.) Under ideal
conditions, the author will not be required
to say anything. Another important task of
the coordinator is to ensure that the design
review is impersonal. The author and
his/her ability is not be critiqued, only the
written code is under review. The author
should never be placed into a situation
where he/she feels forced to defend
themselves.

• Rework (author)

At the end of the design review meeting,
the team determines whether the severity
and number of defects warrants
additional design review inspections. If so,
the author uses the defect summary form
to correct all defects identified and
submits the corrected code to the
coordinator who schedules another design
review meeting as specified in the
previous steps. If defects are few and
minor in nature, the team may opt for the
author to correct the defect independently
and proceed to the follow-up step.

• Follow-up (coordinator)
After the author has corrected the defects
identified in the meeting. The revised
code is sent to the coordinator again.
Using the defect forms previously
completed, the coordinator determines if
the author has corrected the defects
satisfactorily. If corrections do not appear
satisfactory to the coordinator, he/she can
request additional rework by the author.
When the coordinator is satisfied with the
code, the coordinator approves the code
to proceed to testing and deployment in

COMPUTERS IN EDUCATION JOURNAL 48

the lab.

I imposed one additional constraint on the
design teams. The code design review process
is to be done after compilation, but before
testing. After the author has completed the
code module in question and obtained an
error-free and warning-free compilation,
then, and only then, can he/she request the
coordinator arrange a design review meeting.
The students are instructed that the code in
question should not be run on the simulator,
or programmed onto the hardware before
the design review. The compiler is used to
check syntax. The author verifies code
functionality mentally. A quick “test-drive”
of the code in simulation or in reality is not
allowed until after the follow-up step in the
code design process. This requirement is
imposed to force the student to mentally
check and cross-reference every action
written in the code. Too often, students (and
mature programmers, as well) write code
thinking if that some esoteric, unexpected
behavior is created that it will be caught in
testing. In short, programmers often put off
thinking about details until after the code has
taken shape. Of course, data has shown, time
and again, that correcting defects at later
stages of development is much more
expensive than if corrected earlier.14 Since
simulation and testing are not allowed before
peer review, the code’s author will spend the
time to think through the code and its effects
fully so as not to be embarrassed.

MEASURING THE PROCESS

Software development metrics can increase

productivity, identify development process
shortcomings, increase software quality, and
aid in development planning.14 Furthermore,
students’ confidence in abilities can be
increased by comparing their own metrics to
published values in the literature. As most
educators will attest, students do not always
believe or follow advise gleaned from the
instructor’s experience. In the first offering,

students listened attentively to stories from
my industrial experience in embedded
systems design. However, few were willing to
commit the energy to implement many of the
guiding principles created from these
examples. Most students were content to use
their own development process even though
my experiences show that they are defective
or inefficient. Software metrics provide
“hard” and indisputable evidence.

Many development metrics in IEEE Std.

982.1 are used and obtained very naturally
with the design reviews discussed in the
previous section. During the design reviews,
students were asked to record

• Defects

Recorded by author, task, type (see forms
in Appendix), and severity

• Person-hours
Recorded by team member, task, and
activity (design, development, review, and
testing)

• Output
Recorded as Lines of Code (LoC) by team
member as author, task, and routine

Each team member maintains their own

records. Students are required to compute
several metrics in a variety of ways. Coding
efficiency is measured in LoC/workday,
where a workday is defined as eight person-
hours of effort. Assuming a contract hourly
wage of $75/hour, each student determines
their development cost in $/LoC. Code
quality is measured as number of defects per
thousand LoC.

At several points during the semester, I

collect data from each team and compare the
productivity of each team at the next lecture.
This allows me to (i) give feedback to each
student to ensure quality data collection, (ii)
identify teams with a poor team dynamic, (iii)
promote a friendly competition between
teams to operate with maximum efficiency
and lowest coding defect rate, and (iv)

COMPUTERS IN EDUCATION JOURNAL 49

motivate engaging discussion on ethical,
economic, and design methodology issues.

OBSERVATIONS AND DISCUSSION

An inventory of the students’ abilities was

taken during the initial course meeting. Each
student completed the survey form in the
Appendix. Students provided information on
their performance in the prerequisite classes,
an introductory microprocessors course and
an introductory electronics course. The
students gave a self-assessment of their
ability to perform seven skills needed during
the design experience. The students were
asked to provide additional information
detailing any prior experience with
embedded systems design. Students were to
describe their pre-course impressions of the
course content and objectives. Finally,
student expectations were measured to
determine their motivation for taking the
course and what they expected to learn.

The cohort consisted of eighteen seniors

majoring in electrical engineering (EE) and
computer engineering (CPE). All eighteen
were men1. Eight students were pursuing EE
degrees and ten were pursuing CPE degrees.
Table 1 shows the results from the skills
portion of the abilities survey. Students
ranked their own abilities on a scale from 1
(never heard/done it) to 5 (expert/guru). Each
table entry is the average score with standard
deviation in parentheses.

Table 1: Abilities Survey Results

1 Women earn a little more than 10% of EE and CPE bachelor degrees at MSU. The two offerings of the elective class described here
have enrolled exactly one woman out of 36 students (2.8%). Why women are not enrolling is an open question.

The substantial number of required
computer science courses in the CPE
degree
program undoubtedly led to the strong high-
level language (HLL) programming skills
among the cohort (A1). Students felt less
comfortable with their assembly language
programming abilities (A2) gained in the
microprocessors course. These students’
observations agree with the observations
leading to this course’s learning objectives.2
Most students reported a “casual knowledge”
or less in the “hands-on” skills (A5-A7).
Again, student self-assessment agrees with
the faculty observation leading to the
creation of this course.2 Several students
reported some substantial previous hardware
and/or embedded system design experiences,
mostly from cooperative education rotations
in industry. The students were nearly
unanimous in desiring additional hardware
design experience, specifically interfacing
digital computers to “real-world” devices.
The phrases “build a device that does
‘something’” and “get my hands dirty”
appeared in numerous student responses.
Several students cited the gaining the ability
to “build their own robots” as an ultimate
objective for the course.

At the course conclusion, students were

asked to take an optional online survey. The
online survey was built, in large part, using
the assessment infrastructure developed for
EC2000 accreditation at Mississippi State

 Ability Before (N=18) After (N=15)
A1 programming in HLL (C, C++, Java, etc.) 3.61 (0.608) 3.67 (0.724)
A2 programming in assembly 3.17 (0.514) 3.93 (0.458)
A3 programming user or human-machine interfaces 2.11 (1.079) 2.53 (1.187)
A4 knowledge of a networking protocol (serial, I2C, CAN, etc.) 2.78 (1.114) 2.86 (0.770)
A5 figuring out datasheets 3.39 (0.608) 3.93 (0.594)
A6 hardware design 2.94 (0.873) 3.73 (0.961)
A7 Soldering 3.06 (1.060) 3.67 (1.1047)

COMPUTERS IN EDUCATION JOURNAL 50

University.7 The survey questioned the
students concerning frequency of selected
actions, their perceived progress in abilities,
and change in confidence levels. About 83%
 (15 out of 18) of the class participated in the
survey. The ability survey questions in Table
1 were asked again. The results are given in
the rightmost column of Table 1. Student
report a negligible increase for ability A1.
This is expected as HLLs were used only as
pseudocode to express ideas, program flow,
or documentation. The design experience
concentrated on assembly language,
interfacing, and hardware design skills.2 The
students report a substantial increase in these
abilities (A2, A5-A7).

 In the online survey, students were asked to

rate the frequency of several actions.
Frequencies are rated from 0 (never) to 3
(very often/almost always). Table 2 shows the
results ordered by average score with
standard deviation given in parentheses.
Students felt the design environment was
“often” like what they thought industry

Table 2: Task Frequency Survey Results

Table 3: Learning Objective Prog
would use. A significant portion of the cohort
felt that they were “very often” called upon
to work and communicate as a team and
given assessment of each team member’s
contribution.

Students rated their personal progress in

each of the course objectives formulated in.2
Responses are rated from 0 (none) to 3 (a
great deal). Table 3 shows the survey results
ordered by average score. Students
unanimously felt their understanding of
embedded systems increased “a great deal”.
This learning objective constitutes the
“information transfer” expected by students.
However, it is interesting to note a large
increase in appreciation for the value of
design documentation. My past experience
has shown that students often dismiss these
documents initially and express these feelings
aloud. It seems that by the semester end, the
students have bought into using these
documents in the design process. As hoped,
students responded that their abilities to
learn on their own, work in teams, and

Progress made, BECAUSE OF THIS COURSE, in your ... (N=15) Score (0 to 3)
understanding of embedded systems and components 3.00 (0.000)
your appreciation of the usefulness of design documents like specifications and
coding conventions

2.80 (0.414)

ability to troubleshoot systems involving hardware 2.73 (0.458)
ability to create a system to meet a detailed design specification 2.67 (0.488)
ability to read, understand, and apply datasheets 2.60 (0.910)
skill to work in an engineering design team 2.60 (0.632)
ability to troubleshoot systems involving software 2.53 (0.640)
ability to apply and effectively use existing intellectual property, like software

 libraries or circuits
2.47 (0.640)

ability to evaluate and justify competing designs against a specification 2.40 (0.737)
skill in assessing the performance of yourself and others 2.00 (1.000)
ability to motivate others to achieve their maximum potential 1.67 (1.175)

In THIS COURSE, ... (N=15) Score (0 to 3)
I had to make critical assessments of my work, other’s work, and our relative contributions 2.67 (0.617)
I had to learn to work and communicate with others to accomplish my tasks 2.60 (0.632)
I use knowledge or skills learned in previous/other classes 2.53 (0.640)
I had to supplement material learned in lecture with self-study 2.20 (0.941)
the design environment is very similar to what I know/envision industry to be like 2.07 (0.829)

COMPUTERS IN EDUCATION JOURNAL 51

troubleshoot were improved by the
experience. Time constraints prohibited us
from doing many of the team-building
exercises I had planned. However, students
note “some” improvement in their ability to
motivate others.

Students were also asked to rate their
change in confidence, due to the taking the
course, in several areas. Students rated the
change from –2 (decreased greatly) to +2
(increased greatly). A student rating of zero
denotes no change in confidence. Table 4
shows the results ordered by average score.
In Table 4, students report the greatest
ability increases in teaming and leadership
skills. Design ability increases lagged slightly.
While in Table 3, students rated their
progress in teaming behind some design
abilities. I would propose that students rated
their absolute ability levels in Table 3, while
Table 4 represents their perceived ability
improvement. This interpretation leads me to
think that students felt quite confident in
their abilities with the mechanics and subject
matter in the design experience. However,
they were not as confident in their teaming
skills, although they thought they were very
much improved.

I wish to convey a couple anecdotes about

the design review process and the
documentation required to support it. As
expected, I encountered some initial
resistance from the students. I was prepared
and countered their resistance with many
examples from the literature to support
(quantitatively) the effectiveness of reviews.
Of course, some students continued to be

Table 4: Confidence Change Survey Results

skeptical of this process that they argued was
a waste of time. They, as students are oft to
do, wanted to dive in and design — a design
process I termed “hacking”. I insisted the
students humor me and follow the prescribed
procedure for a few weeks. I promised we
would discuss, evaluate, and incorporate any
improvements they could suggest. (By the
way, this is an excellent way to give students
ownership and responsibility of their own
learning.) After the first lab design task, one
team was elated to give a testimonial. It went
something like this: “We did not simulate,
emulate, or download our code before the
review process. Our review found several
bugs in the code and hardware wiring errors.
Each error was fixed and certified by the
team. Our very first attempt at downloading
our code onto the hardware was a success,
and we were done with the lab in record
time.” For the remainder of the semester, this
team insisted on following the design
procedures exactly. This team consistently
finished assignments first and with high
quality. Clearly, this team had internalized
the design review process and made it a part
of their “professional persona”.

The end of the semester brings a much

more complex design task to the team:
integration of several different subsystem.
This complex task helps to “sell” the
methodical and documented design process
to most of the remaining skeptics. But, I had
one last trick up my sleeve to convince them.
Money. That always gets the students’
attention. After all designs were completed
and design metrics were accumulated, I had
each team use their coding efficiency, defect-
production rate, and time expended to
determine a Manufacture’s Suggested Retail

Changes, as a result of TAKING THIS COURSE, in your (N=15) Score (-2 to +2)
confidence in your ability to work in a design team has ... 1.27 (0.884)
confidence in your ability to lead a design team has ... 1.20 (1.014)
confidence in your ability to design, build, and troubleshoot hardware has ... 1.20 (0.676)
confidence in your ability to design, build, and troubleshoot software has ... 1.13 (0.640)
Self-reliance in learning new concepts or skills has.... 1.13 (0.516)

COMPUTERS IN EDUCATION JOURNAL 52

Price (MSRP) for the

design, assuming several different potential
sales volumes. A sample analysis is given in
the Appendix. This exercise was more
successful than I could have ever imagined.
Students immediately recognized that the
age-old adage “time is money” is very much
true. They also appreciated that the design
metrics could help them to monitor an
ongoing design process and to make more
accurate schedules in future projects. I am
looking forward to incorporating similar
exercises into my other courses.

Further analysis of and reflection on the

survey data is required, but initial inspection
indicates the design experience was successful
in teaching the “implicit curriculum” of
teaming, communication, and lifelong
learning skills. Also, students gained
appreciation for a more formal and realistic
design flow. The students felt the experience
was realistic, and this heightens their
perception of the relevance of their
education.

CONCLUSIONS

In order to meet the current and future

needs for embedded systems engineers, the
author has created an embedded systems
design experience that emulates industrial
situations as much as possible. The student
teams build a progressively more complex
design using formal and documented design
reviews and collect data to monitor their
design performance. The student’s response
is an increased engagement and higher
perceived relevance of the educational
experience. The team-based approach also
develops the student’s teamwork and lifelong
learning skills

BIBLIOGRAPHY

1. Accreditation Board for Engineering

Education (ABET), “Engineering Criteria
2000". Available at http:// www.abet.org/

2. J.W. Bruce, J.C. Harden, and R.B. Reese,

“Cooperative and progressive design
experience for embedded systems,” IEEE
Trans. Educ. (To appear)

3. R.S. Culver, D. Woods, and P. Fitch,

“Gaining professional expertise through
design activities,” Engineering Education,
vol. 80, pp. 533-536, 1990.

4. A.J. Dutson, R.H. Todd, S.P. Magleby,

C.D. Sorensen, “A review of literature on
teaching engineering design through
project-oriented capstone courses,” J.
Engineering Educ., pp. 17-28, 1997.

5. P.J. Fowler, “In-process inspections of

work products at AT&T,” AT&T Tech.
Journal, pp. 102-112, March 1986.

6. J. Ganssle, The art of designing

embedded systems, Boston: Newnes, 2000.

7. J.C. Harden and M.G. Lane, “Web-based

tools for assessment automation,” Proc.

COMPUTERS IN EDUCATION JOURNAL 53

2002 ASEE Annual Conference and
Exposition, Sesssion 1532, 2002.

8. M. Hedley and S. Barrie, “An

undergraduate microcontroller systems
laboratory”, IEEE Trans. Educ., vol. 41,
no. 4, pp. 345, 1998.

9. D.B. Kaufman, R.M. Felder, and H.

Fuller, “Accounting for individual
learning effort in cooperative learning
teams,” J. Engineering Educ., pp. 133-
140, 2000.

10. D.L. Maskell , “Student-based assessment

in a multi-disciplinary problem based
learning environment,” J. Engineering
Educ. , pp. 237-241, 1999.

11. W.J. McKeachie and G. Gibbs, Teaching

Tips: Strategies, Research, and Theory
for College and University Teachers, 10/e,
Boston: Houghton Mifflin, 1998.

12. W.R. Murray and J.L. Garbini,
“Embedded computing in the mechanical
engineering curriculum: a course featur-
ing structured laboratory exercises”, J.
Engineering Educ., pp. 285-290, 1997.

13. R. Pimmel, “Cooperative learning

instructional activities in a capstone
design course,” J. Engineering Educ., vol.
90, no. 3, pp. 413-421, 2001.

14. R.S. Pressman, Software engineering: A

practitioner’s approach, 5/e, New York:
McGraw-Hill, 2001.

15. R.H. Todd, C.D. Sorensen, and S.P.

Magleby, “Designing a senior capstone
course to satisfy industrial customers,” J.
Engineering Educ., vol. 82, no. 2, pp. 92-
100, 1993.

16. I.A. Waitz and E.C. Barrett, “Integrated

teaching of experimental and
communication skills to undergraduate
aerospace engineering students,” J.
Engineering Educ., vol. 86, no. 3, pp. 255-
262, 1997.

17. D.R. Woods, Problem-based learning:

How to gain the most from PBL.
Waterdown, Ontario: Donald R. Woods.
1994.

BIOGRAPHICAL INFORMATION

Dr. Bruce is an Assistant Professor of

Electrical and Computer Engineering at
Mississippi State University. He received the
B.S. degree from the Univ. of Alabama-
Huntsville in 1991, the M.S. degree from
Georgia Institute of Technology in 1993, and
the Ph.D. from the Univ. of Nevada Las
Vegas in 2000. Dr. Bruce’s research and
teaching interests are in embedded systems
design and VLSI. Dr. Bruce was named the
Outstanding Engineering Educator in the
Mississippi State University Bagley College of
Engineering in 2003. Dr. Bruce is a member
of the ASEE, IEEE, Eta Kappa Nu, Upsilon
Pi Epison, and Tau Beta Pi.

Code Design Review
Error Listing FormUNIVERSITY

ELECTRICAL AND COMPUTER ENGINEERING

Project _____________________________________ Author _______________________________

Function Name(s)___ Date ____________________

Recorder ___

Location Error description Major Minor

COMPUTERS IN EDUCATION JOURNAL 54

Code Design Review
Summary FormUNIVERSITY

ELECTRICAL AND COMPUTER ENGINEERING
Project ______________________________________ Author _______________________________

Function Name __Date_____________________

Major bugs are ones that will result in a problem that the customer will see. Minor bugs are those that include
spelling errors, non-compliance with coding conventions, and poor workmanship that does not lead to a major error.

Time Code Design Review Started: ___________________________ Ended: ___________________

Recorder __

Num. of Errors Error Type

Major Minor

Code does not follow coding conventions

Function size and complexity are unreasonable

ISR size, complexity, execution time are unreasonable

Unclear expression of ideas in code

Poor encapsulation

Function prototype not correctly used

Data types do not match

Uninitialized variable at function start

Uninitialized variable going into loop

Poor logic - will not function as needed

Poor or missing comments

Error condition not caught or ignored

Switch statement without a default case

Incorrect syntax

Non-reentrant code in dangerous places

Slow code in speed-critical area

Interrupts are not masked during possible critical code

Other:

Other:

COMPUTERS IN EDUCATION JOURNAL 55

 Project MSRP Analysis

 Units sold (for amortization) 100 10000 1000000
 Manuf costs % of BoM costs 100% Manufacturing costs as percentage of BoM

 Manufacturer margin 35%
Manufacturer's profit (as percentage of
TMC)

 Distributor margin 30% Distributor's profit (as percentage of distributor's cost)
 Retailer margin 40% Retailer's profit (as percentage of retailer's cost)

 NRE costs $ 18,750.00 obtain from Team semester metrics

 Manufacturer
 Development cost/unit $ 187.50 $ 1.88 $ 0.02
 BoM cost (Given by instructor) $ 48.30 $ 48.30 $ 48.30

 Estimated manufacturing
costs $ 48.30 $ 48.30 $ 48.30

 (labor, F&A on manuf., packaging, etc.)
 Total manufactured cost (TMC) $ 284.10 $ 98.48 $ 96.62
 Margin $ 99.44 $ 34.47 $ 33.82

 Manufacturer's sales price $ 383.54 $ 132.94 $ 130.44

 Distributor
 Distributer's cost $ 383.54 $ 132.94 $ 130.44
 Margin $ 115.06 $ 39.88 $ 39.13

 Distrbutor's sales price (wholesale) $ 498.60 $ 172.82 $ 169.57

 Retailer
 Retailer's cost $ 498.60 $ 172.82 $ 169.57
 Margin $ 199.44 $ 69.13 $ 67.83

 Retailer's sales price (MSRP) $ 698.03 $ 241.95 $ 237.39

COMPUTERS IN EDUCATION JOURNAL 1

