
ALGORITHMS FOR MEMORY SYNTHESIS

R. Nunna
rnunna@csufresno.edu

Department of Electrical and Computer Engineering

California State University Fresno
Fresno, CA 93740-8030

ABSTRACT

In this paper, we present a methodology for
allocating memory structures and interconnect in
data paths. The algorithms presented herein take
a scheduled piece of system level specification
along with the functional unit allocation and
determine the minimum number of multi port
memory elements, and the minimum amount of
memory-datapath interconnect needed to
synthesize the datapath. The details of the
algorithms will be discussed along with an
illustrative example.

INTRODUCTION

The design of application specific integrated

circuits calls for an effective utilization of the
available chip area. Synthesis algorithms must
cater to both area and performance constraints. A
top down synthesis approach involves system
level scheduling, functional unit allocation,
memory allocation, interconnect allocation and
finally physical synthesis. Memory allocation
and interconnect are crucial in that they impact
performance in terms of memory accesses, and
area in terms of multiple buses in the synthesized
data paths. In applications that require data
parallel access capabilities in order to complete
computations within a given time budget, multi-
port memories are essential.

Over the years, researchers have developed

several techniques to minimize number of
memory modules, and determine which variables
should be grouped together to form memory
structures. Most methods are based on heuristics
or formulated using 0-1 integer programming.1-8

In this paper, we present a series of algorithms
that allocate memory from a given scheduled
data flow graph, and following the memory
allocation, the algorithms determine optimal port
assignments, and the interconnect assignments
with a goal of minimizing number of memories,
ports, read write conflicts and multiplexers.

THE PROPOSED APPROACH

In this section, an approach to the allocation

and binding of multiport memories in a datapath
will be presented. The multiport memory
allocation problem can be stated as follows:

Given a register transfer sequence and a

schedule, the multiport memory allocation
problem is to assign variables in the register
transfer sequence to a set of memories such that
the total interconnect area (between memory and
functional units) and the number of memories are
minimized.

THE MEMORY MODEL

Consider a multiport memory M with p ports;

of these ports, r ports are read only ports and w
ports are write only ports and the rest rw = p-r-w
are read write ports. Given such a scenario, and a
schedule, a set of registers can be allocated to
such a memory module only under the following
conditions:

a. no more than r of these registers can be

simultaneously read from memory
b. no more than w of these registers can be

simultaneously written into
c. no more than rw of these registers can be

simultaneously accesses for
reading/writing.

COMPUTERS IN EDUCATION JOURNAL 51

mailto:rnunna@csufresno.edu

OVERVIEW OF THE OVERALL
ALLOCATION PROCESS

The figure shown below highlights the

multiport memory allocation process. The first
task is to allocate a set of memories that will be
required for a conflict free access. This is
dependent upon the schedule of register transfer
operations and the number and kind of ports
present in each memory module. The assumption
is that each memory module is of the same kind
(with fixed number of read and write ports).
However, the allocation procedure can be
modified easily to handle memories of different
kinds.

The second task is to assign registers to the

allocated memories. Many issues need to be
considered in solving this sub problem. This
problem has been mapped onto a graph coloring
problem. The main focus of this subproblem is to
map the registers in such a way as to provide for
their required concurrent access. The third
problem to be solved is the problem of assigning
registers to the different functional units. Care
has to be taken to assign certain registers to
functional unit terms (for example in the case of
subtracters and dividers). The next task is that of
assigning registers already allocated to the
memories to the different ports of the memory.
The objective here is to assign registers to ports
such that no more than r of these registers are
accessed simultaneously (r is the number of read

ports in the memory). This is also formulated as
a graph coloring problem. Simultaneously with
the port assignment, the interconnections from
the memory elements to the functional units are
also determined. In the following sections, each
of these subtasks and solutions will be presented.

MEMORY ALLOCATION

The objective of this task is to allocate the

minimum number of multiport memories such
that there are enough ports present for the
register transfer language sequences (RTL) to
access data in each control step. Based upon our
generalized model of the multiport memory, and
a given set of RTL sequence, the minimum
number of multiport memories that satisfy the
simultaneous read and writes is given by:

MPMs

of simult reads # of simult writes

of read ports # of write ports
Min = CS(i = 1....n) max { ⎡ ⎤, ⎡ ⎤ }

From the RTL sequence, the maximum number

of read and write accesses can be determined.
The number of memories required is chosen such
that in any control step, there are enough ports
available for read and write without port
conflicts.

Example: Consider the following scheduled

RTL sequence and the availability of 2 port
memories. One of the ports of this memory is
read only and the other is read/write.

R1 = R2 + R3 R4 = R1 * R4
R5 = R4 + R1 R6 = R3 / R5
R2 = R2 + R6 R4 = R3 * R5

Given such a memory, at most two

simultaneous reads can take place and one write
can take place. In each of the control steps, four
registers are accessed simultaneously. This
means that we need at least four read ports.
Using the formula shown above,

MPMs
4 2

2 1
Min = CS(i = 1....3) max { = 2⎡ ⎤, ⎡ ⎤ }

we see that the minimum number of memories
required is two. Using these two multiport
memories with two read ports and one write port,

Allocate MPMS

Assign Regs to MPMs

Assign Regs to ALUs

Assign Regs to Ports

Allocate Interconnect

COMPUTERS IN EDUCATION JOURNAL 52

all the access requirements by the schedule are
met.

REGISTERS TO MEMORY ASSIGNMENT

Given a schedule and a set of registers that are

active in the schedule, we see that two registers
used concurrently in any control step cannot be
mapped to a single register. They can however be
mapped onto a single multiport memory if the
number of available read ports are greater than or
equal to two. When we assign registers to
memories, our main goal is to partition the set of
registers and assign them to memories such that
the datapath has a conflict free access to them.

Graph coloring has been used successfully for

register allocation in compilers.9 Given a graph
G=(V,E), graph coloring is the assignment of
colors to each node of the graph such that if there
is an edge between two nodes, then the two
nodes are assigned different colors. Because
graph coloring is an NP complete problem,10 a
heuristic method for coloring will be used.

Associated with the graph coloring problem is

the notion of interference or conflict. The first
step towards solving a graph coloring problem is
to create interference graphs. In the context of
register assignment, an interference graph is a
graph G=(V,E), where V is a set of nodes
(representing registers), E is a set of edges, and
two nodes are connected by an edge if they are
accessed simultaneously. The problem of
assigning registers to memories now becomes the
problem of coloring the nodes of the interference
graph with a fixed number of colors such that no
two nodes (registers) which have access conflicts
share the same color. (However, these two nodes
can share the same color only if there are
sufficient memory ports available for them to be
accessed from simultaneously).

The first step in the coloring process is the

creation of interference graphs. Given a register
transfer sequence, we first create two sets of
nodes, called the read_nodes and write_nodes.
For example, in the RTL sequence shown on the
previous page,

{R1, R2, R3, R4, R5, R6} ae the read nodes

and {R1, R2, R4, R5, R6} are the write nodes.
The reason we partition this sequence in this
manner is that registers are written into and read
from at disjoint times and therefore their
assignment can be considered sequential.
However, while assigning colors, we make sure
that the integrity of the interference is
maintained.

Before the actual coloring process, we create

two sets called node_stacks. These node_stacks
play an important part in the coloring algorithm
that we use. The main idea behind the success of
the coloring algorithm is the following:

Let G=(V,E) be a graph for which we need to

obtain a K-coloring. If a node N of G has a
degree < K, then no matter how the graph is
colored, there will always remain a color for N.
N can be colored and removed from the graph.
Along with the removal of N, the edges
connecting N with the rest of the graph are also
removed. The problem now reduces to coloring a
graph with one node less and probably several
edges less. Proceeding in this manner, it is
possible that all the nodes in the graph will be
removed.

This idea is at the heart of graph coloring

solution to the register allocation problems used
in compilers. However, in the case of compilers,
when coloring is not possible, spill code is
usually introduced. In the algorithms presented in
this paper, we avoid the likelihood of spill codes
because we have determined in advance, the
minimum number of colors (memories) that are
needed to allow for a conflict free coloring. We
first create two sequences of nodes which are
removed from the conflict graph one at a time
according to the main idea shown above. As
these nodes are removed from the graph, they are
pushed onto a stack for further processing. The
two sequences are created one for the read nodes
and one for the write nodes. Once we have the
nodes pushed onto a stack, the next procedure is
to color the nodes without disturbing the
conflicts that might already exist between them.

COMPUTERS IN EDUCATION JOURNAL 53

The coloring algorithm proceeds as follows. In
the first step, the read stack is popped and the
first element is assigned a seed color (a memory
number). Next for every node popped from the
stack, we check if there is an access conflict
generated if this node is given the same color as
the previously colored node. We check for two
conditions that might arise: first if the current
node is given the same color as the previous
node, are there enough ports to allow for
simultaneous access if necessary, and secondly
we also check to see if by assigning a color to the
node which is the color of an already colored
node, are we creating a write hazard., ie. are we
trying to write into more locations in the memory
than are write ports available. After checking for
these conditions, we assign a color to the current
node - either a new color or an existing color.
After we color a node, we mark the node as
colored. This is necessary and will be used in the
coloring of the write nodes. Coloring the write
nodes is similar to the coloring of read nodes.
The only difference is that we first check to see if
the nodes have already been colored by the
previous coloring process (during the coloring of
read nodes). Figures a-e, show the outline of the
algorithms used in the coloring process.

{
LB – lowerbound(schedule) /*determine

numbers of mems*/
Stack_setup(read_nodes) /* RHS nodes*/
/*create node_stack1 */
stack_setup(write_nodes) /* LHS nodes */
/* create node_stack2 */
no_of_colors = LB /*total colors=num of mems

*/
curr_color=1
total_nodes = number(node_stack1)
curr_node = t_o_stack(node_stack1)
color(curr_node, curr_color)
/*first node can take any color */
update_list(done_nodes, curr_color, curr_node)
rem_nodes = total_nodes -1
while (rem_nodes <> 0) do

curr_node=t_o_stack(node_stack1)
assign_color_read(curr_node)
pop(node_stack1)
rem_nodes=rem_nodes – 1

endwhile
rem_nodes = number(node_stack2)
curr_color=1
while (rem_nodes <. 0) do
 curr_node = t_o_stack(node_stack2)
 assign_color_write(curr_node)
 pop(node_stack2)
 rem_nodes = rem_nodes -1
endwhile
}

Figure a. The basic allocation algorithm

/*This routine is used to order the nodes in the

read_nodes set for coloring by the assign_color
procedures. Nodes are ordered based on their
degree, */

stack_setup(read_nodes)
{
build interference_graph(read_nodes);
while {interference graph <> null} do
 Nr = node with the smallest degree
 Remove Nr from interference graph

Remove all edges connecting Nr with rest
of graph

 Push Nr onto node_stack1 /*read_stack*/
Endwhile

Figure b. Stack set up for read nodes

/* this routine is used to order the nodes in the

write_nodes set for coloring by the assign color
procedures. Nodes are ordered based upon their
degree. */

{
build interference_graph(write_nodes);
while {interference graph <> null} do
 Nr = node with the smallest degree
 Remove Nr from interference graph
 Remove all edges connecting Nr with rest

of graph
 Push Nr onto node_stack2 /*write_stack

*/
Endwhile
}

Figure c. Stack set up for write nodes

COMPUTERS IN EDUCATION JOURNAL 54

/* algorithm to color a node from the read set.
A set of nodes that are overlapping in time are
not assigned the same color if there are
insufficient number of access ports in the
memory unit represented by the color */

assign_color_read(curr_node)
{
flag = 0; /* node not colored */
while (flag == 0) do
if (((read_time(curr_node, nodes(done_nodes,

curr_color)) <= no_of_rports)) &&
 ((write_time(curr_node,

nodes(done_nodes, curr_color)) <=
no_of_wports))) then

 color(curr_node, curr_color)
 update_list(curr_node, done_nodes,

curr_color)
 mark(curr_node);
 flag=1;
else
 curr_color = curr_color + 1
 if (curr_color > LB) curr_color = 1;
endif
endwhile
}

Figure d. Coloring algorithm for read nodes

/*algorithm to color a node from the write set.

The node is first checked to see if it is colored
and if it not, then conflict times are checked and
proper coloring is done */

assign_color_write(curr_node)
{
if (mark(curr_node) = 1) then
 return()
 /* node has already been colored by

assign_color_read */
else
 flag = 0
while (flag == 0) do
 if ((read_time(curr_node,

nodes(done_nodes, curr_color) <= no_of_rports)
&&

 (write_time(curr_node,

modes(done_nodes, curr_color) <=
no_of_wports)) then

 color(curr_node, curr_color)
 update_list(curr_node, done_nodes,

curr_color)
 mark(curr_node)
 flag = 1
else
 curr_color = curr_color + 1
endif
endwhile
endif
}

Figure e. Coloring algorithm for write nodes

REGISTERS TO FUNCTIONAL
 UNIT ASSIGNMENT

The next step in the memory allocation and

assignment process is the registers to functional
unit assignment. We assume the following model
of the functional unit. Each functional unit has
two input terminals (corresponding to the two
inputs) and one output terminal (corresponding
to its output). Attached to the input terminals are
zero or more data steering units (multiplexors).
In this step of the overall process, we assign the
individual registers to the input terminals of the
allocated functional units. The special conditions
that are to be handled during this stage are the
proper assignment of registers which belong to
operations that are not commutative (such as
division and subtraction). The following are the
main tasks during the register to functional unit
assignment.

i. building the functional unit busy table
ii. building conflict (interference) graphs for

each functional unit register set
iii. assigning special colors (for divide and

subtract operations)
iv. for each conflict graph, coloring the

conflict graph using two colors (one for
each of the input terminals of the
functional units)

COMPUTERS IN EDUCATION JOURNAL 55

THE FUNCTIONAL UNIT BUSY TIMES
TABLE AND CONFLICT GRAPH

The functional unit busy times table is

constructed from the schedule with functional
units already allocated and registers assigned
(after lifetime analysis). Typically, the busy table
consists of N rows and M columns. The rows
correspond to the N control steps of the schedule
and the columns correspond to the M functional
units that are allocated and bound to the
operations. Each element of the table is a set of
registers such that each of these registers is an
input to the corresponding functional unit in the
control step. For example, consider the code
sequence shown below. The five sets of register
transfer sequences correspond to the five control
steps. The functional unit number to which a
operation is allocated to is also specified. From
this we can build the busy table. From the busy
table, the conflict graph for each functional unit
can be built.

R3 = R1+R2(FU1) R12=R1
R5=R3-R4(FU2) R7=R3*R6(FU1) R13=R3
R8=R3+R5(FU2) R9=R1+R7(FU1) R11=R10/R5(FU3)
R14=R11.R8(FU2 R15=R12orR9(FU1)
R1=R14 R2=R15

 Func Unit 1 Func Unit 2 Func Unit 3
CS1 R1,R2
CS2 R3,R6 R3,R4
CS3 R1,R7 R3,R5 R10,R5
CS4 R12,R9 R11,R8
CS5

Each node of the conflict graph represents a
register connected to a terminal of the functional
unit. An edge between two nodes signifies that
the two registers are input to the same functional
unit and accessed simultaneously. Therefore,
they cannot arrive at the functional unit on one
data line.

REGISTER SPECIAL SET

For those operations in the RTL description that

are not commutative (subtraction and division),

we need to take special care while assigning
registers to functional unit inputs so as to
preserve the ordering of the operands to the
functional unit. In this step, we identify such
registers and classify them as a special set and
pre-color them such that during the allocation
process, they will always connect to the proper
functional unit input.

Figure f. : Conflict Graphs for the three ALUs

REGISTERS TO PORTS ASSIGNMENT

This is the final step in the memory allocation

and binding process. So far, registers have been
mapped onto memory modules, and also
assigned to functional unit terminals. What is left
to be done is the mapping of the individual
registers in the memory modules to the ports of
the memory and connecting these ports to the
functional unit terminals. Once these tasks are
completed, the datapath incorporating the
multiport memories is completed.

The main objective of this phase of the

algorithm is to assign the registers to memory
ports such that the total interconnect cost
(including multiplexer cost) is reduced. The
procedure has to handle situations such as the
following: if two registers are accessed
simultaneously by the register transfer sequence
and mapped onto the same functional unit, then
these two registers cannot be accessed through
the same memory port. We have to map them to
separate memory ports. The following heuristic
procedure handles this task effectively.

9 12

1 2

7

3 6

3 4

5

11 8

10 3

FU FU FU

COMPUTERS IN EDUCATION JOURNAL 56

THE MODEL

Each functional unit (referred to as ALU

henceforth) has two input terminals and one
output terminal. There can be a multiplexer at
each of the inputs and at the output of the ALU.
Each memory unit has p ports out of which w are
write ports and the rest are read only ports.
There can be a multiplexer connected to the write
port of each memory. This is needed when more
than one functional unit has to write to the same
memory unit. Since memories and functional
units have already been allocated, we know the
number of such units that are available. For
notational convenience, we will use the
following:

ALU[1..i] to represent all the ALUs.
Term[1..j] to represent the terminals of the ALUs
(j=1,2). The two input terminals will be
considered separately.
Termj.ALUi represents the jth input terminal of
the ith ALU.
Mem[1..n] to represent all the allocated
memories.
Port[1..p] to represent the ports of the memories

Portp.Memn represents the pth read port of the
nth memory module.

THE PORT ASSIGNMENT ALGORITHM

This algorithm assigns registers to ALU ports.

As a first step, ALU terminal sets are created.
For each ALU, there are two sets, one for each
terminal. Each of these sets contain the names of
the registers that have access to the
corresponding terminal during all the control
steps. These sets are built from the ALU busy
tables. For example, for the busy table shown
earlier, the two sets for functional unit 1 (ALU 1)
are: {1,3,9} and {2,6,7,12}. This suggests that
registers {1,3,9} be connected to terminal one of
ALU 1, and registers {2,6,7,12} be connected to
the other terminal. The objective is to assign
these registers to ports of the memories to which
they have already been assigned such that the
number of multiplexers introduced at the inputs
of the ALUs is minimized.

After we compile the two sets for each ALU,

the next step is to classify the two sets according
to the memory modules from which they are
accessed from. After the registers are classified
into the various memory modules for all the
functional units, we try and assign registers to the
individual ports of the memory modules. The
overall algorithm to assign registers to ports and
connect the ports to the input terminals of the
functional units is as follows:

For each ALU(i) (i=1,…number of ALUs)
 For each term j of ALU(i) (j=1,2)
 Classify each term(j) set into the memories
 For each memory(n) (n=1,…number of memories)
 For every reg (r) in memory set (r = 1 to Num of reg)
 If conflict(reg (r), port1.set.mem(n)) = null, then
 Port1.set.mem(n) = port1.set.mem(n) U reg (r)

 If connect(port1.mem(n), term(j).ALU(i)) =false
then

 Connect (port1.mem(n), term(j).ALU(i))
 ++num_conn.term(j).ALU(i)
 endif
 else
 port2.set.mem(n) = port2.set.mem(n) U reg(r)
 If connect(port1.mem(n), term(j).ALU(i)) = false
 then

 Connect (port1.mem(n), term(j).ALU(i))
 ++num_conn.term(j).ALU(i)

 endif
 endif
 endfor
 endfor
endfor

Figure f. The port assignment algorithm

AN EXAMPLE

To illustrate the mechanics of the algorithms
presented in this paper, the following code
sequence will be used. It is assumed that a life
time analysis of the code has been performed,
and that the minimum number of registers are
being used. The objective is therefore to allocate
multiport memories and minimize the amount of
interconnect that will be needed in order to
connect the memories to the functional units.

COMPUTERS IN EDUCATION JOURNAL 57

R3 = R1+R2(FU1) R12=R1
R5=R3-R4(FU2) R7=R3*R6(FU1) R13=R3
R8=R3+R5(FU2) R9=R1+R7(FU1)
 R11=R10/R5(FU3)
R14=R11.R8(FU2) R15=R12orR9(FU1)
R1=R14 R2=R15

From this scheduled sequence, the conflict

graph is generated, one for the read set and the
other for the write set.

Figure g. Conflict graph for the Read Set

Figure h. Conflict graph for the Write Set

For the two conflict graphs generated, we can
then create node_stacks, one for the read nodes
and one for the write nodes. In the stack shown
below, it is assumed that the top of the stack is to
the right. The first set is for read nodes and the
second is for the write nodes.

Figure i: Node stacks

The next step is to color the read nodes
followed by the write nodes. From the register
transfer sequence specified by the schedule, the
minimum number of memory modules that are
required is:

MPMs
5 3

2 1
Min = CS(i = 1....3) max { = 3⎡ ⎤, ⎡ ⎤ }

We see that in both control step two and three,
five registers are accessed simultaneously and
three of them written simultaneously. Since our
assumption in this example is that we have
multiport memories with one read port and one
read/write port, the minimum number of
memories that are needed evaluates to 3. For
notational convenience, we will refer to these
memories as M1, M2 and M3.

Using the algorithms presented earlier in this

paper, the registers are partitioned across the
three memory modules as follows:

1. Memory M1 – Register Set {5, 11, 12, 14}
2. Memory M2 – Register Set {2, 3, 6, 7, 9}
3. Memory M3 – Register Set {1, 4, 8, 10, 13, 15}

The following table shows that such a partition

is indeed valid. All the access requirements of
the five control steps are met by this partition. At
no time during the execution, more than three
registers are written into and no more than six
registers are read from.

 M1

{5,11,12,14}
M2

{2,3,6,7,9}
M3

{1,4,8,10,13,15}
CS1R 2 1
CS1W 12 3
CS2 R 3,6 4
CS2W 5 7 13
CS3 R 5 3,7 1,10
CS3W 11 9 8
CS4R 11,12 9 8
CS4W 2 1
CS5 R 2 1
CS5W 14 15

The next step in the solution is the creation of

the ALU busy tables and the ALU conflict
graphs. Following the construction of the conflict

1 2

3 4

5
6

7

2 14 15 1 4 6 3 7 5 10 8 9 11 12

3 12 14 15 1 2 13 5 7 8 11 9

10

14 15

11

12

8

9

5 7

13

3 12

8 9

11

14 15

1 2

COMPUTERS IN EDUCATION JOURNAL 58

graphs, we need to color the special registers.
These are registers which must be connected to
terminal one of the ALUs. We will assume that
these will be colored red – corresponding to the
first input of the ALU. Red (R) and Green (G)
will be the two colors used. Using the same
coloring procedure used earlier to partition the
register sets into memory modules, we arrive at
the following coloring for the three conflict
graphs (Figure j).

The next step is to derive the terminal sets for

each ALU. The terminal sets are:

1. ALU 1
a. Term1.set = {1, 3, 9}
b. Term2.set = {2, 6, 7, 12}

2. ALU 2
a. Term1.set = {3, 8}
b. Term2.set = {4, 5, 11}

3. ALU 3
a. Term1.set = {10}
b. Term2.set = {5}
c.

Figure j: Coloring of the Conflict Graphs

From these terminal sets, we can classify the

registers according to the memory modules.
From this classification, the registers are picked
one by one and assigned to the ports of the
memories in which they reside. The following
are the memory sets for each of the terminals of
the three ALUs.

Figure k: Memory sets for ALU terminals

Following the register to port assignment and

multiplexor creation procedure, we arrive at the
following data path for the initial schedule. The
synthesized data path has three allocated
memories, each with two read ports and one
write port. In addition to the coarse allocation of
the memories, the algorithms define the
interconnect pattern between the ALUs and the
allocated multiport memories.

Furthermore, all necessary multiplexers are
specified. From the synthesized datapath we can
see that instead of having a uniformly large sized
multiplexer at each input port, the synthesized
datapath has multiplexers of just the right size for
the number of inputs that it needs to process.

9 12

1 2

7

3 6

3 4

5

11 8

10 3

FU FU FU
R G R

G

R
G

R

G

G R

G
R

G

G

Terminal 1

M1 M2 M3
{3,9} {1} {12}

Terminal 2

M1 M2
{7,2,6}

ALU 1:

M3

Terminal 1

M1 M2 M3
{3} {8} {5,11}

Terminal 2

M1 M2 M3

ALU 2:

{4}

Terminal 1

M1 M2 M3
{10} {5}

Terminal 2

M1 M2 M3

ALU 3:

COMPUTERS IN EDUCATION JOURNAL 59

Figure l: Synthesized Data Path

CONCLUSION

In this paper, we presented algorithms for the
allocation of memory modules, and interconnect
during the data path synthesis phase in a
synthesis based design methodology. The
algorithms optimize for number of memory
elements, and also for interconnect between the
memory elements and functional units. The
algorithms can be customized for memories
with different number of input and output ports
for writing and reading

REFERENCES

1. W. Shiue, “Memory Synthesis for Low

Power ASIC Design”, Proceedings of the
2002 IEEE Asia Pacific Conference on
ASICs, Session 6B, August 2002

2. M. Balakrishnan, A. Majmudar, D. Banerji,
J. Linders, and J. Majithia, “Allocation of
Multiport Memories in Data Path
Synthesis,” IEEE Transactions on CAD, vol.
7, no. 4, pp. 536-540, April 1988.

ALU

ALU

ALU

4, 5, 12

14, 11

9, 3

2, 7, 6

13, 8, 1

15, 10

MPM

MPM

MPM

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

W

W

W

R

R

R

R

R

R

COMPUTERS IN EDUCATION JOURNAL 60

3. T. Kim and C. Liu, “Utlization of Multiport
Memories in Data Path Synthesis,” DAC,
pp. 298- 302, June 1993.

4. 4. H.D. Lee and S.Y. Hwang, “A Scheduling
Algorithm for Multiport Memory
Minimization in Datapath Synthesis,” DAC,
June1995.

5. 5. P. Lippens, J. van Meerbergen, W.
Verhaegh, and A. van der Werf, “Allocation
of Multiport Memories for Hierarchical
Data Streams,”ICCAD, Nov. 1993.

6. 6. S. Wuytack, F. Catthoor, G. de Jong, and
Hugo De Man, “Minimizing the Required
Memory Bandwidth in VLSI System
Realizations,” IEEE Transactions on VLSI
Systems, Vol. 7, No. 4, Dec. 1999.

7. 7. P. R. Panda, “Memory Bank
Customization and Assignment in
Behavioral Synthesis,” ICCAD,1999.

8. Chien-in Henry Chen and Gerald Sobleman,
“Single Port/Multiport Memory Synthesis in
Data Path Design”, in Proceedings of the
IEEE International Symposium on Circuits
and Systems, 1990, pp 1110-1114.

9. G.J. Chaitin et al., “Register Allocation

using Coloring”, Computer Languages, 45-
57, 1981.

10. M. Garey and David Johnson, Computers

and Intractability, W.H. Freeman and Co,
1979.

BIOGRAPHICAL INFORMATION

R. Nunna is a Professor in the Department of
Electrical and Computer Engineering at
California State University Fresno. He received
his M.S. and Ph.D. degrees in Computer
Engineering from the University of Louisiana at
Lafayette. His research interests are in VLSI
Circuits and Systems and CAD Methodologies.

COMPUTERS IN EDUCATION JOURNAL 61

	ALGORITHMS FOR MEMORY SYNTHESIS
	R. Nunna�rnunna@csufresno.edu��Department of Electrical
	ABSTRACT
	INTRODUCTION
	Over the years, researchers have developed several technique
	THE PROPOSED APPROACH
	THE MEMORY MODEL
	OVERVIEW OF THE OVERALL ALLOCATION PROCESS
	MEMORY ALLOCATION
	REGISTERS TO MEMORY ASSIGNMENT
	REGISTERS TO FUNCTIONAL
	UNIT ASSIGNMENT
	THE FUNCTIONAL UNIT BUSY TIMES TABLE AND CONFLICT GRA
	REGISTER SPECIAL SET
	REGISTERS TO PORTS ASSIGNMENT
	THE MODEL
	THE PORT ASSIGNMENT ALGORITHM
	AN EXAMPLE
	CONCLUSION

