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ABSTRACT 
 

In this paper, we present a methodology for 
allocating memory structures and interconnect in 
data paths. The algorithms presented herein take 
a scheduled piece of  system level specification 
along with the functional unit allocation and 
determine the minimum number of multi port 
memory elements, and the minimum amount of 
memory-datapath interconnect  needed to 
synthesize the datapath.  The details of the 
algorithms will be discussed along with an 
illustrative example.  

 
INTRODUCTION 

 
The design of application specific integrated 

circuits calls for an effective utilization of the 
available chip area. Synthesis algorithms must 
cater to both area and performance constraints. A 
top down synthesis approach involves system 
level scheduling, functional unit allocation, 
memory allocation, interconnect allocation and 
finally physical synthesis. Memory allocation 
and  interconnect  are crucial in that they impact 
performance in terms of memory accesses, and 
area in terms of multiple buses in the synthesized 
data paths. In applications that require data 
parallel access capabilities in order to complete 
computations within a given time budget, multi-
port memories are essential. 

 
Over the years, researchers have developed 

several techniques to minimize number of 
memory modules, and determine which variables 
should be grouped together to form memory 
structures. Most methods are based on heuristics 
or formulated using 0-1 integer programming.1-8

 

In this paper, we present a series of algorithms 
that allocate memory from a given scheduled 
data flow graph, and following the memory 
allocation, the algorithms determine optimal port 
assignments, and the interconnect assignments 
with a goal of minimizing number of memories, 
ports, read write conflicts and multiplexers.  

 
THE  PROPOSED  APPROACH 

 
In this section, an approach to the allocation 

and binding of multiport memories in a datapath 
will be presented. The multiport memory 
allocation problem can be stated as follows: 

 
Given a register transfer sequence and a 

schedule, the multiport memory allocation 
problem is to assign variables in the register 
transfer sequence to a set of memories such that 
the total interconnect area (between memory and 
functional units) and the number of memories are 
minimized.  

 
THE  MEMORY  MODEL 

 
Consider a multiport memory M with p ports; 

of these ports, r ports are read only ports and w 
ports are write only ports and the rest rw = p-r-w 
are read write ports. Given such a scenario, and a 
schedule, a set of registers can be allocated to 
such a memory module only under the following 
conditions: 

 
a. no more than r of these registers can be 

simultaneously read from memory 
b. no more than w of these registers can be 

simultaneously written into 
c. no more than rw of these registers can be 

simultaneously accesses for 
reading/writing.  
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OVERVIEW  OF  THE  OVERALL  
ALLOCATION  PROCESS 

 
The figure shown below highlights the 

multiport memory allocation process. The first 
task is to allocate a set of memories that will be 
required for a conflict free access. This is 
dependent upon the schedule of register transfer 
operations and the number and kind of ports 
present in each memory module. The assumption 
is that each memory module is of the same kind 
(with fixed number of read and write ports). 
However, the allocation procedure can be 
modified easily to handle memories of different 
kinds. 

 

 
 
 
The second task is to assign registers to the 

allocated memories. Many issues need to be 
considered in solving this sub problem. This 
problem has been mapped onto a graph coloring 
problem. The main focus of this subproblem is to 
map the registers in such a way as to provide for 
their required concurrent access. The third 
problem to be solved is the problem of assigning 
registers to the different functional units. Care 
has to be taken to assign certain registers to 
functional unit terms (for example in the case of 
subtracters and dividers). The next task is that of 
assigning registers already allocated to the 
memories to the different ports of the memory. 
The objective here is to assign registers to ports 
such that no more than r of these registers are 
accessed simultaneously (r is the number of read 

ports in the memory). This is also formulated as 
a graph coloring problem. Simultaneously with 
the port assignment, the interconnections from 
the memory elements to the functional units are 
also determined. In the following sections, each 
of these subtasks and solutions will be presented. 

 
MEMORY  ALLOCATION 

 
The objective of this task is to allocate the 

minimum number of multiport memories such 
that there are enough ports present for the 
register transfer language sequences (RTL)  to 
access data in each control step. Based upon our 
generalized model of the multiport memory, and 
a given set of RTL sequence, the minimum 
number of multiport memories that satisfy the 
simultaneous read and writes is given by: 

 

MPMs

# of simult reads # of simult writes

# of read ports # of write ports
Min  = CS(i = 1....n)  max { ⎡ ⎤, ⎡ ⎤ }

 
From the RTL sequence, the maximum number 

of read and write accesses can be determined. 
The number of memories required is chosen such 
that in any control step, there are enough ports 
available for read and write without port 
conflicts. 

 
Example: Consider the following scheduled 

RTL sequence and the availability of 2 port 
memories. One of the ports of this memory is 
read only and the other is read/write.  

 
R1 = R2 + R3  R4 = R1 * R4 
R5 = R4 + R1  R6 = R3 / R5 
R2 = R2 + R6  R4 = R3 * R5 
 
Given such a memory, at most two 

simultaneous reads can take place and one write 
can take place. In each of the control steps, four 
registers are accessed simultaneously. This 
means that we need at least four read ports. 
Using the formula shown above,  

MPMs
4 2

2 1
Min  = CS(i = 1....3)  max { = 2⎡ ⎤, ⎡ ⎤ }  

we see that the minimum number of memories 
required is two. Using these two multiport 
memories with two read ports and one write port, 

Allocate MPMS 

Assign Regs to MPMs 

Assign Regs to ALUs 

Assign Regs to Ports 

Allocate Interconnect 
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all the access requirements by the schedule are 
met. 

 
REGISTERS  TO  MEMORY  ASSIGNMENT 
 
Given a schedule and a set of registers that are 

active in the schedule, we see that two registers 
used concurrently in any control step cannot be 
mapped to a single register. They can however be 
mapped onto a single multiport memory if the 
number of available read ports are greater than or 
equal to two. When we assign registers to 
memories, our main goal is to partition the set of 
registers and assign them to memories such that 
the datapath has a conflict free access to them. 

 
Graph coloring has been used successfully for 

register allocation in compilers.9 Given a graph 
G=(V,E), graph coloring is the assignment of 
colors to each node of the graph such that if there 
is an edge between two nodes, then the two 
nodes are assigned different colors. Because 
graph coloring is an NP complete problem,10 a 
heuristic method for coloring will be used. 

 
Associated with the graph coloring problem is 

the notion of interference or conflict. The first 
step towards solving a graph coloring problem is 
to create interference graphs. In the context of 
register assignment, an interference graph is a 
graph G=(V,E), where V is a set of nodes 
(representing registers), E is a set of edges, and 
two nodes are connected by an edge if they are 
accessed simultaneously. The problem of 
assigning registers to memories now becomes the 
problem of coloring the nodes of the interference 
graph with a fixed number of colors such that no 
two nodes (registers) which have access conflicts 
share the same color. (However, these two nodes 
can share the same color only if there are 
sufficient memory ports available for them to be 
accessed from simultaneously).  

 
The first step in the coloring process is the 

creation of interference graphs. Given a register 
transfer sequence, we first create two sets of 
nodes, called the read_nodes and write_nodes. 
For example, in the RTL sequence shown on the 
previous page, 

 
{R1, R2, R3, R4, R5, R6} ae the read nodes 

and {R1, R2, R4, R5, R6} are the write nodes. 
The reason we partition this sequence in this 
manner is that registers are written into and read 
from at disjoint times and therefore their 
assignment can be considered sequential. 
However, while assigning colors, we make sure 
that the integrity of the interference is 
maintained. 

 
Before the actual coloring process, we create 

two sets called node_stacks. These node_stacks 
play an important part in the coloring algorithm 
that we use. The main idea behind the success of 
the coloring algorithm is the following: 

 
Let G=(V,E) be a graph for which we need to 

obtain a K-coloring. If a node N of G has a 
degree < K, then no matter how the graph is 
colored, there will always remain a color for N. 
N can be colored and removed from the graph. 
Along with the removal of N, the edges 
connecting N with the rest of the graph are also 
removed. The problem now reduces to coloring a 
graph with one node less and probably several 
edges less. Proceeding in this manner, it is 
possible that all the nodes in the graph will be 
removed. 

 
This idea is at the heart of graph coloring 

solution to the register allocation problems used 
in compilers. However, in the case of compilers, 
when coloring is not possible, spill code is 
usually introduced. In the algorithms presented in 
this paper, we avoid the likelihood of spill codes 
because we have determined in advance, the 
minimum number of colors (memories) that are 
needed to allow for a conflict free coloring. We 
first create two sequences of nodes which are 
removed from the conflict graph one at a time 
according to the main idea shown above. As 
these nodes are removed from the graph, they are 
pushed onto a stack for further processing. The 
two sequences are created one for the read nodes 
and one for the write nodes. Once we have the 
nodes pushed onto a stack, the next procedure is 
to color the nodes without disturbing the 
conflicts that might already exist between them.  
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The coloring algorithm proceeds as follows. In 
the first step, the read stack is popped and the 
first element is assigned a seed color (a memory 
number). Next for every node popped from the 
stack, we check if there is an access conflict 
generated if this node is given the same color as 
the previously colored node. We check for two 
conditions that might arise: first if the current 
node is given the same color as the previous 
node, are there enough ports to allow for 
simultaneous access if necessary, and secondly 
we also check to see if by assigning a color to the 
node which is the color of an already colored 
node, are we creating a write hazard., ie. are we 
trying to write into more locations in the memory 
than are write ports available. After checking for 
these conditions, we assign a color to the current 
node  - either a new color or an existing color. 
After we color a node, we mark the node as 
colored. This is necessary and will be used in the 
coloring of the write nodes. Coloring the write 
nodes is similar to the coloring of read nodes. 
The only difference is that we first check to see if 
the nodes have already been colored by the 
previous coloring process (during the coloring of  
read nodes). Figures  a-e, show the outline of the 
algorithms used in the coloring process.  

 
{ 
LB – lowerbound(schedule) /*determine   

numbers of mems*/ 
Stack_setup(read_nodes) /* RHS nodes*/ 
/*create node_stack1 */ 
stack_setup(write_nodes) /* LHS nodes */ 
/* create node_stack2 */ 
no_of_colors = LB /*total colors=num of mems 

*/ 
curr_color=1 
total_nodes = number(node_stack1) 
curr_node = t_o_stack(node_stack1) 
color(curr_node, curr_color) 
/*first node can take any color */ 
update_list(done_nodes, curr_color, curr_node) 
rem_nodes = total_nodes -1 
while (rem_nodes <> 0) do 

curr_node=t_o_stack(node_stack1) 
assign_color_read(curr_node) 
pop(node_stack1) 
rem_nodes=rem_nodes – 1 

endwhile 
rem_nodes = number(node_stack2) 
curr_color=1 
while (rem_nodes <. 0) do 
 curr_node = t_o_stack(node_stack2) 
 assign_color_write(curr_node) 
 pop(node_stack2) 
 rem_nodes = rem_nodes -1 
endwhile 
} 
 

Figure a. The basic allocation algorithm 
 
/*This routine is used to order the nodes in the 

read_nodes set for coloring by the assign_color 
procedures. Nodes are ordered based on their 
degree, */ 

 
stack_setup(read_nodes) 
{ 
build interference_graph(read_nodes); 
while {interference graph <> null} do 
 Nr = node with the smallest degree 
 Remove Nr from interference graph 

Remove all edges connecting Nr with rest 
of graph 

 Push Nr onto node_stack1 /*read_stack*/ 
Endwhile 
 

Figure b. Stack set up for read nodes 
 
/* this routine is used to order the nodes in the 

write_nodes set for coloring by the assign color 
procedures. Nodes are ordered based upon their 
degree. */ 

 
{ 
build interference_graph(write_nodes); 
while {interference graph <> null} do 
 Nr = node with the smallest degree 
 Remove Nr from interference graph 
 Remove all edges connecting Nr with rest 

of graph 
 Push Nr onto node_stack2 /*write_stack 

*/ 
Endwhile 
} 
 

Figure c. Stack set up for write nodes 
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/* algorithm to color a  node from the read set. 
A set of nodes that are overlapping in time are 
not assigned the same color if there are 
insufficient number of access ports in the 
memory unit represented by the color */ 

 
assign_color_read(curr_node) 
{ 
flag = 0; /* node not colored */ 
while (flag == 0) do 
if (((read_time(curr_node, nodes(done_nodes, 

curr_color)) <= no_of_rports)) && 
 ((write_time(curr_node,  

nodes(done_nodes, curr_color)) <= 
no_of_wports))) then 

 color(curr_node, curr_color) 
 update_list(curr_node, done_nodes, 

curr_color) 
 mark(curr_node); 
 flag=1; 
else 
 curr_color = curr_color + 1 
 if (curr_color > LB) curr_color = 1; 
endif 
endwhile 
} 
 
Figure d. Coloring algorithm for read nodes 
 
/*algorithm to color a node from the write set. 

The node is first checked to see if it is colored 
and if it not, then conflict times are checked and 
proper coloring is done */ 

 
assign_color_write(curr_node) 
{ 
if (mark(curr_node) = 1) then 
 return() 
 /* node has already been colored by 

assign_color_read */ 
else 
 flag = 0 
while (flag == 0) do 
 if ((read_time(curr_node, 

nodes(done_nodes, curr_color) <= no_of_rports) 
&& 

 (write_time(curr_node,  
 

modes(done_nodes, curr_color) <= 
no_of_wports)) then 

 color(curr_node, curr_color) 
 update_list(curr_node, done_nodes, 

curr_color) 
 mark(curr_node) 
 flag = 1 
else 
 curr_color = curr_color + 1 
endif 
endwhile 
endif 
} 
 
Figure e. Coloring algorithm for write nodes 
 

REGISTERS  TO  FUNCTIONAL  
 UNIT  ASSIGNMENT 

 
The next step in the memory allocation and 

assignment process is the registers to functional 
unit assignment. We assume the following model 
of the functional unit. Each functional unit has 
two input terminals (corresponding to the two 
inputs) and one output terminal (corresponding 
to its output). Attached to the input terminals are 
zero or more data steering units (multiplexors). 
In this step of the overall process, we assign the 
individual registers to the input terminals of the 
allocated functional units. The special conditions 
that are to be handled during this stage are the 
proper assignment of registers which belong to 
operations that are not commutative (such as 
division and subtraction). The following are the 
main tasks during the register to functional unit 
assignment. 

 
i. building the functional unit busy table 
ii. building conflict (interference) graphs for 

each functional unit register set 
iii. assigning special colors (for divide and 

subtract operations) 
iv. for each conflict graph, coloring the 

conflict graph using two colors (one for 
each of the input terminals of the 
functional units) 
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THE  FUNCTIONAL  UNIT  BUSY  TIMES  
TABLE AND  CONFLICT  GRAPH 

 
The functional unit busy times table is 

constructed from the schedule with functional 
units already allocated and registers assigned 
(after lifetime analysis). Typically, the busy table 
consists of N rows and M columns. The rows 
correspond to the N control steps of the schedule 
and the columns correspond to the M functional 
units that are allocated and bound to the 
operations. Each element of the table is a set of 
registers such that each of these registers is an 
input to the corresponding functional unit in the 
control step. For example, consider the code 
sequence shown below. The five sets of register 
transfer sequences correspond to the five control 
steps. The functional unit number to which a 
operation is allocated to is also specified. From 
this we can build the busy table. From the busy 
table, the conflict graph for each functional unit 
can be built. 

 
R3 = R1+R2(FU1)   R12=R1 
R5=R3-R4(FU2)     R7=R3*R6(FU1)     R13=R3 
R8=R3+R5(FU2)    R9=R1+R7(FU1  )  R11=R10/R5(FU3) 
R14=R11.R8(FU2  R15=R12orR9(FU1) 
R1=R14 R2=R15 

 
 

 Func Unit 1 Func Unit 2 Func Unit 3 
CS1 R1,R2   
CS2 R3,R6 R3,R4  
CS3 R1,R7 R3,R5 R10,R5 
CS4 R12,R9 R11,R8  
CS5    

 
 

Each node of the conflict graph represents a 
register connected to a terminal of the functional 
unit. An edge between two nodes signifies that 
the two registers are input to the same functional 
unit and accessed simultaneously. Therefore, 
they cannot arrive at the functional unit on one 
data line. 

 
REGISTER  SPECIAL  SET 

 
For those operations in the RTL description that 

are not commutative (subtraction and division), 

we need to take special care while assigning 
registers to functional unit inputs so as to 
preserve the ordering of the operands to the 
functional unit. In this step, we identify such 
registers and classify them as a special set and 
pre-color them such that during the allocation 
process, they will always connect to the proper 
functional unit input. 

 

 
 

Figure f. : Conflict Graphs for the three ALUs 
 

REGISTERS  TO  PORTS  ASSIGNMENT 
 
This is the final step in the memory allocation 

and binding process. So far, registers have been 
mapped onto memory modules, and also 
assigned to functional unit terminals. What is left 
to be done is the mapping of the individual 
registers in the memory modules to the ports of 
the memory and connecting these ports to the 
functional unit terminals. Once these tasks are 
completed, the datapath incorporating the 
multiport memories is completed. 

 
The main objective of this phase of the 

algorithm is to assign the registers to memory 
ports such that the total interconnect cost 
(including multiplexer cost) is reduced. The 
procedure has to handle situations such as the 
following: if two registers are accessed 
simultaneously by the register transfer sequence 
and mapped onto the same functional unit, then 
these two registers cannot be accessed through 
the same memory port. We have to map them to 
separate memory ports. The following heuristic 
procedure handles this task effectively. 

9 12

1 2

7

3 6

3 4 

5

11 8 

10 3

FU FU FU 
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THE  MODEL 

 
Each functional unit (referred to as ALU 

henceforth) has two input terminals and one 
output terminal. There can be a multiplexer at 
each of the inputs and at the output of the ALU. 
Each memory unit has p ports out of which w are 
write ports and the rest are read only ports.  
There can be a multiplexer connected to the write 
port of each memory. This is needed when more 
than one functional unit has to write to the same 
memory unit. Since memories and functional 
units have already been allocated, we know the 
number of such units that are available. For 
notational convenience, we will use the 
following: 

 
ALU[1..i] to represent all the ALUs. 
Term[1..j] to represent the terminals of the ALUs 
(j=1,2). The two input terminals will be 
considered separately. 
Termj.ALUi represents the jth input terminal of 
the ith ALU. 
Mem[1..n] to represent all the allocated 
memories. 
Port[1..p] to represent the ports of the memories 

Portp.Memn represents the pth read port of the 
nth memory module. 

 
THE  PORT  ASSIGNMENT  ALGORITHM 
 
This algorithm assigns registers to ALU ports. 

As a first step, ALU terminal sets are created. 
For each ALU, there are two sets, one for each 
terminal. Each of these sets contain the names of 
the registers that have access to the 
corresponding terminal during all the control 
steps. These sets are built from the ALU busy 
tables. For example, for the busy table shown 
earlier, the two sets for functional unit 1 (ALU 1) 
are: {1,3,9} and {2,6,7,12}. This suggests that 
registers {1,3,9} be connected to terminal one of 
ALU 1, and registers {2,6,7,12} be connected to 
the other terminal. The objective is to assign 
these registers to ports of the memories to which 
they have already been assigned such that the 
number of multiplexers introduced at the inputs 
of the ALUs is minimized. 

 
After we compile the two sets for each ALU, 

the next step is to classify the two sets according 
to the memory modules from which they are 
accessed from. After the registers are classified 
into the various memory modules for all the 
functional units, we try and assign registers to the 
individual ports of the memory modules. The 
overall algorithm to assign registers to ports and 
connect the ports to the input terminals of the 
functional units is as follows: 

 
For each ALU(i) (i=1,…number of ALUs) 
   For each term j of ALU(i) (j=1,2) 
      Classify each term(j) set into the memories 
       For each memory(n) (n=1,…number of memories) 
        For every reg (r ) in memory set (r = 1 to Num of reg) 
             If conflict(reg (r ), port1.set.mem(n)) = null, then 
               Port1.set.mem(n) =  port1.set.mem(n) U reg (r ) 

 If connect(port1.mem(n), term(j).ALU(i)) =false            
then 

                   Connect (port1.mem(n), term(j).ALU(i)) 
                    ++num_conn.term(j).ALU(i) 
               endif 
             else 
              port2.set.mem(n) = port2.set.mem(n) U reg( r) 
               If connect(port1.mem(n), term(j).ALU(i)) = false             
  then 

               Connect (port1.mem(n), term(j).ALU(i)) 
                ++num_conn.term(j).ALU(i) 
 
               endif 
              endif 
           endfor 
       endfor 
endfor 
 
Figure f. The port assignment algorithm 
 

AN  EXAMPLE 
 

To illustrate the mechanics of the algorithms 
presented in this paper,  the following code 
sequence will be used. It is assumed that a life 
time analysis of the code has been performed, 
and that the minimum number of registers are 
being used. The objective is therefore to allocate 
multiport memories and minimize the amount of 
interconnect that will be needed in order to 
connect the memories to the functional units.  
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R3 = R1+R2(FU1)  R12=R1 
R5=R3-R4(FU2)  R7=R3*R6(FU1) R13=R3 
R8=R3+R5(FU2) R9=R1+R7(FU1)
 R11=R10/R5(FU3) 
R14=R11.R8(FU2) R15=R12orR9(FU1) 
R1=R14 R2=R15 

 
From this scheduled sequence, the conflict 

graph is generated, one for the read set and the 
other for the write set.  

           

           
 

Figure g.  Conflict graph for the Read Set 
 

 
 

Figure h.  Conflict graph for the Write Set 
 

For the two conflict graphs generated, we can 
then create node_stacks, one for the read nodes 
and one for the write nodes. In the stack shown 
below, it is assumed that the top of the stack is to 
the right. The first set is for read nodes and the 
second is for the write nodes.  

 

 
 

 
 

Figure i: Node stacks 
 

The next step is to color the read nodes 
followed by the write nodes. From the register 
transfer sequence specified by the schedule, the 
minimum number of memory modules that are 
required is: 

MPMs
5 3

2 1
Min  = CS(i = 1....3)  max { = 3⎡ ⎤, ⎡ ⎤ }  

We see that in both control step two and three, 
five registers are accessed simultaneously and 
three of them written simultaneously. Since our 
assumption in this example is that we have 
multiport memories with one read port and one 
read/write port, the minimum number of 
memories that are needed evaluates to 3. For 
notational convenience, we will refer to these 
memories as M1, M2 and M3.  

 
Using the algorithms presented earlier in this 

paper, the registers are partitioned across  the 
three memory modules as follows: 

 
1. Memory M1 – Register Set {5, 11, 12, 14} 
2. Memory M2 – Register Set {2, 3, 6, 7, 9} 
3. Memory M3 – Register Set {1, 4, 8, 10, 13, 15} 

 
The following table shows that such a partition 

is indeed valid. All the access requirements of 
the five control steps are met by this partition. At 
no time during the execution, more than three 
registers are written into and no more than six 
registers are read from. 

 
 
 M1 

{5,11,12,14}
M2 

{2,3,6,7,9} 
M3 

{1,4,8,10,13,15}
CS1R  2 1 
CS1W 12 3  
CS2 R  3,6 4 
CS2W 5 7 13 
CS3 R 5 3,7 1,10 
CS3W 11 9 8 
CS4R 11,12 9 8 
CS4W  2 1 
CS5 R  2 1 
CS5W 14  15 

 
The next step in the solution is the creation of 

the ALU busy tables and the ALU conflict 
graphs. Following the construction of the conflict 

1 2 
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graphs, we need to color the special registers. 
These are registers which must be connected to 
terminal one of the ALUs. We will assume that 
these will be colored red  – corresponding to the 
first input of the ALU. Red (R) and Green (G) 
will be the two colors used. Using the same 
coloring procedure used earlier to partition the 
register sets into memory modules, we arrive at 
the following coloring for the three conflict 
graphs (Figure j).  

 
The next step is to derive the terminal sets for 

each ALU. The terminal sets are: 
 

1. ALU 1 
a. Term1.set = {1, 3, 9} 
b. Term2.set = {2, 6, 7, 12} 

2. ALU 2 
a. Term1.set = {3, 8} 
b. Term2.set = {4, 5, 11} 

3. ALU 3 
a. Term1.set = {10} 
b. Term2.set = {5} 
c.  

 
 
Figure j:  Coloring of the Conflict Graphs 

 
From these terminal sets, we can classify the 

registers according to the memory modules. 
From this classification, the registers are picked 
one by one and assigned to the ports of the 
memories in which they reside. The following 
are the memory sets for each of the terminals of 
the three ALUs.  

 
 

 
 
 

 
 
 

 
 
 

Figure k: Memory sets for ALU terminals 
 
Following the register to port assignment and 

multiplexor creation procedure, we arrive at the 
following data path for the initial schedule.  The 
synthesized data path has three allocated 
memories, each  with two read ports and one 
write port.  In addition to the coarse allocation of 
the memories, the algorithms define the 
interconnect pattern between the ALUs and the 
allocated multiport memories. 
 
 

Furthermore, all necessary multiplexers are 
specified. From the synthesized datapath we can 
see that instead of having a uniformly large sized 
multiplexer at each input port, the synthesized 
datapath has multiplexers of just the right size for 
the number of inputs that it needs to process.  
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Figure l: Synthesized Data Path 

 
 

CONCLUSION 
 

In this paper, we presented algorithms  for the 
allocation of memory modules, and interconnect 
during the data path synthesis phase in a 
synthesis based design methodology. The 
algorithms optimize for number of memory 
elements, and also for interconnect between the 
memory elements and functional units. The 
algorithms can be customized for memories 
with different number of input and output ports 
for writing and reading 
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