

COMPUTERS IN EDUCATION JOURNAL 55

FIRST PROGRAMMING COURSE IN ENGINEERING:
BALANCING TRADITION AND APPLICATION

K-Y. Daisy Fan, David I. Schwartz

Department of Computer Science

Cornell University, Ithaca, New York

ABSTRACT

The “Introduction to Programming” course

is an essential part of any first-year
engineering program. As part of a common
first-year curriculum, one of the biggest
challenges of this first programming course is
both to teach fundamental programming
concepts and give students practical tools that
can be applied easily to upper level courses in
different engineering disciplines. At Cornell
University, we offer a new first-year
programming course that uses two very
different programming languages:
MATLAB and Java. This one-semester
course balances the need for working
knowledge of a fundamental programming
language, such as Java, and the need for
working knowledge of an engineering
computing tool so that upper-level courses
can focus on high-level, conceptual issues
rather than programming details.
Furthermore, this new course accommodates
students in arts and sciences who are
interested in a programming course that has
a strong mathematical focus instead of a
more traditional programming course
offered in a computer science department.
This paper discusses the challenges in
developing the course, the ambitious one-
semester syllabus that teaches both
MATLAB and Java with depth, our
evaluation of this new course, and our plans
for improving the programming course in a
common first-year engineering curriculum.

INTRODUCTION

The “Introduction to Programming” course

is an essential part of the first-year
engineering curriculum that helps students

develop expertise in some programming
language, beyond spreadsheet computation.
This first programming course is a service
course, teaching computing skills that
students will need in upper division
engineering courses. Given the wide-ranging
needs of different engineering disciplines,
some undergraduate programs offer
introductory programming courses within
the different departments. Such a model
allows the computing needs of the upper
division courses in a specific field to dictate
the syllabus of the introduction to
programming course. This efficiency in the
curriculum can incur a penalty for the
students who change their major from one
engineering field to another if they lack the
prerequisite programming course for their
new major.

At Cornell University, the College of

Engineering has a “common first-year
curriculum” philosophy that requires a
common, one-semester, introductory
programming experience for all students in
the College. One of the biggest challenges is
to offer a first programming course that not
only teaches fundamental programming
concepts, but also gives students practical
tools that can be applied easily to upper
division courses in different engineering
disciplines. Teaching fundamental
programming concepts is important because
we want our students, our future engineers,
to be able to mold software to suit problems
rather to allow software to dictate limits.
The Department of Computer Science, which
offers this first programming course, has
developed a new first-year programming
course that uses two very different
programming languages: MATLAB and

COMPUTERS IN EDUCATION JOURNAL 56

Java. This one-semester course balances the
need for working knowledge of a
fundamental programming language, such as
Java, and the need for working knowledge of
a powerful and popular engineering
computing tool so that upper division courses
can focus on high-level, conceptual issues
rather than programming details.

This paper discusses the challenges in

developing the course, the ambitious one-
semester syllabus that teaches both
MATLAB and Java with depth, our
evaluation of this new course, and our plans
for improving the programming course in a
common first-year engineering curriculum.

CHALLENGES IN RE-DEVELOPING

THE INTRODUCTORY
PROGRAMMING COURSE

In recent years prior to 1999, the

introductory programming course, CS100,
was taught using Java, a fundamental
programming language with object-oriented
features. Students chose one of two tracks:
one track relied heavily on mathematics, the
other track did not focus on mathematics. In
1999, extensive debate and consultation
among faculty in the College of Engineering
revealed that faculty in the different
departments were unsatisfied with how well
CS100 prepared students for the computing
needs of upper division courses. While
knowledge of object-oriented programming
was desirable in the field of computer science,
most engineering departments showed
increasing use of MATLAB, a computing
environment, in their upper division courses
and desired that more MATLAB be taught in
CS100. Our engineering departments’
increasing use of MATLAB for education is
not unique. A number of universities now
have introductory programming classes teach
MATLAB formally, 1,2,3 (for example) not leaving
MATLAB to be introduced “on the fly” in
upper division engineering courses. Equally
clear from the consultation was the faculty
support for the philosophy of the common
first-year curriculum. Therefore, any

changes made to CS100 had to be a
compromise among the needs of all the
engineering fields.

At Cornell, another consideration is that the

Computer Science major is offered in two
colleges: College of Engineering and College
of Arts & Science. Any change in CS100
must accommodate students from both
colleges. Specifically, although it is desirable
for Calculus to be tied to CS100 for our
engineering students, Calculus cannot be a
pre- or co-requisite for the students from
Arts & Science.

In order to meet the wide-ranging needs of

the engineering departments and to
accommodate both the Engineering and the
Arts & Science colleges, two tracks of CS100
have been offered since the fall of 2000. The
two tracks teach the same programming
concepts but differ in the amount of focus on
mathematics and on the amount of usage of
MATLAB:

• CS100M involves seven weeks each of

MATLAB and Java. This track
requires some background in Calculus
and has a strong focus on mathematics
and engineering.

• CS100J is the traditional programming

course based on 12 weeks of Java with a
two-week introduction to MATLAB.

The same programming concepts, including

control structures, program organization,
algorithm development, and object-oriented
programming, are covered in both tracks
despite the difference on the amount of time
spent on the two programming languages.
Either track satisfies the introductory
computing requirement in all the engineering
fields. Students in Engineering and in Arts &
Science choose between the two tracks freely
depending on their interest and preparation
in mathematics. The remainder of this paper
presents the ambitious one-semester syllabus
and our evaluation of this new course,
CS100M.

COMPUTERS IN EDUCATION JOURNAL 57

CS100 Syllabi

CS100 is a one-semester course that

introduces computer programming—no
previous programming experience is
assumed. During the 14-week semester,
students learn how to write programs using
MATLAB and Java, and most importantly,
gain the skills and confidence needed to
further develop their programming expertise
in future course work or on their own.

The syllabi for the M and J tracks of CS100

are given in Table 1. The same programming
concepts are taught in both courses using
different amounts of MATLAB and Java
content (MATLAB content is shaded in
Table 1). CS100J is the “traditional”
introductory programming course taught at
Cornell based on an object-oriented
programming language. Two weeks of
MATLAB instruction augments this
traditional course to give students a
foundation in a computing tool that is widely
used in upper division courses. CS 100M is
the new course added in 2000 that uses
MATLAB extensively but still keeps the

Table 1. Syllabi for CS100M and CS100J

tradition of teaching object-oriented
programming in depth.

In CS100M, examples and exercises focus

on mathematics and simple engineering
applications. Fundamental programming
concepts are taught using MATLAB, a
language and a user-friendly computing
environment. 4 As a result, students learn the
introductory concepts quickly, and we can
demonstrate powerful computing concepts
early in the course to capture student
interest. Furthermore, the user-friendly
graphics capability in MATLAB allows
students to visualize data easily, reinforcing
the idea that computers, and programming in
particular, are useful for scientific and
engineering investigation. After seven weeks
in CS100M, students have learned
fundamental programming concepts already
so object-oriented programming in Java, not
basic programming techniques, is
emphasized.

At the end of the semester, students from
CS100M and CS100J are able to write
MATLAB programs for simple engineering

Week CS100M CS100J
1 Introduction to problem solving and

algorithms, assignment, elementary
functions

Introduction to problem solving and
algorithms, assignment, input/output

2 Branching, scripts Branching, input/output
3 Iteration Iteration
4 1-dimensional array Iteration
5 Functions, program organization Classes, objects, methods
6 File input/out, strings, graphics Classes, objects, methods
7 2-dimensional array, graphics Classes, objects, methods, strings
8 Java fundamentals, branching Strings
9 Iteration 1-dimensional array
10 Classes, objects, methods Sorting, linear search
11 1-dimensional array, sorting MATLAB 1-dimensional array, graphics
12 Classes, objects, methods 2-d arrays
13 Inheritance MATLAB 2-dimensional array, functions
14 Strings, 2-dimensional array Inheritance

COMPUTERS IN EDUCATION JOURNAL 58

applications and Java programs in an object-
oriented style. Although CS100J students
have less exposure to MATLAB, they build
enough foundation to be able to use
MATLAB in upper division engineering
courses and to continue to develop their
MATLAB expertise.

EVALUATION

There are three primary considerations to

evaluate the effectiveness of integrating
MATLAB in our introductory programming
courses:

1. Has MATLAB motivated the students?
2. Do the students master the course

objectives?
3. Do the CS100M students fare as well as

the CS100J students?

To address the first point, CS100M has

attracted just as many, if not more, students
as CS100J since CS100M debuted in Fall
2001. Therefore, we can conclude that, at the
least, MATLAB has not detracted a large
population of students from taking CS100M.

To address the next two points, we should

address how later courses build upon skills
developed in CS100. Three of the nine
undergraduate engineering majors offered at
Cornell require a subsequent programming
course, CS211: Computers and
Programming. CS211 assumes a background
of CS100 or equivalent experience and
continues the development of algorithm
analysis and object-oriented concepts, such
as generic programming, graphical user
interfaces (GUIs), and recursion, with about
half of the course as overview of data
structures. With only occasional use of
MATLAB for plotting, CS211 primarily uses
Java.

Given CS211's focus on advanced

programming concepts within a Java
framework and extension of CS100 concepts,
some CS100 students worry about their
eventual CS211 performance if they take

CS100M. In fact, most students who expect
to take CS211 choose the J track instead of
the M track as the introductory course. Our
reply to the students’ concern is that both
CS100J and CS100M cover the same
concepts. However, until recently, we have
not had enough data to test that assertion.

We have collected grade data from three

semesters of CS211: Spring 2001, Fall 2001,
and Spring 2002, ranging from C- to A+.
The tables provide data, using three types of
students:

• Students who took CS100J (312

students)
• Students who took CS100M (148

students)
• Students who did not take CS100 (258

students)

Note that students self-select their CS100

track—in CS211 there were twice as many
students from CS100J than from CS100M.
We excluded a negligible number of Ds and
Fs, which amounted to fifteen students
overall. Table 2 provides the specific
numbers of students for each grade, and
Table 3 summarizes the data for three overall
grade categories of "A," "B," and "C."

Table 3 shows some disparity at the higher-

grade levels. At Cornell, students may elect
to place out of CS100 and start with CS211.
Consequently, students with enough
preparation and confidence to start with the
second course tend to excel probably due to
more than one semester of programming (or
hacking) experience before taking CS211.
Comparing CS100J and CS100M, it appears
that a higher percentage of CS100J than
CS100M students get “A” grades, but overall,
taking CS100J or CS100M does not seem to
help or hurt a student's overall performance.

We do not have an intermediate

programming course that uses MATLAB.
Upper division courses use MATLAB as a
tool, not as a subject of study. Most
engineering faculty are supportive of the new

COMPUTERS IN EDUCATION JOURNAL 59

Table 2. CS211 grades of students from CS100J, CS100M, and no CS100
 A+ A A- B+ B B- C+ C C-

100J 10 61 46 36 62 33 20 36 8
100M 5 22 17 24 33 14 9 16 8

No 100 16 61 27 24 44 29 21 24 12

Table 3. CS211 grade distribution
 % of A % of B % of C
100J 37 42 21
100M 30 48 22
No 100 40 38 22

CS100M track as it teaches an important
computing tool and highlights the usefulness
of computing in engineering. However, some
instructors have noticed a recent, and
perhaps undesirable, disparity in MATLAB
skills.

POTENTIAL CHANGES TO CS100M

CS100M is a relatively new course and its

syllabus continues to evolve as a result of
instructor and student feedback. Some
instructors have noted that students find the
transition from MATLAB to Java, a
procedural language to an object-oriented
one, difficult. To address this difficulty, we
are considering altering the flow of the two
languages.

In one scenario, we might break up the

MATLAB and Java flow into three or more
alternating modules. Such alternating
modules might provide an opportunity to
illustrate syntactical differences between the
languages and develop proficiency in both.
Moreover, patterns starting with Java and an
"objects-first" approach might start students
earlier on the more difficult concepts of
object-oriented programming. A Java GUI
environment, such as BlueJ, 5 would support
such a venture for the Java portion of
CS100M.

Another way to redistribute the MATLAB

and Java material involves gradually mixing
MATLAB with Java content part way into
the semester. After about one quarter of the

semester has progressed, students have
developed enough programming experience
to develop simple programs. By introducing
relatively small amounts of Java based on the
previous three weeks of material, students
might not only reinforce early concepts, but
become prepared for the more advanced
concepts in Java later in the course.

An intriguing possibility that would

enhance a variety of approaches is using
MATLAB's integration of Java. A final
project could be used to "merge" the content,
so that students solve a more complex
problem in ways for which the languages are
suited.

CONCLUSIONS

Given the constraint of a “common first-

year curriculum,” the Department of
Computer Science at Cornell University has
introduced a new course, CS100M, that
teaches fundamental programming concepts
as well as practical computing tools for the
engineering community. CS100M introduces
fundamental programming concepts using
MATLAB, a popular computing tool, and
teaches object-oriented programming using
Java.

Inspection of student performance in the

subsequent, Java-based, programming
course CS211 shows that CS100M and
CS100J students have done about the same,
although more CS100J than CS100M
students get “A” grades. However, the fact

COMPUTERS IN EDUCATION JOURNAL 60

that CS100M students have been doing
relatively the same as CS100J students
implies that using a significant amount of
MATLAB in an introductory programming
course does not impede the development of
fundamental programming skills. Measuring
performance in CS211 gives only a rough
guide. Further work needs to be done in
refining our evaluation so that we can gauge
the amount of MATLAB learned and
perhaps adjust course content. For example,
a similar analysis of grades could be done in
other courses, especially to monitor possible
disparity in MATLAB skills.

We expect to continue to improve the

course as we gain more experience with the
new CS100M course. The use of MATLAB
and Java balances formalism and
application, both of which are needed by the
students. Learning about both practical
computing tools and fundamental
programming concepts will allow students to
mold software to solve engineering problems,
rather than be limited by software.

ACKNOWLEDGEMENTS

We gratefully acknowledge the gathering of

the data used for the evaluation by our
course administrator Laurie Buck. We also
thank Professor Keshav Pingali, who
initiated the evaluation, and Professor
Charles Van Loan for providing much of the
background information and invaluable
insights. We thank all members of the
Engineering College Computing Policy
Committee (1999) for their consultation with
and recommendation to the Engineering
faculty.

REFERENCES

1. Freshman computing course, Purdue
University College of Engineering.
[Online]. Available: https://Engineering.
Purdue.edu/Engr/Academics/Program/.fre
.html

2. Freshman computing course, University
of Pittsburgh School of Engineering.
[Online]. Available:http://civeng1.civ.

 pitt.edu/%7Eeng12/

3. Freshman computing course, Rice

University School of Engineering.
[Online]. Available:http://www.cs.rice.
edu/Undergrad/computing-overview.
shtml

4. Fan, K-Y. Daisy and David I. Schwartz,
“Introductory Programming Using
MATLAB,” MATLAB News & Notes, p.
4, Oct. 2002. [Online]. Available:
http://www.mathworks.com/company/ne
wsletter/oct02/programming.shtml

5. BlueJ. [Online]. Available:http://www.

bluej.org/

BIOGRAPHICAL INFORMATION

Daisy Fan is an Assistant Professor in the
Department of Computer Science at Cornell.
She teaches computing and her area of
research is optimization with application to
environmental systems. She received her
Ph.D. in Civil & Environmental Engineering
at Cornell and her M.Sc. and B.Sc. in Civil
Engineering at the University of Manitoba,
Canada.

David Schwartz is an Assistant Professor in
the Department of Computer Science at
Cornell. He teaches computing and his area
of research is educational technology. He has
published two textbooks geared towards
first-year engineering students. He received
his B.S., M.S., and Ph.D. in Civil Engineering
from State University of New York at
Buffalo.

