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ABSTRACT 

 
A spreadsheet based solution of the similarity 

transformation equations of laminar boundary 
layer equations is presented. In this approach 
the nonlinear third order differential equations, 
for both the hydrodynamic and the thermal 
boundary layer equations, are discretesized 
using a simple finite difference approach which 
is suitable for programming spreadsheet cells. 
This approach was implemented to solve the 
similarity transform equations for a flat plate 
(Blasius equations). The thermal boundary layer 
result was used to obtain the heat transfer 
correlation for laminar flow over a flat plate in 
the form of . The relative 
difference between results of the present 
approach and those of published data are less 
than 1%. This approach can be easily covered in 
the undergraduate Fluid Mechanics and Heat 
Transfer courses. Also, it can be incorporated in 
graduate Viscous Fluid Mechanics and 
Convection Heat Transfer courses. Application 
of the present approach is not limited to the flat 
plat boundary layer analysis. It can be used for 
the solution of a number of similarity 
transformation equations, including wedge flow 
problem and natural convection problems that 
are covered in graduate level courses.   
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INTRODUCTION 

 
A commonly used approach for solving 

laminar boundary layer equations is the 
similarity transformation. This method converts 
the partial differential equations for 
hydrodynamic and thermal boundary layers into 
two third order, nonlinear ordinary differential 
equations, with the hydrodynamic equation for a 

flat plate boundary layer known as the Blasius 
equation. A similarity solution of these 
boundary layer equations is an integral part of 
undergraduate Fluid Mechanics and Heat 
Transfer courses, as well as graduate 
Convection Heat Transfer, and Viscous Fluid 
Mechanics.    

 
Exact solutions to the Blasius equation and 

other boundary layer transformation equations 
are quite tedious; hence only final results of the 
Blasius equation, in tabular form, are presented 
in Fluid Mechanics and Heat Transfer 
textbooks.1-3 Numerical approaches, such as 
Runga-Kutta integration are commonly used to 
solve these equations via an iterative shooting 
method, since one of the boundary conditions 
for the differential equations is given at infinity.  

 
It is highly desirable that students go over the 

entire process and obtain final numerical results, 
since this process makes them appreciate the 
solution methodology. However, due to the 
nature of Fluid Mechanics or Convection Heat 
Transfer courses most instructors do not want to 
cover a detailed numerical method, and students 
enrolled in these courses have diverse 
programming language skills.  Some of them 
have a very good knowledge of computer 
programming, and some with very little or no 
programming skills. All Mechanical 
Engineering Students however, are familiar with 
spreadsheets.  

 
This paper presents a simple approach based 

on spreadsheets for solving the similarity 
transformation equations of laminar boundary 
layers. The results based on this approach are 
identical to the exact solutions to the third 
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decimal place. This approach can be 
demonstrated in a class when covering the 
Blasius equation or can be assigned to the 
students as homework. The results associated 
with a thermal boundary layer for different 
Prandtl numbers are also correlated to obtain a 
correlation for Nusselt number for laminar flow 
over a flat plate. 

 
BOUNDARY  LAYER  EQUATIONS  FOR 

LAMINAR  FLOW 
 
The governing equations for a steady state 

incompressible laminar boundary layer flow 
with constant fluid properties are given by1 : 
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where equations   (1), (2) and (3) are the 
continuity, momentum and energy equations, 
respectively. The boundary conditions for the 
above equations are given by: 

 
0=u     at  , 0=y

∞=Uu                as  ∞→y

∞=Uu                at   0=x
 

 
(4) 

wTT =   at  ,  0=y

∞= TT   as ∞→y  

∞= TT   at  0=x

 
(5) 

 
The pressure gradient in equation (2) can be 

evaluated based on the fact that the pressure is 
constant in the y-direction, hence it can be 
written in terms of pressure variation in the free 
stream using the Bernoulli’s equation, 
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Note that the free stream velocity for a flat 
plate is constant, which results in 0/ =∂∂ xp . 

 
The velocity components can be defined in 

terms of the stream functions ),( yxψ , 
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The introduction of the stream function results 

in the elimination of the continuity equation   
(1). Considering the flow over a flat plate, 
application of the of the similarity 
transformation leads to two new dependent and 
independent variables,  and f η , respectively. 
These variables are given by (see1-3): 
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Substituting the stream function 

∞= xUfyx νηψ )(),( into equations  
 
 
(7) and then equation (2) yields 
 

0'''''2 =+ fff  (9) 
 
Hence the momentum equation for the laminar 

boundary layer (equation (2)) is reduced to a 
nonlinear, third-order ordinary differential 
equation. Using the hydrodynamic boundary 
conditions given by equation (4) the boundary 
conditions for equation (9) become, 

 
 

0'== ff   at  0=η   and     1'=f  
as       ∞→η  

   (10) 

 
Solution of equation (9) gives the boundary 

layer velocity profile 
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and the wall shear stress 
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The analytical solution of the Blasius equation 

is quite tedious. A series expansion method is 
presented in4 and numerical integration 
approach is presented in.5 Numerical solution of 
the Blasius equation is reported by a number of 
authors using numerical integration techniques 
such as the Runga-Kutta method. In addition, 
the numerical solutions require a good 
programming skill, and also since '  at  'f 0=η  
is not know a shooting algorithm must be 
implemented.  

 
In the present approach the first and second 

derivatives are written in a forward difference 
format 
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The values of , ,  at th step can be 

evaluated in terms of their values at the i th step 
using the equation  (13) – (15) and they are 
given by: 

f 'f ''f 1+i

 
iii fff ')(1 η∆+=+   (16) 

 
iii fff ′′∆+′=′+ )(1 η   (17) 

 
iii fff ′′′∆+′′=′′+ )(1 η   (18) 

 

if ′′′  in equation  (18) can be evaluated by 
rewriting equation (9) in the following form: 
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Equations  (16)-  (19) are used to solve the 

Blasius equation using Microsoft’s Excel 
spreadsheet program.  

 
First, a table with headings of fff ′′′,,,η  

and f ′′′  is generated in an Excel file. The first 
row of this table corresponds to the values of 
these functions at 0=η . Based on the boundary 
conditions given by equation    (10) 0=′= ff  
at 0=η . The value of is not known at f ′′

0=η . Therefore, an arbitrary number is entered 
for )0(f ′′ . Since 0=f  at 0=η  based on 
equation   (19), 0)0( =′′′f . Figure 1 shows the 
heading with initial values of the function. Note 
that the value of f ′′  at 0=η is arbitrary set to 
0.8, one may choose to enter a different number 
in this cell. Later the actual value of )0(f ′′  will 
be computed. 
 

 
 
Figure 1: Spreadsheet headings for 

fff ′′′,,,η  and f ′′′ with their initial values 
 

The next step is to select a η∆ . Since the 
order of accuracy of numerical differentiation 
based on equation  (13) – (15) is in the order of 
η∆  a small value of 01.0=∆η  is chosen, its 

value is entered in cell H3 of the spreadsheet 
(see Figure 2).  Then the following equations 
are entered in row 4 of the spreadsheet: 
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For cell B4:                   
(this statement in
by η∆ ) 
 
For cell C4:          
(this statement is b
 
For cell D4:         
(this statement is b
 
For cell E4           
(this statement is b
 
For cell F4           
(this statement is b
 
The resulting Exc

what is shown in Fi
 

 
Figure 2:  Finite d

in row 4, and η∆  is
 

The equations of
pasted into rows 5 
the values of  f
when . 8.0)0( =′′f
enough to be cons

 should be c)0(f ′′
order to 
condition
given by equation  
by the shooting 
integration method
approach and its i
consuming. Excel’
using a few simple 

1)( =∞′f

 
 

Excel’s Solver can be accessed through 
“Tools” in the Menu Bar.  Figure 3 shows  

COMPUTERS IN
                  =B3+$H$1 

creases the value of cell B3 

   

Excel’s Solver dialog box. For this problem the 
“Set Target Cell” in the solver parameter box 
should be set to cell $D$804, i.e. the )8(f ′  
value. Then under “Equal To” select “Value of”  
                       =C3+$H$1*D3
ased on equation  (16)) 

          

and enter 1 in the corresponding textbox. For 
“By Changing Cells:” enter cell $E$3. This 
would force cell $D$803 to one (i.e. 1)8( =′f ) 
                       =D3+$H$1*E3 
ased on equation  (17)) by changing value of cell $E$3 ( )0(f ′′ ). After 
clicking on the “Solve” button the value of cell  
=E3+$H$1*F3
                               

ased on equation  (18)) 

              

$D$803 changes to one (boundary 
condition 1)( =∞′f ), by changing cell $3$E 
( )0(f ′′ ), which was originally set to 0.8. After a  
                 =-C4*E4/2
ased on equation   (19)) 

el file would then look like 
gure 2.  

 

ifference equations are typed 
 set to 0.1 

 row 4 are then copied and 
through 803. Row 803 gives 

ff ′′′,,  and  at f ′′′ η =8 
Noted that 8=η  is large 
idered as infinity. Therefore, 
hanged to force 1)8( =′f  in 

satisfy boundary 
(see the boundary conditions 
  (10)). This is accomplished 
method in the numerical 
, which a trial an error 
mplementation can be time 
s solver can do this easily 
steps.  

few seconds the results converge and the dialog 
box that is shown in Figure 4 appears on the 
screen. Make sure that “Keep Solver Solution” 
is checked and then press “OK”. The resulting 
table then is the solution of the Blasius 
equation. 
 

 
 
Figure 3: Excel solver dialog box for setting 

boundary conditions 
 

 
 
Figure 4: Solver Results dialog box 
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Figure 5: Converged results of solver for 

0=η  
 

An item of interest, in the table of results, 
is  which can be used in equation (12) to 
evaluate the wall shear stress. As shown in 
Figure 5 the calculated  based on the 
Excel’s solver is 0.33031, while the published 
results based on rigorous integration methods is 
0.33206 [4] (0.5% relative error).  If 

)0(f ′′

)0(f ′′

η∆  is set 
to 0.001 then  becomes 0.33188 which has 
a relative error of only 0.018% (almost the exact 
solution). Most textbooks report this number in 
three decimal places; therefore such a small 
difference is not noticeable. Based on the 
calculated  equation (12) becomes, 

)0(f ′′

)0(f ′′
 

xUUw νµτ /332.0 ∞∞=  (20) 

 
In most Heat Transfer and Fluid Mechanics 

textbooks the above equation is given in terms 
of the local friction coefficient and Reynolds 
number, 
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Another important result is the velocity 

distribution,  and  which are 
shown in Figure 6.   As can be seen in this 
figure the velocity is zero at the wall and 

 as 

'/ fUu =∞ f ′′

1/ =∞Uu ∞→η .   Figure 6 also shows f ′′ , 
which is indicative of shear stress at different 
layers. 
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Figure 6: Velocity profile fUu ′=∞/  and f ′′  

based on the present Blasuis solution 
 
Next consideration is given to the energy 

equation. Application of the similarity transform 
to equation (3) leads to the following ordinary 
differential equations for the dimensionless 
temperature distribution, )/()( ww TTTT −−= ∞θ  
as a function of η , i.e. )(ηθθ = , see2]for 
details, 

 
0Pr2 =′+′′ θθ f  (22) 

 
Using the thermal boundary conditions given 

by equation (5) provides the boundary 
conditions for the dimensionless temperature 
distribution θ , and are given by: 

 
 

0=θ    at   0=η    and  1=θ    as  
∞→η  

(23) 

 
Note that when the Prandtl number (Pr) in 

equation (22) is set to unity, then the solution of 
the energy equation becomes the same as the 
Blasius equation by setting f ′=θ .  The 
solution of the energy equation results in the 
local heat transfer coefficient, which is given 
by: 
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The dimensionless form of the above equation 
is given by: 

 

)0(2/1 θ ′== x
x

x Re
k
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(25) 

 
To determine )0(θ ′ equation (22) must be 

solved for different Prandtl numbers. Similar to 
the Blasius equation the finite difference form 
of the dimensionless temperatures can be 
written as: 

 
iii ')(1 θηθθ ∆+=+  

iii θηθθ ′′∆+′=′+ )(1  
(26) 
(27) 

 
and θ ′′ in equation (27) can be calculated 

using equation (22), i.e, 
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Figure 7 shows the headings and values 

associated with the dimensionless temperature 
θ  and its derivatives along with the values. It 
also shows the values of  

f
θ  and its derivatives 

at 0=η , which is 0=θ , and θ ′  is arbitrary is 
set to 0.8. Initially, all calculations are 
performed for Pr=0.6, the same calculations can 
be repeated for other Prandtl numbers. As 
shown in Figure 7 the value of the Prandtl 
number is defined in cell $J$1. Equations (26)-
(28) are entered in the cells of row 4 in the 
following format: 

 

 
 
Figure 7: Initial conditions and first row setup 

for the energy equation 
 
For cell G4:                                        
(this statement is based on equation (26)) 
 

 
For cell H4                                          
(this statement is based on equation (27)) 

=H3+$H$1*I3 

 
For cell I4                

(this statemen ation (28))  
$

 
Cells G4, H4
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Table 1: Values of )0(θ ′  versus  
Prandtl Number 

 
Pr )0(θ ′  
0.6 0.2758 
0.8 0.3054 
1 0.3303 
1.2 0.3520 
1.5 0.3802 
2 0.4196 
2.5 0.4527 
3 0.4815 
4 0.5306 
5 0.5718 
8 0.6691 
12 0.7657 
20 0.9069 
50 1.2268 
100 1.5400 

 
Substituting for )0(θ ′  into equation (25) 

yields the correlation for the Nusselt number as 
a function of Reynolds and Prandtl numbers, 
i.e., 

 
3357.02/13313.0 PrRe

k
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Nu x
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This correlation in the Heat Transfer textbooks 

is given as: 
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Nu x
x

x ==  
(31) 

 
The results show that the difference between 

the correlation coefficients and Prandtl 
number’s exponents are less than 1%.  

 
Another important thermal boundary layer 

characteristics which can be obtained from the 
results of this approach is the temperature 
distribution. The resulting dimensionless 
temperature distributions 

)/()( ww TTTT −−= ∞θ  for different Prandtl 

numbers are shown in Figure 11.  As shown in 
this Figure all temperature profiles satisfy the 
boundary conditions given by equation (23). 
 

 
 
Figure 8: Last rows values shown )8(θ  in cell 

G802 
 

 
 
Figure 9: Results for Pr=0.6 
 

CONCLUDING  REMARKS 
 
A simple approach for solving the similarity 

transformed boundary layer equations based on 
Microsoft’s Excel software is presented. The 
results based on this approach are close to those 
presented in standard textbooks (within 1% 
relative error).  Although the example presented 
is for the solution of the Blasius equation (an 
equation that is commonly covered in 
undergraduate Fluid Mechanics and Heat 
Transfer Courses) the present approach can be 
extended for solving a wide range of problems, 
e.g., Wedge flow problem and natural 
convection on a vertical plate. 

 
The author has used this method in his 

undergraduate heat transfer and graduate 
convection heat transfer courses. The feedback 
from students was positive. What the students 
liked most was the fact that they were able to 
derive the convective heat transfer correlations.  
Use of this simple approach removes the need to 
use complex analytical and numerical 
approaches. Additionally, since all engineering 
students are familiar with at least one 
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spreadsheet software package, it is very easy to 
incorporate it in the aforementioned courses.  
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Figure 10:  )0(θ ′  versus Prandtl number with 

trend line equation. 
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Figure 11: Dimensionless temperature 

distributions for different Prandtl numbers. 
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