
Published 1Dec 2020

OPEN ACCESS
Volume

11

Issue
2

*Corresponding author
Submitted 1 Aug 2019

Accepted 18 Apr 2020

Citation
Jones B.A., Bruce J.W. and
Mohammadi-AraghM.J.

“Exploring Literate
Programming in Electrical

Engineering Courses,”
Computers in Education

Journal, vol. 11, no. 2, 2020.

Exploring Literate Programming in Electrical
Engineering Courses
Bryan A Jones1, JWBruce2 andMahnas JeanMohammadi-Aragh1*

1Department of Electrical and Computer Engineering,Mississippi State University,Mississippi
State, MS, USA
2Department of Electrical and Computer Engineering, Tennessee Technological University
Cookeville, TN, USA

ORIGINAL RESEARCH

Abstract
Knuth’s literate programming paradigm positions source code as a work of literature for which
communication to a human is prioritized over communication to a computer. A primary pedagogi-
cal value of literate programming lies with the act of writing, especially goodwriting, leading to
good thinking. Issueswith early literate programming tool implementations plagued the classroom
adoption of literate programming. Advances in technology havewarranted a reinvestigation of
the benefits of the paradigm. To complement existing inquiry of literate programming in com-
puter programming courses, we investigate, “How can literate programming support student
learning inmicroprocessors and digital system design courses?” In our examination of micropro-
cessors, the instructor used principles of literate programming during in-class demonstrations
of assembly programming. In our examination of digital system design, students used the tool
to engage in literate programming while writing in a hardware description language. Our results
indicated students had a slight preference for instructors to utilize literate programming when
presenting in-class examples, and we observed small improvements for graded assignments in
sections in which literate programming examples were employed. We also observed a difference
in preferences for literate programming bymajor (computer versus electrical engineering) and
notedmultiple instructor-observed challenges with introducing a drastically different pedagogical
technique in upper-level courses. While our examination did not produce statistically significant
results, student and instructor perceptions can be used to guide future literate programming
implementations and investigations.
Keywords: Literate Programming, Computing Education,Writing

Related ASEE Publications

[7] J.W. Bruce, B. A. Jones, andM. J. Mohammadi-Aragh. “A Literate Programming Approach for
Hardware Description Language Instruction,”. In 2019 ASEE Annual Conference & Exposition.
ASEE Conferences, 2019. URL 10.18260/1-2--31966.

[8] B. A. Jones andM. J. Mohammadi-Aragh. “Employing Literate Programming Instruction in a
Microprocessors Course,”. In ASEE Annual Conference & Exposition. ASEE Conferences, 2016.
URL 10.18260/p.26941.

[10] M. J. Mohammadi-Aragh, P. J. Beck, A. K. Barton, D. Reese, B. A. Jones, and M. Jankun-
Kelly. “Coding the Coders: AQualitative Investigation of Students’ Commenting Patterns,”. In
Proceedings of the 125th ASEE Annual Conference and Exposition, 2018.

10.18260/1-2--31966
10.18260/p.26941

1 Introduction

Aglance at current events showsour society’s dependence on software. In late January 2016,Nest,
Inc., which developed and produces a thermostat controllable via smartphones and accessible
viaWiFi, pushed a software update to all their devices. Unfortunately, bugs in this update caused
users’ thermostats to drain the battery, disabling the thermostat and leaving heaters turned off
in the middle of winter [1]. Angry complaints of babies waking up at 4 AM to a room at 62◦F
and panicked calls to restore their homes to operation flooded Twitter and on-line forums. As
another example, Volkswagen now faces billion-dollar fines for "defeat device" software in its
diesel cars which caused them to pass EPA emissions tests in the lab while emittingmuch higher
pollutants during actual driving conditions [2]. Digital devices and the programs that control them
are ubiquitous in modern life.
With advances in technology resulting in complex digital circuitry embedded everywhere inmod-
ern life, the importance of programming and digital design knowledge continues to grow. Com-
puter science, computer engineering, and electrical engineering students are expected tomaster
the art of programming and learnmultiple domain-specific languages including Python, C++,MAT-
LAB, and R to perform analysis across a number of engineering disciplines. Further, digital system
designers often need to use hardware description languages (HDLs) such as ABEL [2], VHDL (now
described by IEEE Standard 1076), and Verilog (now described by IEEE Standard 1364). These
HDLs are used to describe both behavior and structure of a digital circuit, serving as documen-
tation tools that possess characteristics similar to traditional computer programming languages.
The introduction and use of modern HDLs, predominantly Verilog and VHDL, are a hallmark of
modern computer engineering curricula [3]. However, most engineering students have no prior
exposure to such languages and, as least initially, findHDLs challenging. Students can be further
confusedwhen learning Verilog, as Verilog is syntactically similar to the sequential procedural C
programming commonly taught to engineering students.
In spite of the pressing need for capable, creative, and above all competent programmers and
digital device designers, educators struggle to effectively train students in these essential skills.
McCraken’s comprehensive examination of first-year CS students reports that only approximately
20% of the surveyed students could solve programming problems expected by their instructors [4].
“Issues impacting students learning how to program” was the topic of an entire Computers in
Education Division technical session at the 2019 American Society for Engineering Education
(ASEE) Annual Meeting [5]. Clearly, there is a need to explore new pedagogical approaches for
teaching students how to program and design digital systems.
Authors Jones andMohammadi-Aragh are actively exploring literate programming (LP) as one
approach to improving programming pedagogy [6–8]. In the LP approach, the programmer (author)
composes the program (document) in a form that is readable by humans. In short, the program
should be like literature, an essay that contains both explanation for human readers and executable
statements for compilers [9]. Jones andMohammadi-Aragh’s exploration of LP in introductory
programming courses produced positive results [10]. Due to similarities between programming
languages andHDLs, weweremotivated to consider whether literate programming could improve
student experiences learning programming andHDLs in hardware-focused courses. This workwas
driven by two initial questions: 1) How could LP principles be implemented in hardware-focused
course? and 2) Howwould students respond to LP in hardware-focused courses?
In this paper, we discuss results of our efforts to explore the use of literate programming (LP)
methods in two electrical engineering courses: a microprocessors and a digital system design
course. Our implementation of microprocessors required students to program in C++ and PIC24
Assembly. Our implementation of digital system design required VHDL.

2/16

2 Background Literature

2.1 Literate Programming (LP)

Donald Knuth proposed LP [11] in 1984. In the literate programming paradigm, code and com-
ments are equally important. The literate programmandate that a programmer’s creative output
consist of a document which contains intermingled code and prose differs radically from typical
software development models that view the creative output as code in which scattered comments
are not required to connect into a coherent whole. A quick glance at the current state of com-
puter programming paradigmswill reveal that Knuth’s efforts in LPwere not widely adopted. It
has been suggested that the failure of adoption of LP for pedagogical use is due, in part, to the
lack of sophistication of early LP tools [9] . This last point is substantiated by noting that most
education-focused research using LP tools took place in the 1990s. Efforts in this area include
using LP tools to grade homework submissions [12] , teach programming [13] , or write better
comments [14] . The work in [14] and [15] reports some success, but both cite student complaints
about the difficulty of using LP tools.
Knuth’s initial LP implementation, calledWEB, incorporated ideas of LP but hadmajor weaknesses
that limited adoption. The first weakness was related to language support. Pascal was the only
supported language. The second weakness was related to writing and formatting. WEB used
macros and preprocessor directives to create a meta-language “source document” that would
render aWEB file into two separate outputs: a human-readable document and source code for
compilation. TheWEB source document consisted of a series of cryptic formatting instructions
(Figure 1(a)), some of which allowed the inclusion of Pascal code. Knuth’s choice of an additional
source document meant that the formatted human- readable document (Figure 1(b)) and the
source code (Figure 1(c)) had to be created byWEB. Neither the rendered text nor the source
code could be edited directly andminor textual edits becomemajor chores. Makingminor edits
to the formatted document in Figure 1(b) required finding the text in the source document in
Figure 1(a)which produced it, editing the offending lines, then regenerate the formatted document
to verify that the correct edit was performed. Likewise, modifying the source code in Figure 1(c)
requires a similarly laborious process. The "source document" design choice completely isolated
authors from their writing. Finally, a third weakness withWEBwas that traditional development
tools such as debuggers and profilers were extremely difficult to deploy forWEB documents and
their associated programs.
Today’s popular document generators do not easily allow elaboration about the internal workings
of a program— the primary goal of LP. LP implementations developed afterWEB somewhat ad-
dressedWEB’s weaknesses in language support and formatting. Some variants support additional
programming languages: CWEB (for C), FWEB (Fortran, C, and C++), xmLP (XML), pyWeb, Funnel-
Web, nuweb, and noweb (any language). Other tools provided simpler formatting syntax: nuweb
uses LaTeX; noweb uses a simpler set of LP directives and also allows use of LaTeX; pyWeb uses
restructured text. Pieterse’s survey reviews these and other LP approaches [12]. More recently,
documentation generated directly from code has become widespread. Documentation gener-
ators, such as Doxygen and JavaDoc, produce a document directly from formatted comments
within source code, thus overcomingWEB’s second problem. These document generation tools
are widely used by programmers, with thousands of programs employing these tools or variants.
However, while tools like Doxygen, JavaDoc, and others, were inspired by LP principles [16], they
are currently only used to document a program’s external interface (e.g., application programming
interface (API)). Investigations into the use of documentation generators to support LP principles
are needed.

2.2 Cognitive Load Theory

Knuth’s LP paradigm is consistent with cognitive load theory [17], which states that keeping
related concepts close, temporally or spatially, can improve the ability of students to grasp difficult
ideas. Sweller’s Cognitive Load Theory [17–19] posits that new concepts (termed schema)must be

3/16

Figure 1. Knuth’sWEB system for LP transforms the input source document in (a) to the
formattedoutput in (b) and the source code in (c) as illustrated by the large arrows

learned in the limited capacity of short-termmemory before they can be stored in and employed
by long-term memory. The cognitive load of acquiring a new schema can be categorized into
several distinct loads. When a schema consists of multiple, interconnected ideas, theymust all fit
in the limited capacity of short-termmemory for learning to occur. The intrinsic cognitive load
refers to the number of interconnected ideas which are required to learn a new schema. Poor
instructional design can impose extraneous cognitive load, in which the instructional technique
unnecessarily increases the number of interconnected ideas, making a schema harder to acquire.
When intrinsic load is low, the additional extraneous loading has little effect on learning. However,
high intrinsic loading combinedwith extraneous loading hinders learning. Therefore, instructors
should strive to reduce extraneous load produced by their presentation of thematerial to improve
student learning. LP supports instructor efforts by positioning student writing consisting of design
decisions, formulas, and figures in close proximity to the source code they are writing.

3 CodeChat: AModern LP Approach

One of the authors of this paper has developed amodern tool —CodeChat [20] — that attempts
to address WEB’s failings while still incorporating the main premise of LP. The CodeChat tool
combines the strengths of both documentation generators and LP tools. CodeChat builds a
formatted document directly from source code, using human-readable ReStructuredText [21]
as markup contained in the language’s native comments. CodeChat contains a synchronization
mechanism which matches source code with the corresponding web output, making editing of
either straightforward. CodeChat users simply edit a programming language source file in the
left pane, shown in Figure 2(a) and Figure 3(a). The user places very intuitive ReStructuredText
markup in the language’s comment lines. The CodeChat tool parses the source code file, locates
themarkup, and renders the program and annotations into human-readable form in real-time into
the right-hand pane (see Figure 2(b) and Figure 3(b)). The rendered output can be generated in
many different formats, including HTML, TeX, LaTeX, andDocBook. This single-view paradigm is

4/16

understood by today’s computer users within a fewmoments of use. CodeChat provides an easy-
to-use and viable platform for LP techniques in programming. CodeChat supports LP in more than
200 programming and scripting languages “right out of the box.” Additionally, it is OpenSource
and freely available, making CodeChat a viable tool for conducting research into the use of LP in
programming education pedagogy. Figure 2 and Figure 3 illustrate the application of CodeChat in
the two courses examined for this study.

Figure 2. CodeChat, the literate programmingimplementation used to conduct research for this
paper, transforms traditionalmicroprocessors course source code in (a) into the web page shown

in (b) as shown by the arrow.

4 ResearchOverview

We assert that good writing leads to good thinking, and good thinking to good programs. We
believe that advances in technology and user interface design havewarranted new explorations
of the benefits of Knuth’s LP. We revive Knuth’s ideas by developing a new LP tool addressing
weaknesses for prior implementations. Then, we use our tool in two electrical engineering courses
to answer: “How can LP support student learning inmicroprocessors and digital system design
courses?” In our examination of LP inmicroprocessors, the instructor used the tool to demonstrate
LP during in-class exercises. In our examination of LP in digital system design, the students used
the tool to engage in LP for homework and in a design lab environment.
We investigated the impact of LP in amicroprocessors coursebecause the course requires students
to integrate material frommultiple sources creating high cognitive load. For example, the function
shown in Figure 2(a) also depends on understanding of a timer and specific reference to the
definition of bits in timer 2’s control register which is provided in themicrocontroller’s datasheet.
Cognitive load theory predicts that when these elements are spatially or temporally separated,
such as refer- ring to a textbook, a datasheet, and traditional source code, additional extraneous
load is imposed to successfully integrate these elements. Because LP encourages including all
these elements as a part of the document, as shown in Figure 2(b), we hypothesize that the use of
literate programs will reduce extraneous load, thereby improving students’ ability to master these
concepts, which will lead to higher test scores.
We investigated the impact of LP in a digital system design course because modern hardware
description languages have similarities with programming languages, and there is limited research

5/16

Figure 3. CodeChat transforms digital system design HDL in (a) into the webpage shown in (b)
as shown by the arrow.

investigating how LP can support students using hardware description language. The introduction
and use of modernHDLs, predominantly Verilog and VHDL, are a hallmark of modern computer
engineering curricula [3]. Because digital devices operate concurrently, HDLs allow for description
of concurrent operations, similar to programming languages like Haskell and Ada. The complexity
of hardware descriptions coupled with HDL similarities to sequential programming languages has
led us to propose the idea of introducing LP into HDL education. Using LP in HDL education also
reinforces the spirit of why HDLs were created in the first place – to describe hardware behavior.
AnHDL description should describe – in themost human-readable terms as possible – what the
hardware design “looks like” or “how it behaves”. The HDL description is, first and foremost, an
essay written to fellow designers describing digital hardware. This description also happens to
be in an “executable form” thanks to the HDL tool chain. However, the use of LP to improveHDL
education has not beenwidely investigated. One early attempt involved an approach very similar
to Knuth’s WEB approach [22, 23] using a Prolog logic program to generate a human-readable
form and a Verilog HDL file. Our investigation provides further insight into the benefits of LP in
support of HDLs.

5 CASE 1: Microprocessors Course

Themicroprocessors courseused for this study focusedon introducing students tomicro-processors
through both lecture and laboratory exercises. The first half of the course focused on instruction
in assembly language, andwas accompanied by labs in which students translated a C program to
assembly, then simulated their assembly code to demonstrate its correctness. The second half of
the course required students to build a simplemicrocontroller and supporting components on a
wireless protoboard, then to develop C programs to interface with external peripherals connected
to themicrocontroller. The first two examinations assessed assembly skills, while the third test and

6/16

portions of the cumulative final assessed peripheral interfacing in C. Students typically perform
well in introductory assembly instruction assessed on Test 1, then struggle withmore advanced
assembly, such as pointers and extended-precision operations, assessed on Test 2. Likewise, in-
troductory peripheral interfacing in C assessed on Test 3 typically produces good scores, while
students struggle withmore advanced concepts (I2C and SPI buses, A/D andD/A converters) and
their implementation in C on the final.
We hypothesized that LP would improve comprehension as the semester progressed to more
challenging content distributed across multiple resources. Test 1 material, consisting of intro-
ductory assembly, can typically be taught by focusing exclusively on the code itself. While LP
provides better formatting and organization, little gain should be expected from a cognitive load
perspective because the source code itself contains all the necessary resources. Test 2material,
particularly when discussing pointers, exacts a heavier cognitive load. Students must refer to a
memory map (in the form of a table), carefully examine the C code to translate, then write the
resulting assembly code. Therefore, the ability of LP to integratememorymaps into the source
code should reduce extraneous cognitive load and improve comprehension. While some Test 3
material relies on information available within the source code, some does not. For example, to
fully understand the operation of code to configure a timer in Figure 2(a), students must refer to
themicrocontroller’s timer documentation. This higher cognitive load should produce reduced
comprehension using traditional techniques, since students’ attentionmust be split between the
code and supporting datasheets. Final material includes relatively complex bus protocols such
as I2C and SPI, both of whichmust be used to interact with peripherals. The ability to integrate
related information with the code should reduce extraneous cognitive load, producing improved
comprehension and scores. For example, comment 162, “Send address of temperature LSB (0x01)”
in Figure 2(b) is immediately followed by the table of register addresses, which gives the temper-
ature LSB address as 0x01. Therefore, the following line of code, ioMaster- SPI1(0x01);, clearly
sends the temperature LSB address of 0x01 across the I2C bus.

5.1 Approach forMicroprocessors

Our investigationmade use of a cohort of 58 students enrolled in two sections of themicroproces-
sors course during the Fall 2015 semester. Students self-selected their preferred section based
on course scheduling (i.e., timing) preferences. One section, the control group of 27 students,
employed no LPmethods. The other section of 31 students alternated use of traditional with LP
techniques. Specifically, instruction using traditional coding methods was employed for Test 1
material, by developing and discussing code snippets in assembly during in-class exercises. All
code written during class was then uploaded to Github [24], a social coding website, providing
convenient web access to the code for the students. Next, material for Test 2 was developed
using LP techniques to produce a document during in-class exercises. Both the resulting assembly
code and its rendering to a LP document were posted on Github and the course website [25],
respectively. The same approach was taken for the second half of the course, which employed
the C programming language. Test 3material was covered using traditional techniques, while the
material for the final was developed as a set of LP documents. For both cases, the C source and
the resulting LP documents were available via the web. Figure 4 shows a comparison between
traditional source code (in this case, assembly) used for Test 1 in-class exercises and its LP form
used for Test 2 instruction. Likewise, Figure 2 compares traditional C code for Test 3 preparation
with the LP variant for the final.

5.2 Data Collection forMicroprocessors Case

To evaluate student performance, specific questions were selected on the tests and final which
require writing snippets of code in C or assembly. In addition, students in the experimental section
participated in an anonymous in-class survey given at the end of the course to provide feedback
on the use of LP versus traditional code in the course. The questions were:

7/16

Figure 4. Traditional assembly code in (a),compared to its literate programming form in (b).

1. How often did you refer to code discussed in class posted at https://github.com/bjones1/ece
3724_inclass? Frequently, several times, a few times, once, or never?

2. On a scale of 1 to 10, where 1 is the least helpful and 10 is themost helpful, how helpful was
providing this code on the web?

3. Comments – what wouldmake the code postedmore helpful?
4. How often did you refer to the code discussed in class posted in LP form at http://courses.ec
e.msstate.edu/ece3724/in_class? Frequently, several times, a few times, once, or never?

5. On a scale of 1 to 10, where 1 is the least helpful and 10 is themost helpful, how helpful was
providing this code on the web?

6. Comments – what wouldmake the code posted in this formmore helpful?
7. Which format did you findmore helpful? Traditional, literate programming, neither, or don’t
care

8. In terms of the code discussed, what would help you learnmore during this course?

5.3 Results forMicroprocessors Case

Table 1 shows the test questions used to examine student performance. Note that the control
section only employs traditional source code, while the experimental section alternates between
traditional and LP. Through the differences reported between the control and experimental sec-
tions, we attempt to control for the effects of confounding variables between the sections such
as instructor style, student background, and student ability. The mean differences (∆M) showa statistically insignificant value of 3% between the two sections for Test 1, during which both
sections employed traditional source code. This suggests that effects of confounding variables are
small, particularly given thewide standard deviations. For Test 2, which compares traditional to LP
instruction, a slightly larger difference of 8%was observed. Treating Test 1 as a baseline difference
and Test 2 as the expected effect shows a vertical difference of 5%, suggesting a small, but sta-
tistically insignificant improvement using LP. The Test 3/Final comparison suggests confounding
variables have a greater impact, with a 14% difference for traditional source code. Further, the
effect of LPwas a statistically insignificant decrease of 1%.

8/16

Table 1.Microprocessors Test Scores

Assessment Control Experimental ∆M
Traditional (M± SD) Traditional (M± SD) LP (M± SD)

Test 1, #12-20 91%± 8 94%± 12 3%
Test 2, #17-28 69%± 13 78%± 17 8%
Test 3, #1-11, 16-29 70%± 15 84%± 14 14%
Final, #24-29 58%± 19 72%± 22 13%

Students could provide multiple free-form answers to the eight survey questions listed in the
previous section. Thus, the survey results were coded based on the categories provided in the
questions. Table 2, Table 3 and Table 4 show a summary of the frequencies reported for questions
1, 2, 4, 5, and 7. Based on these survey results, students refer to both traditional source code and
its LP formwith essentially equal frequency. The higher response of 61% for traditional versus
42% for LP in the category of “a few times” represents a difference for studentswhomade little use
of either system; the usage frequencies for “frequently” and “several times” are almost identical.
Likewise, noting the wide standard deviation, students considered both traditional and LP forms
equally helpful. Students reported preferring the LP format over the traditional format; however,
given a large group (27%) of “don’t care” responses, this is a mild preference. Given that this is the
first exposure students have to the LP format, and noting that all their previous instruction and
programming assignments employ the traditional form, students seemwilling to embrace the LP
approach. This preference is also notable in that several students reported they were unaware of
the existence of the LPwebpages.

Table 2.Microprocessors Question 1 and 4 Results

How often did you refer to . . . ? Q1: Traditional
(n=38)

Q4: LP
(n=24)

Frequently 3% 4%
Several Times 16% 17%
A Few Times 61% 42%
Once 11% 13%
Never 11% 25%

Table 3.Microprocessors Question 2 and 5 Results

How helpful?
(10 =most helpful)

Q2: Traditional
(n=26)

Q5: LP
(n=26)

m± S.D. 7.6± 1.5 7.0± 2.1

Table 4.Microprocessors Question 7 Result

Tradition LP Neither Don’t Care
Q7: Preferred which format? (n=22) 27% 41% 5% 27%

Analyzing the comments provided in response to questions 3, 6, and 8 produced the following four
themes:
1. Students liked the code organized by topic, rather than class date. This suggestion has been
implemented for the Spring 2016 semester.

2. Several students stated that they were not aware that the literate programming pages were
available on the web, thinking they were only provided for in-class exercises. This response

9/16

was provided even though students were sent several e-mails giving the address of the LP
pages. For the Spring 2016 semester, a changewas implemented that required students to
access the LPwebsite for every in-class assignment.

3. Students requested live updates as the instructors add examples and notes to the LP docu-
ment in class. Previously, the LP document wasn’t posted to theweb until after each class
period. This suggestion was implemented for future course offerings.

4. Students requestedmore explanation andmore videos. The class is “flipped,” which causes
some students to feel cheated that lectures focus on in-class exercises, rather than delivering
facts. In addition, some of the older videos need to be updated.

5.4 Discussion ofMicroprocessors Case

The results of our examination of LP in amicroprocessors course indicate that literate program-
ming examples may provide some benefit to students. In particular, a student survey shows a
mild preference for the LP formwhen compared to the traditional form. In addition, an analysis
of student performance on examinations shows a small, statistically insignificant improvement
in student performance when the instructor employs LP for in-class examples. Larger datasets
are needed to verify that this effect holdsmore generally. We note that in this implementation,
students were not writing their own code using LP principles; instead, LP was used during the
presentation of in-class exercises. A future examination of learning outcomes when students are
writing their own literate programs inmicroprocessors is warranted andmay result in expected
learning gains.

6 CASE 2: Digital SystemDesign Course

The digital system design course used for this study was a split-level course targeted at senior
undergraduate and introductory graduate students. The course reviewed and revisited digital
logic design topics from a prerequisite introductory course and added complexity and practical
aspects not covered in the earlier course. All of the coursework was captured in VHDL. The
course concluded with a small design project. The first half of the course focused on instruction in
VHDL syntax andwas accompanied by laboratory sessions in which students wrote descriptions—
mostly structural — of simple hardware designs in VHDL. Students composed appropriate test
benches to exercise and validate their designs. The second half of the course focused on timing
and system design issues along with amore behavioral approach to hardware description. Weekly
lab assignments required the students to design ever-larger components that could be reused in
their final design project. The course offering described herein was similar to previous semesters
with nearly identical topical coverage and pacing using the same text, lecturematerials, and lab
facilities. The previous iterations of the course were taught by another faculty member who did
not employ LPmethods. The course is offered once per academic year in a single section.
Our goal with incorporating LP in a digital system design course is to promote HDL “source code”
as, first and foremost, an essay written to fellow designers describing digital hardware, which
also happens to be in an “executable form” thanks to the HDL tool chain. Furthermore, themore
expressive nature of human language and the student’s experience with human language should
allow the students tomore clearly express the behavior and interactions of the digital hardware.
Using LP in HDL education reinforces the spirit of whyHDLswere created in the first place – to
describe hardware behavior. An HDL description should describe in as human-readable terms
as possible what the hardware design “looks like” or “how it behaves”. The goal was to promote
the view that hardware description language “source code” is a product for human consumption
instead of tool-chain consumption.

10/16

6.1 Approach for Digital SystemDesign

Our investigationmade use of a cohort of 36 students enrolled one section of the course during a
recent fall semester. The cohort was composed of ten electrical engineeringmajors who took the
class as an elective and twenty-six computer engineeringmajors for whom the course is required.
The course was composed of lecture periods (twice a week; one hour each) and a weekly lab
session (once a week; two hours per week). The staffing included a graduate teaching assistant
to assist students. Lecture periods were sprinkled with collaborative active exercises. Students
were encouraged to work in teams on the lecture active exercises and on laboratory tasks. The
instructor often had to expressly direct the collaborative effort as most students would choose to
work alone if given the choice. The complexity of VHDL and the overhead of tool chain processes
largely prohibited the use of the synthesis tools in-class for the active exercises.
In-class active exercisesweremostly focused on the design approach for a particular problem,with
students writing “pseudo-code” VHDL. Homework and lab activities consisted of students writing
VHDL descriptions annotated with explanations in the CodeChat tool. In previous semesters,
studentswrote formal lab reports to describe their design approach and results. The addition of LP
annotations to their VHDLwas the only significant change to VHDL coding assignments compared
to previous semesters. The CodeChat tool allowed students to include hyperlinks, figures, tables,
equations, FSM diagrams, timing waveforms, etc. directly in their HDL descriptions. Since the
code itself was descriptive, and each design’s test bench could be annotated with results obtained
from the VHDL tools, students were not required to submit a formal lab report. Each design task
had a deliverable of VHDL files that were to be liberally annotated with descriptions, explanations,
figures, timing diagrams, and observations.

6.2 Data Collection for Digital SystemDesign Case

To ascertain whether LP had an impact on the students’ ability to successfully learn VHDL and
capture digital systems behavior, at the conclusion of the course students were asked to respond
to a survey. Survey questions are provided in Table 5 . Students responded to the survey questions
using five-point Likert-type scales. For questions 1 and 2, students could choose a response from
the following list: poor, fair, satisfactory, very good, or excellent. The responses weremapped to
the values zero (poor) through four (excellent). For questions 3-6, students were given the choice
of strongly disagree, disagree, neutral, agree, and strongly agree. These responses weremapped
to values -2 (strongly disagree) to +2 (strongly agree), which allows the sign of the response to
indicate whether the response is negative or positive.

Table 5. Digital System Design Survey Questions

Question Question Text
1 I would rate my knowledge of HDL and digital systems design knowledge at

the start of the course.
2 I would rate my knowledge of HDL and digital systems design knowledge at

the conclusion of the course.
3 Writing detailed and descriptive comments in myHDL descriptions helpedme

to learn.
4 I would have rather had traditional Q&A questions instead of writing docu-

mented HDL descriptions for course homework.
5 My digital design efforts in this class would have been better summarized with

a formal report/paper.
6 Putting my design ideas into words helps me to see errors in my design and

improvesmy overall output.

Degree program information (i.e., major) was collected to examine how differences in background
affect a student’s view of LP as it was used in the digital systems design course. While computer
engineering and electrical engineering are very similar, the computer science and programming

11/16

skills and experience of the computer engineeringmajors usually is muchmore substantial than
those of electrical engineering students.

6.3 Results for Digital SystemDesign Case

Table 6 provides the statistics of the students’ self-assessed abilities bymajor for Q1 (knowledge
at start of course) andQ2 (knowledge at end of the course). A small number of computer engineers
(four out of 16) reported they had some knowledge of the subject before the course started, while
electrical engineering majors all reported no prior knowledge of the course topics. At the end
of the course, most students of bothmajors reported their knowledge as being “satisfactory” or
better. The difference between a student’s response (Q2-Q1) would indicate the course impact
on their knowledge. Computer engineering and electrical engineering majors reported amean
difference betweenQ1 andQ2 of 1.82 and 1.86, respectively.

Table 6. Digital System Design Question 1 and 2 Results

Knowledge of DSD
andHDL

CmpE
(M± SD,Mdn)

EE
(M± SD,Mdn)

Combined Cohort
(M± SD,Mdn)

Q1: Start 0.29± 0.59, 0 0.00± 0.00, 0 0.21± 0.51, 1
Q2: End 2.12± 1.22, 2 1.86± 1.07, 2 2.04± 1.16, 2
∆M (Q2-Q1) 1.82 1.86 1.83

Table 7 provides a summary of student preferences by major for Q3 (writing helped me learn),
Q4 (prefer traditional HW style), Q5 (prefer traditional lab report style), and Q6 (writing helps
me improve my design). The results from Q3 indicate that computer engineers were slightly
more negative than neutral about the LP approach. Electrical engineers were exactly neutral as
a group. Of course, individual students reported “strongly agree” and “agree”, but there were
roughly equal numbers of students reporting “strongly disagree” and “disagree”. In Q4, computer
engineers indicated a slight preference for homework based on LP-infused VHDL over a set of
traditional homework problems. Electrical engineers indicated an even stronger preference for
LP and VHDL, although neither group was overwhelming in their preference. Not surprisingly,
Q5 responses indicate that bothmajors aremore emphatic about preferring the LP approach to
VHDL compared towriting a formal lab report. As withQ4, the preference among the electrical
engineers was stronger than the computer engineers. Q6was worded to try to elicit the student
response about LPwithout ascribing it to the course and lab experience in support of Q3. Both
majors were effectively neutral in their views, with electrical engineering majors being slightly
positive on average, and computer engineers as a groupwere nearly neutral. Note that response
in Q6 are a bit more positive than the very similar questionQ3. Students appear to recognize that
writing and natural languagemay help them express their designs, but the LP approach or negative
feelings due to CodeChat installation drove their opinions a bit more negative when thewriting
involves commenting their HDL.

Table 7. Digital System Design Questions 3-6 Results

LP andWriting in HDL CmpE
(M± SD,Mdn)

EE
(M± SD,Mdn)

Combined Cohort
(M± SD,Mdn)

Q3: LP helped -0.41±1.33, 0 0.00±0.00, 0 -0.29±1.27, 0
Q4: Prefer Traditional -0.18±1.19, 0 0.29±1.25, 0 -0.21±1.18, 0
Q5: Prefer Formal
Report

-0.65±1.17, -1 -1.29±0.76, -1 -0.83±1.09, -1
Q6: Writing helps -0.06±1.09, 0 0.29±0.95, 1 0.04±1.04, 0

AMann-Whitney U test was chosen as a non-parametric test to compare the two populations [26].
No significant differences between the two populations were observed on questions Q1-Q6.

12/16

6.4 Discussion of Digital SystemDesign Case

Students were somewhat ambivalent about the effectiveness of LP to improve their HDL in the
digital design course with computer engineering students somewhatmore negative. One theory
is the computer engineers aremore comfortable with the topics covered in the course andwith
programming languages and documentation than the electrical engineers. The design tasks in the
course were not overly complex, so computer engineers may have felt the LP paradigmwas simply
toomuch overhead andwork for the reasonably simple technical HDL that followed. Electrical
engineers are less comfortable in the course described here, and the LP approach may have
allowed them to better express themselves. If this is a valid view, onemight expect the student
enthusiasm to increase as assignments and designs get more complicated. Such a result would
also agree with the observation that computer programmers tend to comment more heavily in
complicated code, or code that they do not initially understand [27, 28]. LP would provide the
developer with amore suitable mechanism for human-digestible descriptions.
Students, especially the computer engineeringmajors who havemore experience with computing
languages, may have also suffered from themistaken impression that any computer activity time
spent not creating “working code” is a waste of time. Withmore experience, theymay realize that
documentation of computer code or VHDL descriptions leads to amuch highermaintainability
and, ultimately, shorter overall development cycles and lower costs [27, 28].
Anecdotal observations by the instructor and other faculty are that student comprehension and
performance seemed largely unchanged compared to previous semesters. The next stepwould
be to form a controlled experiment wherein one group will use traditional editors or IDEs to
develop largely undocumentedHDL descriptions. A treatment groupwould use the tools and LP
approach described here. Incorporation of formal product metrics such as defect production and
development timewould also givemore objectivemeasures to the quality of student output.
Finally, student performance on other coursemeasures or later academic outcomesmight indicate
a difference. Alternatively, an ideal, but often difficult to deploy, approach to testing the efficacy of
LP in the digital systems design course would be a formal experiment with control and treatment
groups of students taught under similar educational conditions during the same academic period.
This was not possible due to existing scheduling and faculty workloads. Another approach could
create control and treatment groups within the same lecture and lab population. This approach
is problematic as students may view different assignments with different levels of difficultly or
otherwise detrimental to their grade. Control and treatment groups could be formed by student
self-selection, but groups of comparable sizes, abilities, andmotivation are very suspect with this
scheme. Given the circumstances, a decisionwasmade to apply the treatment to the entire cohort.
Similar to prior LP implementations, concerns with the tool may have overshadowed the benefits
of LP. The CodeChat tool was created by one of the authors. The tool is not as polished as com-
mercial or mature open-source software applications. The tool itself works as advertised and is
quite stable. Students never reported dissatisfaction with tool functionality. However, installation
of the CodeChat tool as problematic. To aid in CodeChat development, the CodeChat tool uses
a wide variety of open-source libraries and supporting frameworks. Several of these software
packages had varying compatibility issues with student laptops. Students were quite vocal in
expressing their frustration with the installation process at the beginning of the semester. The
students’ unhappiness was compounded as installation on one student’s laptop would be smooth
and flawless, and another student with an identical computer would experience installation prob-
lems. Ultimately, several installation problems were a result of students not following the detailed
installation instructions provided by the instructor. Eventually, the instructor was able to assist
every student and get the tool operational. However, this initial negative experience likely colored
the students’ impression of the CodeChat tool and the LP paradigm.

13/16

7 Conclusions

The hope in undertaking our exploratory investigations of LP in hardware-focused courses was that
LP would aid student learning, and improve the quality of the student output. We have presented
our results with the hope that other educators and researchers will apply LP in microprocessors
and HDL education at their institutions to help build a more complete understanding of how LP
can support student learning in electrical engineering courses.
We have presented two cases of how LP could be used in hardware-focused courses. In the first
case, microprocessors, LP techniques were used by the instructor to present and explain in-class
examples. In the second case, digital system design, students used LP principles while writing HDL.
Students were less resistant to the new LP paradigm when the instructor was the one intermingling
writing and coding. This could be related to our choice to implement LP in advanced hardware
courses, which required a minimum of four semesters of programming prerequisite courses in
which students did not use LP. In our prior work with LP implementations in introductory courses
we have not observed as much resistance and it will be interesting to examine whether students
who used LP in early courses have similar or less resistance to LP in advanced courses. However,
based on our current data set, we recommend that instructors who implement LP in upper-level
hardware courses transition students to the method by first using LP to present and explain
in-class examples.
In spite of limitations with the current available tool, students only expressed a slight preference
for more traditional pedagogical methods. Additionally, especially for non-computing majors,
students recognized that writing about their designs in their natural language could help them
express their designs in HDL. This result is promising and motivates further examinations of LP in
hardware-focused courses. We challenge instructors to consider ways of implementing natural
language writing tasks in conjunction with hardware design activities. While we wait for LP tools
to be refined, instructors could consider implementing journaling or reflection prompts into their
hardware design assignments.
The efforts reported herein represent only the beginning of the pedagogical possibility for LP in
hardware courses. As we continue our parallel work that is exploring how LP and writing-to-learn
strategies support students who are at the early stages of learning to program, we will consider how
those findings can inform learning gains in upper level hardware courses. Additionally, the results
herein support additional research into the effectiveness of instructor use of LP when presenting
in-class examples. The results herein also provide evidence to support future investigations into
the differences in student perceptions of LP by student background (e.g., novice versus expert,
differences by major). From a tool perspective, extending CodeChat from its current state, in
which edits can only be made to the source code, to enable direct modification of the LP document,
would significantly improve the usability of the system and may assist students in separating their
perceptions about the tool from their view of LP benefits.

Acknowledgments

Portions of this material is based upon work supported by the National Science Foundation under
Grant No. DUE-1612132. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

[1] Bilton, N. (2016) ‘Smart’ Home Suffers a Brain Freeze. The New York Times.
[2] Warrick, J. (2015). URL https://www.washingtonpost.com/news/energy-environment/wp/

 2015/09/18/epa-volkswagen-used-defeat-device-to-circumvent-air-pollution-controls/.

14/16

https://www.washingtonpost.com/news/energy-environment/wp/2015/09/18/epa-volkswagen-used-defeat-device-to-circumvent-air-pollution-controls/
https://www.washingtonpost.com/news/energy-environment/wp/2015/09/18/epa-volkswagen-used-defeat-device-to-circumvent-air-pollution-controls/

1093/comjnl/27.2.97.

[3] Ardis, M., Budgen, D., Hislop, G.W., Offutt, J., Sebern, M., and Visser, W. (2015) SE 2014: Cur-
1
ri
1
cu
, 1
lu
0
m
6–
G
1
u
0
i
9
de
.
lines for Undergraduate Degree Programs in Software Engineering. Computer,

[4] Mckracken, M. (2001) A Multi-national, multi-institutional study of assessment of program-
 ming skills of first-year CS Students. SIGCSE Bulletin, 33 (4), 125–180.

[5] ASEE (2019), Online Session Locator: M308 Technical Session 1: Issues Impacting Students
 Learning How to Program. URL https://www.asee.org/public/conferences/140/registration/
 view_session?session_id=11337.

[6] M, Mohammadi-Aragh, J., Beck, P.J., Barton, A.K., and Jones, B.A. (2019) A Case Study of
 Writing to Learn to Program, in Proceedings of the 126th ASEE Annual Conference and Exposition.

 [7] Bruce, J.W., Jones, B.A., and Mohammadi-Aragh, M.J. (2019) A Literate Programming Ap-
 proach for Hardware Description Language Instruction, in 2019 ASEE Annual Conference &

Exposition, ASEE Conferences. URL 10.18260/1-2--31966.
 [8] Jones, B.A. and Mohammadi-Aragh, M.J. (2016) Employing Literate Programming Instruction

 in a Microprocessors Course, in ASEE Annual Conference & Exposition, ASEE Conferences. URL
10.18260/p.26941.

 [9] Mertz, D. (2000), Charming Python #8: Interviews with Creators of Vyper and Stackless
 Python. URL http://gnosis.cx/publish/programming/charming_python_8.html, Interview with
 M.J. Skaller.

[10] Mohammadi-Aragh, M.J., Beck, P.J., Barton, A.K., Reese, D., Jones, B.A., and Jankun-Kelly, M.
 (2018) Coding the Coders: A Qualitative Investigation of Students’ Commenting Patterns, in
 Proceedings of the 125th ASEE Annual Conference and Exposition.

[11] Knuth, D.E. (1984) Literate Programming. The Computer Journal, 27 (2), 97–111. URL 10.

[12] Pieterse, V., Kourie, D.G., and Boake, A. (2004) A Case for Contemporary Literate Program-
 ming, in SAICSIT, Stellenbosch, Western Cape, South Africa, SAICSIT ’04, vol. 75 (ed. and

others),
South African Institute for Computer Scientists and Information Technologists, ZAF, SAICSIT
’04, vol. 75, pp. 2–9.

[13] Hurst, A.J. (1996) Literate programming as an aid to marking student assignments, in Pro-
 ceedings of the 1st Australasian Conference on Computer Science Education (ed. and others),
 Association for Computing Machinery, New York, NY, USA, ACSE ’96, pp. 280–286. URL

10.1145/369585.369650.
[14] Childs, B., Dunn, D., and Lively, W. (1995) Teaching CS/1 Courses in a Literate Manner, in

 Proceedings of the TeX Users Group Conference, 3, vol. 16, 3, vol. 16, pp. 300–309.
[15] Shum, S. and Cook, C. (1994) Using literate programming to teach good programming prac-

 tices. ACM SIGCSE Bulletin, 26 (1), 66–70. URL 10.1145/191033.191059;https://dx.doi.org/
10.1145/191033.191059.

[16] Gulbrandsen, A. and Personal Website (2009), The History of udoc. URL http://rant.
 gulbrandsen.priv.no/udoc/history.

[17] Sweller, J. (1988) Cognitive Load During Problem Solving: Effects on Learning. Cognitive
 Science, 12 (2), 257–285. URL 10.1207/s15516709cog1202_4;https://dx.doi.org/10.1207/

s15516709cog1202_4.
[18] Sweller, J. and Chandler, P. (1994) Why Some Material Is Difficult to Learn. Cognition and

Instruction, 12 (3), 185–233. URL 10.1207/s1532690xci1203_1;https://dx.doi.org/10.1207/
s1532690xci1203_1.

15/16

https://www.asee.org/public/conferences/140/registration/view_session?session_id=11337
https://www.asee.org/public/conferences/140/registration/view_session?session_id=11337
10.18260/1-2--31966
10.18260/p.26941
http://gnosis.cx/publish/programming/charming_python_8.html
10.1093/comjnl/27.2.97
10.1093/comjnl/27.2.97
10.1145/369585.369650
10.1145/191033.191059; https://dx.doi.org/10.1145/191033.191059
10.1145/191033.191059; https://dx.doi.org/10.1145/191033.191059
http://rant.gulbrandsen.priv.no/udoc/history
http://rant.gulbrandsen.priv.no/udoc/history
10.1207/s15516709cog1202_4; https://dx.doi.org/10.1207/s15516709cog1202_4
10.1207/s15516709cog1202_4; https://dx.doi.org/10.1207/s15516709cog1202_4
10.1207/s1532690xci1203_1; https://dx.doi.org/10.1207/s1532690xci1203_1
10.1207/s1532690xci1203_1; https://dx.doi.org/10.1207/s1532690xci1203_1

16/16

[19] Sweller, J., Merriënboer, J.J.V., and Paas, F.G. (1998) Cognitive architecture and instructional
 design. Educational Psychology Review, 10 (3), 251–296.

[20] Jones, B.A., Mohammadi-Aragh, M.J., Barton, A.K., Reese, D., and Pan, H. (2015) Writing-
 to-Learn-to-Program: Examining the Need for a New Genre in Programming Pedagogy, in
 Proceedings of the 122nd ASEE Annual Conference and Exposition.

[21] Goodger, D. (2016), Restructuredtext: Markup Syntax and Parser Component of Docutils.
 URL http://docutils.sourceforge.net/rst.html.

[22] Bowen, J.P. (2000) Combining Operational Semantics, Logic Programming and Literate Pro-
 gramming in the Specification and Animation of the Verilog Hardware Description Language.

Integrated Formal Methods. IFM 2000, 1945. URL 10.1007/3-540-40911-4_16.
[23] Bowen, J.P., Jifeng, H., and Qiwen, X. (2000) An animatable operational semantics of the

 Verilog hardware description language, in ICFEM 2000. Third IEEE International Conference
on Formal Engineering Methods (ed. and others), pp. 199–207. URL 10.1109/ICFEM.2000.
873820.

[24] Jones, B.A. (2019), CodeChat - ECE 3724 on GitHub. URL https://github.com/bjones1/
 ece3724_inclass, Down.

[25] Jones, B.A. (2019), ECE 3724 Microprocessors. URL https://sites.google.com/site/ece3724/
 Home.

[26] Winter, J.C.D. and Dodou, D. (2010) Five-point Likert items: t test versus Mann-Whitney-
 Wilcoxon (Addendum added October 2012). Practical Assessment, Research and Evaluation, 15.

URL https://doi.org/10.7275/bj1p-ts64;https://scholarworks.umass.edu/cgi/viewcontent.
cgi?article=1237&context=pare.

[27] Pressman, R.S. (2001) Software Engineering: A Practitioner’s Approach, McGraw-Hill,
 McGraw-Hill series in computer science.

[28] Mcconnell, S. (2004) Code Complete 2/e, Best Practices, Microsoft Press.

http://docutils.sourceforge.net/rst.html
10.1007/3-540-40911-4_16
10.1109/ICFEM.2000.873820
10.1109/ICFEM.2000.873820
https://github.com/bjones1/ece3724_inclass
https://github.com/bjones1/ece3724_inclass
https://sites.google.com/site/ece3724/Home
https://sites.google.com/site/ece3724/Home
https://doi.org/10.7275/bj1p-ts64; https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1237&context=pare
https://doi.org/10.7275/bj1p-ts64; https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1237&context=pare

	Introduction
	Background Literature
	Literate Programming (LP)
	Cognitive Load Theory

	CodeChat: A Modern LP Approach
	Research Overview
	CASE 1: Microprocessors Course
	Approach for Microprocessors
	Data Collection for Microprocessors Case
	Results for Microprocessors Case
	Discussion of Microprocessors Case

	CASE 2: Digital System Design Course
	Approach for Digital System Design
	Data Collection for Digital System Design Case
	Results for Digital System Design Case
	Discussion of Digital System Design Case

	Conclusions

