
Published 30Nov 2021

OPEN ACCESS
Volume

12
Issue

3
*Corresponding author

nlotfiy@siue.edu
Submitted 17 Jan 2021
Accepted 1 Nov 2021

Citation
Lotfi N., Auslander D., 

Rodriguez L.A., Mbanisi 
K.C. and Berry C.A. “Use of 
Open-source Software in 

Mechatronics and 
Robotics Engineering 

Education – Part I: Model 
Simulation and Analysis,” Computers in Education 
Journal, vol. 12, no. 3, 2021.

Use of Open-source Software inMechatronics
and Robotics Engineering Education – Part I:
Model Simulation and Analysis
Nima Lotfi1*, Dave Auslander2, Luis A. Rodriguez3, KenechukwuCMbanisi4
and Carlotta A Berry5
1Mechanical andMechatronics Engineering Department, Southern Illinois University
Edwardsville, Edwardsville, Il, USA
2Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
3Mechanical Engineering,Milwaukee School of Engineering,Milwaukee,WI, USA
4Robotics Engineering,Worcester Polytechnic Institute,Worcester, MA, USA
5Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN,
USA

ORIGINAL RESEARCH

Abstract
Open-source Software (OSS) provide attractive solutions for complementingMechatronics and
Robotics Engineering (MRE) education due to their numerous advantages such as free access,
customizability andwide community support, increased adoption and utilization in industry, etc.
To provide a deeper insight on the current status, limitations, and potentials of theOSS, a summary
of the results of an online survey, conducted among various community stakeholders, is included.
Furthermore, the two parts of this contribution are intended to provide an exposure to theOSS
which have the potential to be used inMRE education. To this end, two specific problems, namely,
model simulation and analysis of a DCmotor (Part I) and controller implementation for a 2-DOF
robot manipulator (Part II), are solved using Python, Java, Modelica, GNUOctave, and Gazebo.
The systems chosen for this work are some of themost-commonly encountered systems and the
considered problems, i.e. model simulation, analysis, and control implementation, are fundamental
problems in the context ofMRE. Therefore, this work can helpMRE instructors familiar with these
OSS to easily integrate them into their respective courses. On the other hand, the students can
also greatly benefit from this work as it provides an entry point into applying differentOSS inMRE-
related courses and projects. Exposure to various ways in which anMRE problem is translated
into a software solution enables the students to generalize their problem-solving process across
different computational tools. Students equipped with such a skillset would potentially have a
flexible mindset and could make well-balanced and informed judgements when devising a solution
to a real-world engineering problem. Full code scripts for each of the OSS introduced in this
work, along withMatlab which is intended as a point of comparison, are included on the GitHub
repository of the paper to provide free access to the community and to help with widespread
adoption of theOSS inMRE higher education.
Keywords: Open Source Software, Robotics Engineering Education, Model Simulation, Program-
ming Languages

1 Introduction
The field ofMechatronics and Robotics Engineering (MRE) has experienced tremendous growth
in the past few decades, mainly due to the advancements in integrated circuits and electronics,
computers, control systems, and connectivity and networking. Applications such as consumer



electronics, home and building automation, medicine and healthcare, manufacturing and industrial
robotics, heavymachinery, autonomous transportation, and aerospace applications, in addition to
democratization of access throughMakerMovement have further expedited the advancements in
the field ofMRE.
Considering the prevalence and potentials of MRE, it is of utmost importance to educate the
future engineers by providing an interdisciplinary knowledge of mechanical, electrical, computer,
software, and systems engineering so that they can undertake andoverseemultidisciplinary design
and development efforts in this field and to define the future of work at the human-technology
frontier. In addition to technical breadth and depth, theMRE educational institutions should also
provide the students with a rich hands-on skillset. To this end, in the past decades, numerous
software and hardware packages have been developed to further engage the students through
laboratory and project-based learning paradigms. Such experiences could give students a deeper
understanding of the core MRE concepts as well as an opportunity to practice the application
of those concepts – linking knowledge and real-world skills. Students who demonstrate this
understanding can confidently study real-world global challenges, devise multiple solutions to
these problems, evaluate the feasibility of the various solutions based on the qualitative and
quantitative criteria and constraints, and implement the optimal solutionwhile considering the
broader societal impacts.
Although commercial products such asMatlab and Simulink, which are targeted towards improv-
ingMRE education, have been widely adopted in academia, their acquisition and licensing fees
can be a big hurdle for academic institutions which lack the necessary financial infrastructure.
Furthermore, the students typically lose access to these resources once they graduate and leave
the educational environments. Finally, there is an increasing trend in industry towards the devel-
opment, distribution, and adoption of open-source platforms as they can reduce the total cost of
ownership, reduce dependence on vendors, and facilitate higher flexibility and customizability.
The open-source community has been growing steadily since its first introduction in the early
1980s. The “open-source way”, which was initially used in software development, distribution and
maintenance, wasmotivated by the need for better collaboration amongst developers, improved
accessibility and reliability of software through a network of contributors. Open-source software
(OSS) is defined as software released under a license which grants users the right to study, use,
modify, and distribute the source code to anyone and for any purpose [1]. Linux operating sys-
tem and ApacheWeb server are some of the early developments of the community. Currently,
numerous high-quality open-source alternatives to proprietary software are available in various
applications, which have gainedwidespread adoption.
In higher education, the first exposure to theOSS has traditionally been in introductory program-
ming courses. Different programming languages such as C, C++, Java, etc. have been used to
introduce the students to the fundamentals of programming and to develop their computational
thinking mindset. In recent years, scripting languages such as Python have attracted more at-
tention in the introductory programming courses, specifically due to their increased popularity,
simplicity, and flexibility [2, 3]. Different types of the OSS have also been used in higher-level
courses in Computer Science [4] and Software Engineering [5] programs. A detailed overview of
the OSS implementation in Software Engineering during a 3-year project along with students’
perception and feedback are presented in [6]. The accessibility and customizability of the OSS
have also contributed significantly to online and distance education [7, 8]. An empirical study was
conducted in [9] to evaluate the common perceptions about theOSS and their applications and to
provide a guideline for practitioners whowish to implement or switch toOSS.
The applications of theOSS inMRE education havemainly revolved around the use of the family
of C languages, and recently Python, in embedded system programming and hardware interface.
Reduced costs and advancements in open-source hardware such as Arduino, Raspberry Pi, Bea-
gleBone, etc. have further increased the use and popularity of these software. The open-source
hardware platforms have also enabled the community to develop low-cost laboratory experiments
in order to complement the heavy theoretical content of MRE courses such as Embedded Sys-
tems [10], Controls [11–13], and Robotics [14–17]. A number of simulation platforms have also

2/22



been developed to teach motion dynamics [18] and industrial robotics [19]. Finally, Journal of
Open Source Software is an extensive repository that contains articles on the development of
specialized OSS tools. Some of such tools related to MRE include: ros_control: A generic and
simple control framework for ROS [20], CoreRobotics: An object-oriented C++ library with cross-
language wrappers for cross-platform robot control [21], DART: Dynamic Animation and Robotics
Toolkit [22], DmpBbo: A versatile Python/C++ library for Function Approximation, Dynamical
Movement Primitives, and Black-BoxOptimization [23], Phobos: A tool for creating complex robot
models [24], Manif: Amicro Lie theory library for state estimation in robotics applications [25],
SLAMToolbox: SLAM for the dynamic world [26], and Pybotics: Python Toolbox for Robotics [27].
Utilizing the OSS in MRE education is a feasible option for a wider range of institutions. Fur-
thermore, it can familiarize the students with the development details of real-world systems and
therefore, provide a deeper learning experience, which can be very attractive for future employers
who are also wishing to utilize OSS. There are, however, a few challenges that need to be resolved
before widespread adoption of theOSS inMRE education. These challenges include lack of famil-
iarity amongMRE educators with the utilization and application of OSS platforms; lack of tutorials
and documentation tailored specifically for the design, analysis, and real-time implementation of
MRE systems; the skillset to navigate through vast online resources about OSS for debugging and
troubleshooting.
To overcome some of the aforementioned challenges, this work, presented in two parts, aims to
increase the MRE community awareness and familiarity with the applications of the OSS. This
article, i.e. Part I, addresses model simulation and analysis of a DC motor using some of the
commonly-usedOSS. DCmotors, which are one of themost versatile systems in anyMRE system,
are governed by a set of linear ordinary differential equations. Familiarity with the simulation and
analysis of DCmotors using theOSS can pave the way towards their utilization in a wide range
ofMRE systems. This paper is organized as follows: Section 2 provides background information
about theOSSwith an extensive online support and the potential to be used inMRE education,
namely, Python,Modelica, Java, GNUOctave, and Gazebo. Section 3 summarizes the results of
a recent survey conducted among various community stakeholders to gauge the current status,
potentials, and limitations of theOSS. Section 4 introduces the dynamics and the parameters of
the DCmotor used in simulations. In Section5, Python, Modelica, Java, and GNUOctave are used
to simulate the dynamics of the introduced DCmotor. Although the DCmotor simulations can
be accomplished in Gazebo, this software package is only considered in Part II of this work for
the closed-loop control of a robotmanipulator. Code snippets from each software are provided
in Section 5 to show the structure of the programs used for the simulations along with the other
capabilities of theOSS and resources to learnmore about them. This work is not an introduction
to programming, neither is it a work on themodeling and control of dynamic systems. It, however,
can provide a detailed and thorough exposure to the capabilities and application of some of the
commonOSS in the context ofMRE systems. To the authors’ best knowledge, this work is a unique
contribution aiming to ease the adoption and application of various OSS inMRE education.

2 Overview of Different Open-source Software
In this section, theOSSwith the high potential for use inMRE education andwith wide community
support are introduced. These software include general programming languages such as Python
and Java andmore specialized platforms such asModelica, Gazebo, andGNUOctave. All the open-
source software in this work, except for Java, are technically considered scripting languages, as
opposed to programming languages, and interpreted languages, as opposed to compiled languages.
For brevity and clarity of presentation, the generic term software (and the abbreviationOSS) is
used throughout the article to refer to these languages.

2.1 Python
Python is a general-purpose and interpreted programming language, first developed by Guido van
Rossum and released in 1991. In order to make it freely accessible to everyone, it is developed

3/22



under an open-source license. Python Software Foundation, which is responsible for administering
Python’s license,was formed “to promote, protect, and advance thePythonprogramming language,
and to support and facilitate the growth of a diverse and international community of Python
programmers” [28]. Due to its high-level and open-source nature, large community of developers
in Python, an abundance of packages developed for Python [29], and easy integration with other
programming languages, Python has gained popularity in various applications and disciplines and
has turned into an industry standard. Consequently,many valuable resources havebeendeveloped
for getting started with Python. The website [28] provides a rich repository of documentation
about Python installation, learningmaterials, news and events. In addition tomany books written
about Python [30, 31], several MOOCs (Massive Open Online Courses) also exist to provide
familiarity with the fundamentals, advanced topics, and applications of Python [32, 33].
In the past decade, the Python community has developed numerous packages for mathematics,
science, and engineering applications [34, 35]. The following is a list of some of these libraries
• SciPy: A comprehensive library with sub-modules for variousmathematical and scientific op-
erations such as Fast Fourier Transform, interpolation, numerical integration, linear algebra,
file input/output, optimization and curve-fitting, statistics, and signal processing.

• NumPy: Offers computational capabilities similar toMatlab which also overlaps with some
of SciPy’s functionalities. It is best suited for fast array operations. Matlab users whowish to
learnmore about NumPy can refer to [36] for a detailed comparison betweenMatlab and
NumPy.

• Matplotlib: Enables high-quality 2D plotting. It can be used to generate plots, histograms,
power spectra, bar charts, error charts, scatterplots, etc.

• SymPy: Used for symbolic programming. It is incorporated into awide rangeof other libraries
such as symbolic statistical modeling, multibody dynamics, linear circuit analysis, etc.

• IPython: Provides an interactive shell similar toMatlab’s workspace which is ideal for trou-
bleshooting, interactive data visualization, use of GUI toolkits, and parallel computing.

• pandas and Scikit-learn: Offer an extensive suite of tools for predictive data analytics,
modeling, andmachine learning.

• Python Control Systems Library: Provides functions and classes to systematically analyze
and design feedback control systems along with aMatlab compatibility module for users
more familiar withMatlab [37].

Asmentioned earlier, Python has received an increased attention in the past few years, mainly due
to the fact that while it is a general-purpose, high-level, and interactive programming language, it
is also equippedwith powerful features and add-on libraries which place it at the same high level
as specialized software such asMatlab. To catch up to its fast pace of growth and popularity and
to familiarize the future generation, Python is increasingly being introduced in higher education
curricula. In the past decade, majority of top CS departments in United States have switched to
Python in their introductory computer programming courses [38]. According to a comparative
study in [39], among Python, C, andMatlab as the programming language of choice for engineering
education, Matlab is determined to bemore suitable compared to C, however, Python is selected
as the best option due to its clarity and functionality. A similar conclusion about Python being
the best choice for engineering education compared toMatlab and C is achieved in [2]. Authors
in [40] discuss themotivation and the process of a transition fromC to Python in the first computer
programming course forMechanical Engineering students and report a reduced failure rate among
the students, among other observations. In the context ofMRE education, Python hasmainly been
used as the programming language for open-source hardware such as Raspberry Pi [41, 42], which
is typically used for teaching control engineering. Python has also been used in [43] to develop
internet tools to teach the fundamentals of control.

4/22



2.2 Java
While Java is not the first programming language environment that comes to mind in an MRE
context, it hasmany properties that make it a very useful tool. The first of these is the language
itself. Java is fully object-oriented, has a relatively clean syntax, executes quickly, and operates
with no changes (usually) across different computers and operating systems. It can be applied
to mathematically based problems (for example, dynamic simulation) as well as used for direct
control of physical systems.
Java compiles to an abstract machine code that executes via a Java VirtualMachine (JVM). Thus,
a compiled Java program can execute on any system for which a JVM exists. This guarantees
that basic properties such as how integer and real numbers are stored, precision associated with
different data types, etc., will not change from one environment to another.
Java is open source. The Java Development Kit (JDK) including, compiler, linker, etc. is available
from [44]. Commercially licensed versions are also available fromOracle. The twomost popular
Integrated Development Environments (IDE) are also open source, Netbeans [45] and Eclipse [46].
While the Java language itself provides very effective ways to organize complex problems, solving
themoften requires additional numericalmath tools. For awide rangeof problems, the appropriate
tools are available through the open source Apache CommonsMath Library [47] or its successor,
the HipparchusMath Library [48]. There are also other smaller, more specialized libraries that can
be found online.
Java is used as the computing language for the Advanced Placement Computer Science course and
is also widely taught in lower division undergraduate courses in computer science as well as other
programs. Because of this, there is a large amount of material on learning Java – so much that
any listing here would barely scratch the surface. Thematerial consists of books, online tutorials,
videos, forums, etc., much of it freely available. In general, this material focuses on learning Java
without going very deeply into the subject matter used for examples. For material that is more
closely focused on the subjectmatter of this contribution, a well-documented course on using Java
for simulation of physical systems can be found at [49]. Amore extensive discourse on the use of
Java in simulation has been produced under the auspices of the Open Source Physics project [50].

2.3 Modelica
“TheModelica Language is a non-proprietary, object-oriented, equation-based language to con-
veniently model complex physical systems containing, e.g., mechanical, electrical, electronic, hy-
draulic, thermal, control, electric power or process-oriented subcomponents” [51].
Modelica is of particular interest to the mechatronics/robotics community because it provides
dynamic simulation of three-dimensional and constrainedmechanical systems and energetically
correct interactions between themechanical systems and electrical systems, hydraulic, pneumatic,
etc. It does this through an underlyingmathematical base that is capable of solving differential-
algebraic equations (DAEs) and an underlying computing syntax based on equations rather than
algorithmic “store-into” statements. Most users do not interact withModelica at that level, how-
ever, but rathermake use of an extensive set of libraries for various physical domains combined
with a graphical user interface.
Systems with constraints are known as “acausal”. For a system defined by a set of N first-order,
nonlinear differential equations, constraints add algebraic equations to the system equations.
Acausal systems have fewer than N independent initial conditions because the algebraic con-
straints reduce the effective order of the system. In mechatronics, almost all mechanical systems
of any interest have constraints which is one reasonModelica is so valuable.
The Modelica language is defined by an open source specification maintained by the Modelica
Association [modelica.org]. The actual implementation is left to any organization, including both
commercial and open source entities. Themost important open-source implementation is Open-
Modelica [52].

5/22



Modelica has been heavily used in certain industries, but less so in college-level teaching and,
probably, not at all at the high school level. Thus, there is not nearly as much instructional material
available as there is for much more widely used languages such as Python or Java. There is,
however, some useful material to cite. TheOpen SourceModelica Consortium [53] has a short,
introductory course, as well as a longer, more in-depth course at [54]. “Modelica by Example” is an
in-depth, online book onModelica [55]. It is also available for sale (on a “pay what you can” basis)
in various eBook formats. A set of introductory slides that usesmany examples from “Modelica
by Example” is available at [56]. Because Modelica is explicitly aimed at simulation of physical
systems, any instructional material onModelica is, by definition, also about simulation of physical
systems.

2.4 Gazebo
Since its debut in 2007, ROS (Robot Operating System) has grown into themost prominent open-
sourcemiddleware framework for robotics research and development in industry and academia.
Likewise, the Gazebo Simulator has become increasingly popular, thanks in part to its robust
integration with the ROS framework [57]. Gazebo is an open-source 3D dynamic simulator that
provides a framework for realistic simulation of multiple robots dynamically interacting with
each other in complex environments and scenarios [58, 59]. Gazebo comprises a suite of features
which include high-performance physics engines (e.g. OpenDynamics Engine, Bullet, etc.), high-
fidelity graphical rendering of environments and ability to generate realistic sensory data from
the environment [58]. These features allow users to create very realistic simulated environments
and scenarios to learn to operate and test their robot designs and control algorithmswithout the
risk of damaging their physical robots. Users can either leverage the rich library of existing robot
models available with the software (ranging from mobile aerial and ground robots to state-of-
the-art humanoid robots) or design their own robot models from scratch using the Unified robot
description format (URDF). Asmentioned earlier, Gazebowill be used in the second part of this
work to simulate the closed-loop performance of a robot manipulator.
In the context ofMRE education, Gazebo and ROS have been used in several ways to help students
learn core robotics concepts. A two-part introductory robotics course was presented in [60]
using both Gazebo and ROS. A graduate course onmobile robotics and robotic manipulation in
the context of Industry 4.0 was developed in [61] using both software. In [62], Gazebo and ROS
were both applied in an advanced course on humanoid robotics. In robotics education, open-
source simulation tools are particularly relevant because they address the challenge of hardware
affordability, making it possible to design labs partially or entirely in simulation [61, 63]. The
integration of these open-source software into the curriculum requires that the students are
provided with opportunities to learn how to use them. For instance, in [61], the lab included
preparatory sessions where the students complete comprehensive tutorials on the software
available online [64].

2.5 GNUOctave
GNUOctave [65] is a high-level programing language for numerical computations with built-in
plotting and visualization tools. Octave is an open-source softwarewith syntax largely comparable
to and compatible withMATLAB. It can be freely redistributed and/ormodified under the GNU
General Public License. It runs on multiple platforms including GNU/Linux, macOS, BSD, and
Windows. Octave was primarily developed by JohnW. Eaton andwas conceived in 1988 as com-
panion software for a chemical reactor design textbook. It is an interpreted programming language
designed to solve a variety of engineering problems involving the numerical solution of linear and
nonlinear problems and ordinary differential equation problems. It also contains an extensive
collection of packages that enhances its core functionality by introducing field specific features.
Some of the packages relevant to MRE systems include the Control, Image Acquisition, Image,
Optim, and the Arduino package which are used for control design and analysis, image acquisi-
tion and processing, optimization, and Arduino control, respectively. Octave also includes both a

6/22



graphical user and a traditional command-line interface that provides greater flexibility for novice
and advance users. It can also be used to write non-interactive user-defined programs and can call
C, C++, and Fortran codewithin Octave using Oct-Files or usingMATLAB-compatibleMex-Files.
For new users and developers Octave also provides an activeWiki-page containing installation,
development, and documentation resources, in addition to the built-inOctave documentation [66].
In engineering education, GNU Octave has been used as an alternative platform to provide a
computational environment to process and visualize data. Its appeal is linked to the fact that it is a
free and open-source licensed product that is highly compatible with theMATLAB programming
language. Universities have utilizedOctave to create line following and robot simulators and to
process data frommobile robot projects [67–69]. It has also been combined with open source
hardware such as the Raspberry Pi to perform image processing tasks in robot arm sorting applica-
tions [70]. One of themain challenges with Octave that educators have pointed out is the lack of
repository libraries likeMATLAB’s mature toolboxes [68]. Nevertheless, Octave has emerged as a
promising alternative tool toMATLABwithout compromising performance and productivity [70].

3 Community Impressions of theOpen-source Software
This section provides a summary of a recent survey conducted in order to understand the extent to
which professionals in various engineering disciplines, such asmechanical engineering, electrical
and computer engineering, and mechatronics and robotics engineering are familiar with and
utilize the OSS. The survey was conducted online and was distributed to community members
through personal invitations and posts on academic, technical, and professional email lists and
social media. A total of 131 responses were received from various stakeholders comprising of 55
current engineering students, 59 engineering educators, 14 industry professionals, and 2Other
(a mathematics and a retired professor). Figure 1 below shows department affiliation/area of
expertise distribution for each of the above categories.

Figure 1. Department affiliation/area of expertise distribution among survey participants.

The Other affiliation in all the categories above comprised mainly of individuals in the field of
computer science.

7/22



The OSS considered in this survey included Python, Java, Modelica, GNUOctave, Gazebo, and
family of C languages. Table 1 below shows the percentage of survey participants with no/slight
familiarity with each of theseOSS.

Table 1. Percentage of survey participants with no/little familiarity with the OSS.

Python Java Model-
ica

GNU
Octave

Gazebo Family of C
Languages

Students 50% 72.50% 100% 92.68% 90.25% 26.83%
Educators 35.41% 66.67% 93.62% 61.70% 87.24% 20.41%
Industry
Professionals

18.18% 36.36% 90.91% 54.54% 63.63% 9.09%
Other 100% 100% 50% 100% 100% 50%

As can be seen from the results in Table 1 , majority of the survey participants are familiar with
the family of C languages which are typically taught as freshman introduction to programming/-
computing courses and are mainly used for hardware interface. Considering the focus of this
article on model simulation, analysis, and controller implementation, this category of the OSS
is not considered here. Although the remainder of the OSS, as discussed in this work, have the
potential for use inMRE applications, there seems to be a lack of familiarity with these software,
especiallyModelica, GNUOctave, and Gazebo.
In response to a question on how the participants learnt the aboveOSS, 54.79% of the students,
93.44% of the educators, 73.68% of the industry professionals, and 100% of the others described
their learning experience as self-taught using a book, aMassive OpenOnline Course (MOOC), or
trial/error, as opposed to learning through a formal required/elective course.
As for prior experience, 56% of educators and 75% of industry professionals have used theOSS in
their teaching and careers, respectively. On the other hand, 68% of the educators and 66.67% of
the industry professionals definitely plan to use theOSS in their respective sectors in the future,
whereas 30% of the faculty and 25% of industry professionals do not have certain plans in this
regard.
Finally, through two open-ended questions, the survey inquired about the challenges the partici-
pants have faced in learning/using theOSS and their perceptions on the potentials and benefits
of the OSS. A summary of the participants’ responses is presented below in Table 2 . Repeated
responses are eliminated for brevity.
As can be seen from the community survey results, while theOSS have numerous potentials and
benefits, there are still several challenges that need to be addressed before their widespread
adoption. Although the current work is not intended to address all these challenges, it provides a
specialized focus on the application of theOSS inMRE.Developedby theMRE faculty and students
for theMRE community, this two-part contribution facilitates ease of entry and can enableMRE
educators and studentswhowish to utilize theOSS in their courses and projects. Such an exposure
for the students can further develop their computational mindset and problem-solving skills and
therefore, prepare them for the jobmarket. Future work will provide amore detailed analysis of
the survey results to build a roadmap for further overcoming the challenges andmore widespread
adoption of theOSS in higher education.

3.1 Motor Case Study
ADCmotor is one of themost commonly used actuators for generating rotational and translational
motions inMRE systems. Furthermore, DCmotors are perfect examples of anMRE system due
to their multidisciplinary nature. The DC motor dynamics are governed by linear differential
equations, and therefore, familiarity with numerical simulation of DCmotor dynamics can pave
theway to study otherMRE systems that the students andprofessionalsmay encounter in practice.
The circuit diagram below is a typical schematic of an armature-controlled DCmotor.

8/22



Table 2. Summary of the survey results on community impressions of the open-source software.

Challenges of OSS Potentials and Benefits of OSS
-Difficulties in initial installation, package additions,
and setup - Dependency on specific operating systems
-Where/how/what to learn for a specific application
- Compatibility with commercial PCs and software
- Lack of official technical support and quality documen-
tation
- Specialized support for intermediate users
- Lack of familiarity with proper online search towards
troubleshooting specific problems - Initial learning
curve
- Version compatibility and frequent updates
- Reliability of the online information
- Lack of motivating examples in the classrooms
- Lack of practice exercises -Multiple off-shoots/flavors
- Potentially higher maintenance costs
- Plagiarism issues
- Security of online forums andwebsites
- Conflicts with campus IT
- Lack of maintenance
- Specialized nature of OSS
- Difficulty gauging thematurity, stability, and level of
community support for certain OSS
- Managing virtual environments and versions of
Python
- Time commitment for self-learning
- Lack of open-source hardware drivers
- AnOSSwith Simulink capabilities
- Lack of prior familiarity among the students and fac-
ulty
- Lack of course specificmaterial
- Technical documentation in non-English languages
- Cross-platform issues
- Difficulty and time commitment to apply the OSS in
control systems
- Lack of university and college support
- Lack of backward compatibility
- Unresolved bugs
- Corporate disapproval to contribute to the open-
source community
- Low-quality user interface
- Not suitable for short timeframe professional projects
- Customer acceptance
- Little emphasis on performance and reliability
- Lack of high-quality embedded compilers
- Potential legal issues

- Based on community learning and
collaboration
- No acquisition costs
- Source code availability and cus-
tomizability
- Security, stability, and privacy
- Acceptance as industry standard
- Strengthened relationship between
the user and the software
- Accessibility for low-income and un-
privileged society groups
- Applicability to a wider range of
projects
- Desirable among future employers
- Speeding up the project due to the
available libraries and online solu-
tions
- Cost and time savings for industry
- Promoting and enabling innovation
for a wider community
- Promoting self-learning
- Long-term accessibility, even after
graduation
- Incorporation of community feed-
back
- Large number of online tutorials
- No licensing hassles
- Suitable for online education
- Adaptability to certain applications
- Potential to promote learning core
skills
- Lack of commercials andmarketing
noise
- Avoiding subscription-based billing
models
- Plug and play design
- Ease testingmultiple methods with-
out a high cost of integration
- Lack of need for training new hires
by the industry

9/22



Figure 2. Schematics of an armature-controlled DC motor [71].

In this DCmotor, the armature voltage v, is the input to the system whereas the rotational dis-
placement of themotor shaft θ, the angular velocity of themotor shaftω = dθ/dt, and the armature
current i are assumed to be the systemoutputs. UsingKirchhoff’s andNewton’s laws, the dynamics
of this system can be described by the following set of differential equations:

J
d2θ(t)

dt2
+ b

dθ(t)

dt
= Kti(t)

L
di(t)

dt
+Ri(t) = v(t) −Kb

dθ(t)

dt

(1)

where J is the moment of inertia of the motor shaft, b is the viscous friction coefficient of the
motor shaft, Kt is the armature constant, L is the armature electrical inductance, R is the armatureelectrical resistance, and Kb is the back-emf constant. The values of these parameters usedhere are obtained from the datasheet information andmodel identification tests conducted on a
brushed servomotor, C40-E-500FE, fromAdvancedMotion Controls [72]. These parameters are
reported in Table 3.

Table 3. 3. DC motor parameters used in simulations.

Parameter J b Kt Kb R L VnomValue 0.0026
kg.m2

0.01
N.m.s/rad

0.66
N.m/A

0.66
V/rad/s

2.62
Ω

0.05
H

24 V

To conform to common numerical simulation algorithms required to solve the DCmotor dynamics
in Equation 1 , the equations first need to be converted to a set of first-order ODEs as shown
below:

dθ(t)

dt
= ω(t)

dω(t)

dt
=
b

J
ω(t) +

Kt

J
i(t)

di(t)

dt
= −Kb

L
ω(t) − R

L
i(t) +

1

L
v(t)

(2)

10/22



These equations can also bewritten in a state-space form:
·
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3)

where x(t) = y(t) = [θ(t), ω(t), i(t)]T , u(t) = v(t), and thematricesA,B,C, andD are:

A =


0 1 0

0 − b

J

Kt

J

0
−Kb

L

−R
L

 B =

 0
0
1

L

 C =

1 0 0
0 1 0
0 0 1

 D = 0 (4)

4 DCMotorModel Simulation and Analysis
An importantfirst step in the analysis and control design for any Linear Time-Invariant (LTI) system,
including DCmotors, is to analyze their time-domain behavior. To this end, the introducedOSS
are used in this section to obtain the step response of the DC motor dynamics in Equation 1 .
For each OSS, the important code snippets are introduced and explained. Furthermore, other
software-specific tools which can be used for further analysis and control design of LTI systems
are introduced. Full code scripts can be accessed from the Github repository of the article at [73].

4.1 Python
In order to obtain the step response of theDCmotor, the governingODEs can be directly solved in
Python using solve_ivp command from the scipy.integrate library [74]. The other library required
for this simulation includes numpy (imported as np). The solve_ivp command syntax for solving
theODEs in Equation 2 or Equation 3 is:
1 sol=solve_ivp(model,(t0,tf),x0,dense_output=True,vectorized=True,

args=(v,))
2 x=sol.sol(t)

Code Snippet 1.

wheremodel is a user-defined function. For theODEs in Equation 2 , this function can bewritten
as:
1 def model(t, x, u):
2 theta,omega,i=x
3 dxdt = [omega,−(b/J)*omega+(Kt/J)*i, \
4 −(Kb/L)*omega−(R/L)*i+(1/L)*u]
5 return dxdt

Code Snippet 2.

whereas for theODEs in Equation 3 , the function is:
1 def model(t, x, u):
2 A = [[0, 1, 0],[0,−(b/J),(Kt/J)],[0,−(Kb/L),−(R/L)]]
3 B = [[0], [0], [1/L]]
4 dxdt = np.dot(A,x) + np.dot(B, u)
5 return dxdt

Code Snippet 3.

11/22



In Python, themodel parameters can be specified after the definition of themodel function. The
simulation time is defined using the arange command as 0 ≤ t ≤ 0.5 with a step size of 0.001
s. Finally, the input voltage v is chosen as the nominal motor voltage, i.e. 24 V, and the initial
conditions vector, x0, is defined as a 1-dimensional list, x0 = [0, 0, 0].
Python Control Systems Library [37] can provide alternative methods for solving for the step
response of the DC motor dynamics. The best way to install this library is through using a pip
installer, more information can be found in the official documentation [37]. After the installation,
this library needs to be imported to the Python workspace (imported as ctrl here.) The step re-
sponse can then be obtained using the step_response command from the Python Control Systems
library:
1 t, x = ctrl.step_response(v*ssModel, t)

Code Snippet 4.
where ssModel, the state-space representation of the system described in Equation 3, is defined
as:
1 ssModel = ctrl.ss(A,B,C,D)

Code Snippet 5.
While the classes and commands in Python Control Systems Library can be used for simulating
the step response, Matlab compatibility module, also included in this library, can provide another
convenient method for model simulation, especially for thosemore familiar withMatlab. Using
this module, the step response can be obtained as:
1 ssModel = matlab.ss(A,B,C,D)
2 x, t = matlab.step(v*ssModel, t)

Code Snippet 6.
wherematlab is an alias used for importing the control.matlabmodule. Note that the state vector,
x, obtained usingMatlab Compatibility Module has a dimension of n× 3 whereas the previous
methods generate a state vector with a dimension of 3 × n, where n is the length of the time
vector. Finally, the librarymatplotlib.pyplot can be used for plotting system states and plot cus-
tomizations. Figure 3 shows the step response of the DCmotor, plotted usingmatplotlib.pyplot
library in Python. Although slightly different compared to Matlab, this library provides a wide
range of programmatic customization tools for plotting andmodifying the appearance of the plots
and is easy to implement [75]. The generated figures, however, do not have a lot of the interac-
tive functionalities such as setting cursors, graphical modification of the plots, etc, that Matlab
provides.
Other system descriptions such as transfer functions and frequency response data models can
also be defined in Python Control Systems Library using tf and frd commands, respectively. Other
features of Python Control Systems Library which can be very helpful in the context of Mecha-
tronics and Robotics Engineering can be foundwithin the online documentation [37]. Examples
of some of these capabilities are given in the next section alongside similar features in Octave
Control package.

4.2 GNUOctave
To obtain the step response of the DC motor to a constant armature voltage of 24 volts, two
approaches are used in this section. The first approach usesOctave’s built-in function ode45while
the second approach implements the step function in Octave’s Control package to obtain the time
response of the governing equations of themotor. For this example, it is assumed that themotor
starts from rest.

12/22



Figure 3. Step response of the DC motor states simulated in Python.

For the first approach, the ode45 command syntax for solving theODEs in Equation 2 or Equa-
tion 3 is:
1 [~,X]=ode45(@(t,x)motor.model(t,x,v),time,x0,options);

Code Snippet 7.

where time is the time vector for the simulation, x0 is the initial condition for the system, options
are the solver options, andmodel is an instancemethod from the user-definedDCMotor object
namedmotorwhich implements theODEs in Equation 2 as shown below:
1 function xdot = model(obj,t,x,u)
2 theta = x(1); omega = x(2); i~= x(3);
3 v = u; %~armature voltage
4 xdot = [omega, (obj.Kt*i−obj.b*omega)/obj.J, ...
5 (v−obj.Kb*omega−obj.R*i)/obj.L];
6 end

Code Snippet 8.

The obj refers to the instance of the DCMotor class. To implement the state-space representation
as in Equation 3 , themodel method is defined as:
1 function [xdot] = model(obj,t,x,u)
2 A = [0 1 0; 0 −obj.b/obj.J obj.kt/obj.J; 0− obj.kb/obj.L −obj.R

/obj.L];
3 B = [0;0;1/obj.L];
4 C = [1 0 0;0 1 0;0 0 1]; D = 0;
5 xdot = A*x+B*u;
6 end

Code Snippet 9.

13/22



For the second approach, Octave’s Control package [76] needs to be installed and then loaded.
Once the package is available, the motor step response can be simulated using the following
syntax:
1 ssModel = ss(A,B,C,D);
2 [~,~,X] = step(ssModel*u,time);

Code Snippet 10.

where the ss function creates an LTI state-space representation of themotor and the step function
determines the step response of the LTI system. The simulated state vector is then stored in the
variableX. Plotting these state variables results in a figure identical to Figure 3 .
Similar to Python’s Control Systems Library, Octave’s Control Package provides other system
descriptions for defining transfer functions and frequency response data models. It also features
other useful control system design and analysis tools. A brief summary of some of the available
control-related commands in both Python andOctave are shown in Table 4.
Table 4. 4: Comparison of control-related commands in Python’s Control Systems Library and

Octave’s Control Package

Python Octave
SystemDescriptions tf, frd tf, frd
Frequency Domain Plotting bode_plot, nyquist_plot,

nichols_plot
bode, nyquist, nichols

TimeDomain Simulation forced_response, im-
pulse_response, ini-
tial_response, in-
put_output_respones,
phase_plot

lsim, impulse, initial, ode45,
quiver

Control SystemAnalysis stability_margins, pzmap,
root_locus, sisotool

margin, pzmap,rlocus, siso-
tool(not available)

Control System Synthesis acker, h2syn, hinfsyn, lqr,
place

acker, h2syn, hinfsyn, lqr, place

4.3 Modelica – EquationMode
UsingModelica in its equationmode comes very close to just transcribing the dynamic equations
and clicking “GO”. Below is the content of the “equation” section of theModelica model:
1 der(theta) = omega;
2 der(omega) = ((−b * omega) + Kt * i) / J;
3 der(i) = ((−Kb * omega) − R * i~+ v) / L;

Code Snippet 11.

where der is derivative-with-respect-to-time. Note that these are true equations, not comput-
ing statements. They can be written in any order and, within each equation, the terms can be
rearranged as long as the original algebraic meaning is maintained.
These listings are fromOpenModelica’s Connection Editor. OpenModelica was used for this case
study and all Modelica examples to follow [52].
As with any problem definition, the parameters and initial conditionsmust also be specified. This is
also straightforward inModelica. The parameters are given by:

14/22



1 parameter SI.Resistance R = 2.62 " Ohm";
2 parameter SI.Voltage v = 24.0 " v";
3 parameter SI.ElectricalTorqueConstant Kt = 0.66 "N.m/A";
4 parameter SI.ElectricalTorqueConstant Kb = Kt "N.m/A, equal to Kt

for consistent units";
5 parameter SI.MomentOfInertia J = 0.0026 "kg.m^2";
6 parameter SI.RotationalDampingConstant b = 0.01 "N.m.s/rad";
7 parameter SI.Inductance L = 0.05 " H";

Code Snippet 12.
Theparameterdesignationmeans that the value cannot be changedduring simulation. An interest-
ing aspect ofModelica is that the units of these parameters can be specified –SI is a shorthand for
“Modelica.SIunits”. Using units is optional, but very useful. If the units had not been specified, all of
these parameters would have been of type “Real”. The part in quotes after the value is a comment;
C++, Java style of commenting, “//”, can also be used. The units shown in the comment sectionwere
written in by the user and, so, must be consistent with the units as defined byModelica. Having the
ability to specify units for physical quantities is part ofModelica’s multi-physical-media modeling
capability.
The initial values of the state variables are specified in a similar manner:
1 SI.Angle theta(start = 0.0) "Shaft angle, rad";
2 SI.AngularVelocity omega(start = 0.0) "Shaft angular velocity,

rad/s";
3 SI.Current i(start = 0.0) "Current in circuit, A";

Code Snippet 13.
The interesting variant here is that for each of the state variables, the initial condition is given as a
start value. In this case, the problem is a pure ODE (i.e., a causal problem) so the state variables all
have independent initial conditions. If the problemwere a DAE (Differential-Algebraic Equation,
acausal problem) the initial conditions would not all be independent so the start values would only
be suggestions.
Results fromsimulating this systemmatch the results presented abovewithPython. As canbe seen
in this section, for a problem expressed in equation form, there is essentially no “programming”
needed; just copy the equations, list the parameter values, and define the system variables.

4.4 Modelica – GraphicalModelingMode
The Modelica Standard Library contains a large set of modeling components from a variety of
physical media. This is probably themost commonway of creating simulations inModelica. For
the DCmotor simulation, this means that components are selected from the library, they are given
parameter values, and then the simulation is run. Figure 4 shows themodel for the DCmotor.
This is a semi-representational model in that some of the components look like their physical
counterparts but others can be more abstract. The physical orientation of components on the
diagram does not have any significance.
In some sense, themost important component in this diagram is the emf unit. It handles the energy
conversion between electrical and rotational-mechanical domains. With the emf unit in place, this
model can do proper energy/power bookkeeping across the whole system.
Each of the energy domains is identified by its connectors: blue andwhite squares for the electrical
portion and black andwhite circles for the rotational section. There is an additional energy domain
on the diagram, thermal, identified by red squares, but that is not used in this simulation. A right-
click on any of the components will bring up a menu for its parameters. These can be entered

15/22



Figure 4.Modelica Graphical Multi-domain Model of the DC Motor

directly as numerical values, but it is often preferable to use named parameter variables (as above)
and enter the parameter names. That is what is done in this model.
Again, simulation produces the previous results. Themodeling at this high level of abstraction can
be very efficient if the library contains the needed components. TheModelica Standard Library
has a large selection of components so can often be used successfully for simulation of systems
crossingmultiple energy domains.

4.5 Java
As mentioned earlier, Java is a general purpose, object-oriented language and is thus a major
abstraction level below either of theModelica solutions. It requires muchmore detailed program-
ming (real programming, not equations as in Modelica) in return for which it provides the full
power of object-oriented programming andmuch higher speed.
General purpose languages do not usually include the specializedmathematical tools needed for
dynamic system simulation. However, most of these languages have a wide variety of libraries
available to fill that gap. For these examples, the Hipparchus library is used to supply the ODE
solver [48]. As an aside, it is a large library and canmeetmany othermathematical needs in Java
programming. The Hipparchus library is a successor to the Apache CommonsMath Library.
As withmost ODE solvers, a call-back structure is usedwhere the derivative values of all of the
state variables are computed in a function (“method” in Java) and a reference to that function is
given to the solver so it can call the derivative function as needed by whatever solution algorithm
is being used. In Java, the derivativemethod is embedded in a class which is what is given to the
ODE integration system.

16/22



This is what that function looks like for the DCmotor system:
1 public double[] computeDerivatives(double t, double[] y)
2 {
3 // ODE: d angle / dt = omega; d omega/dt = (torque − b omega)/J
4 // States: 0 − angle; 1 − omega; 2 − current
5 omega = y[1]; // Angular velocity of shaft
6 ic = y[2]; // Current in circuit
7 vBack = Kb * omega;
8 torq = Kt * ic;
9 double [] dydt = new double[3];
10 // Construct derivatives of states
11 dydt[0] = omega;
12 // d theta / dt = omega
13 dydt[1] = (torq − b * omega) / J;
14 // d omega/dt=(torque −damping)/inertia
15 dydt[2] = (v − vBack − R * ic) / L;
16 // di/dt = (voltage − back−emf − R * current) / L
17 return dydt;
18 }

Code Snippet 14.

There aremanyways to run a simulation using ODE solvers. In this case, a structure is used that is
very convenient for problemswhere control will be applied. In this structure, theODE solver is
called within an event loop and simulated from one event to the next. This simulation does not
actually have any control, although it would be natural to add angular velocity or angular position
control. The event that is present is data logging, writing the results to a file for later plotting
and/or analysis. The event loop code is:
1 while(t <= tf)
2 { if(t >= (tNextLog − guard))
3 {
4 tNextLog += dtLog;
5 pw.format("%g %g %g %g %g %n", t, y[0], y[1], y[2], volt);
6 }
7 tNextSim = tNextLog; // Simulate until next event
8 ODEStateAndDerivative finalState = dp853.integrate(ode, state,

tNextSim);
9 y = finalState.getPrimaryState();
10 t = tNextSim;
11 state = new ODEState(t, y); // setup for next iteration
12 }

Code Snippet 15.

Any number of events can be included in a loop like this. The simulation is run until the next event.
These events are all time based. Condition-based events (for example, a state variable crossing
a boundary value) are trickier and are best handled inside the solver itself, although they can be
done iteratively with a structure such as this one. The dp853 refers to the Dormand-Prince-8(5,3)
ODE integration algorithm [77]. The results are written to a file and plotted using an open-source
plotting tool named gnuplot [78]. As noted above, one of the advantages of Java is execution speed.
By comparison, the Java version is at least 10 times faster than theModelica-Equations version to
compile and execute.

17/22



5 Summary, Conclusions, and FutureWork
This article is the first part of a two-part contribution focused on promoting the use of OSS such as
Python, GNUOctave,Modelica, Java, and Gazebo inMRE education. The current status, limita-
tions, and potentials of theOSS, as surveyed among the community members, are included in the
paper. One of the challenges frequently raised in the surveywas lack of specialized educational
materials. To this end, a DC motor, one of the most versatile components in MRE systems, is
considered to showcase the application of theOSS inmodel simulation and analysis. Important
code snippets are given to demonstrate the structure of the required programs; furthermore, the
capabilities and limitations of each of these software are reviewed. The second part of this work
introduces the application of theOSS in controller implementation for a slightly more complicated
dynamic system, i.e., a robot manipulator. The open-source nature of the introduced software
makes them an attractive simulation, design, and analysis solution for a wider range of educational
institutions that aim to complement and enrich the quality of education. Furthermore, increased
utilization of theOSS in industry, among their other numerous potentials, necessitates the need
for further familiarizing the students with these tools. The application showcases and review of
the potentials and limitations of eachOSS in this work could allowMRE community tomake in-
formed judgements about what software to choose for their specific application and consequently,
facilitate a wider adoption of theseOSS. The complete codes for the discussed examples, along
withMatlab scripts which is included as a point of comparison, are provided freely on a GitHub
repository to make it accessible to the community. There are still other challenges facing the
applications of the OSS in higher education, as highlighted by community survey results. More
papers, similar to this work, online webinars, and short courses offered by theMRE professionals
for theMRE community could help overcome these challenges and reduce adoption barriers to
widespread use of theOSS inMRE higher education.

References
[1] A.M. S. Laurent, “UnderstandingOpen Source and Free Software Licensing,” and others, Ed.

O’ReillyMedia, Inc, 08 2004.
[2] A. Kavianpour and S. Kavianpour, “The First Course of Programming: Python,Matlab, or C?”

in ASEE Annual Conference & Exposition, 2016.
[3] J. P. Agrawal and O. Farook, “A Case for Python Scripting in Undergraduate Engineering

Technology,” ASEE Annual Conference & Exposition, 2013.
[4] R. Raj and F. Kazemian, “Using Open Source Software in Computer Science Courses,” in 36th

IEEE Annual Frontiers in Education Conference (FIE), 2006.
[5] G. Xing, “Teaching Software Engineering Using Open Source Software,” in Proceedings

of the ACM SE ’10: ACM Southeast Regional Conference, 2010. [Online]. Available:
https://doi.org/10.1145/1900008.1900085

[6] P. M. Papadopoulos, I. G. Stamelos, and A. Meiszner, “Students’ Perspectives on Learning
Software Engineering with Open Source Projects: Lessons Learnt After Three Years of
ProgramOperation,” in 4th International Conference on Computer Supported Education (CSEDU),
2012.

[7] J. M. Pullen, “LowCost Internet Synchronous Distance Education UsingOpen Source Soft-
ware,” in 2004 ASEE Annual Conference, 2004.

[8] P. Jackson and J. Rudaitis, “A Reproducible Solution for Implementing Online Laboratory
Systems Through Inexpensive andOpen-source Technology,,” in 2020 ASEE Virtual Annual
Conference Content Access, 2020.

18/22

https://doi.org/10.1145/1900008.1900085


[9] J. W. Paulson, G. Succi, and A. Eberlein, “An Empirical Study of Open-Source and Closed-
Source Software Products,” IEEE Transactions on Software Engineering, vol. 30, pp. 246–256,
2004.

[10] K. J. Hass and J. Su, “Modernizing theMicrocontroller Laboratory with Low-cost andOpen-
source Tools,” in ASEE Annual Conference & Exposition, 2012.

[11] M. A. Hopkins andA.M. Kibbe, “Open-SourceHardware in Controls Education,” in 2014 ASEE
Annual Conference & Exposition, 2014.

[12] A. Gilmore, T. Daher, and M. S. Peteranetz, “A Multi-year Case Study in Blended Design:
Student Experiences in a Blended, Synchronous, Distance Controls Course,” in 2020 ASEE
Virtual Annual Conference Content Access, 2020.

[13] S. A. Strom and M. Strom, “Embedded Measurement and Control Applications Utilizing
Python on the Pocket BeagleBone,” in 2020 ASEE Virtual Annual Conference Content Access,
and others, Ed., 2020.

[14] N. Lotfi, J. A. Novosad, and H. Phan-Van, “AMultidisciplinary Course and the Corresponding
Laboratory PlatformDevelopment for Teaching the Fundamentals of Advanced Autonomous
Vehicles,” in 2019 ASEE Annual Conference & Exposition, 2019.

[15] R. Krauss, “Combining Raspberry Pi and Arduino to Form a Low-cost, Real-Time Autonomous
Vehicle Platform,” in 2016 American Control Conference, 2016.

[16] K. A. Khan and J. Ryu, “ROS-based Control of aManipulator Arm for Balancing a Ball on a
Plate,” in 2017 ASEE Annual Conference & Exposition, 2017.

[17] A. Yousuf, C. C. Lehman, M. A. Mustafa, and M. M. Hayder, “Introducing Kinematics with
Robot Operating System (ROS),” in 2015 ASEE Annual Conference & Exposition, 2015.

[18] J. Rivera-Guillen, J. Rangel-Magdaleno, R. Romero-Troncoso, R.Osornio-Rios, andR. Guevara-
Gonzalez, “AnOpen-Access Educational Tool for TeachingMotionDynamics inMulti-Axis
Servomotor Control,” IEEE Transactions on Education, vol. 55, pp. 218–225, 2012.

[19] J. B. Hooker, V. Druschke, S. A. Kuhl, A. Sergeyev, S. Y. Parmar,M. B. Kinney, N. Alaraje, and
M. Highum, “Enhancing Industrial Robotics Education with Open-source Software Paper,” in
2017 ASEE Annual Conference & Exposition, and others, Ed., 2017.

[20] Chitta, “ros_control: A generic and simple control framework for ROS,” Journal of Open Source
Software, vol. 2, no. 20, pp. 456–456, 2017. [Online]. Available: 10.21105/joss.00456

[21] Owan, “CoreRobotics: An object-oriented C++ library with cross-language wrappers for
cross-platform robot control,” Journal of Open Source Software, vol. 3, no. 22, pp. 489–489,
2018. [Online]. Available: 10.21105/joss.00489

[22] Lee, “DART: Dynamic Animation and Robotics Toolkit,” Journal of Open Source Software, vol. 3,
no. 22, pp. 500–500, 2018. [Online]. Available: 10.21105/joss.00500

[23] Stulp, “DmpBbo: A versatile Python/C++ library for Function Approximation, Dynamical
Movement Primitives, and Black-BoxOptimization,” Journal of Open Source Software, vol. 4,
no. 37, pp. 1225–1225, 2019. [Online]. Available: 10.21105/joss.01225

[24] S. Von, “Phobos: A tool for creating complex robotmodels,” Journal of Open Source Software,
vol. 5, no. 45, pp. 1326–1326, 2020. [Online]. Available: 10.21105/joss.01326

[25] Deray, “Manif: A micro Lie theory library for state estimation in robotics applications,”
Journal of Open Source Software, vol. 5, no. 46, pp. 1371–1371, 2020. [Online]. Available:
10.21105/joss.01371

[26] Macenski, “SLAM Toolbox: SLAM for the dynamic world,” Journal of Open Source Software,
vol. 6, no. 61, pp. 2783–2783, 2021. [Online]. Available: 10.21105/joss.02783

19/22

10.21105/joss.00456
10.21105/joss.00489
10.21105/joss.00500
10.21105/joss.01225
10.21105/joss.01326
10.21105/joss.01371
10.21105/joss.02783


[27] Nadeau, “Pybotics: Python Toolbox for Robotics,” Journal of Open Source Software, vol. 4,
no. 41, pp. 1738–1738, 2019. [Online]. Available: 10.21105/joss.01738

[28] Python andOrg, “PythonWebsite,” 2021. [Online]. Available: https://www.python.org
[29] Stxnext Python Powerhouse, “TheMost Popular Python Scientific Libraries,” 2021. [Online].

Available: https://stxnext.com/blog/2017/04/12/most-popular-python-scientific-libraries/
[30] Importpython, “Books,” 2021. [Online]. Available: https://importpython.com/books
[31] K. Reitz and Real Python, “The Hitchhiker’s Guide to Python. Learning Python,” 2021.

[Online]. Available: https://docs.python-guide.org/intro/learning
[32] Massachusetts Institute of Technology, “CoursewareMit Open Courseware,” 2021. [Online].

Available: https://ocw.mit.edu/index.htm
[33] Coursera, “Coursera,” 2021. [Online]. Available: https://www.coursera.org
[34] Scipy.org, “Scipy,” 2021. [Online]. Available: https://www.scipy.org
[35] S. Tiwari, “Python for Scientists and Engineers,” 2021. [Online]. Available: https:

//www.pythonforengineers.com/python-for-scientists-and-engineers/
[36] The NumPy community, “NumPy for Matlab users,” 2021. [Online]. Available: https:

//numpy.org/devdocs/user/numpy-for-matlab-users.html
[37] python-control.org, “Python Control Systems Library,” 2021. [Online]. Available: https:

//python-control.readthedocs.io/en/0.9.0/
[38] P. Guo, “Python Is Now the Most Popular Introductory Teach-

ing Language at Top U.S. Universities,” 2021. [Online]. Avail-
able: https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-
introductory-teaching-language-at-top-us-universities/fulltext

[39] H. Fangohr, M. Bubak, G. D. Van Albada, P. M. A. Sloot, and J. Dongarra, “A Comparison of C,
MATLAB, and Python as Teaching Languages in Engineering,” in Computational Science - ICCS
2004. ICCS, vol. 3039. Springer, 2004.

[40] B. J. Furman, S. Ahsan, and E.Wertz, “Making theMove fromC to PythonwithMechanical
Engineering Students,” in 2020 ASEE Virtual Annual Conference Content Access, and others,
Ed., 2020.

[41] A. Hoyo, J. L. Guzmán, J. C.Moreno, andM. Berenguel, “Teaching Control Engineering Con-
cepts using Open Source Tools on a Raspberry Pi Board,” in IFAC-PapersOnLine, ser. IFAC
Workshop on Internet Based Control Education IBCE15, and others, Ed., vol. 48, 2015, pp.
99–104.

[42] R. Krauss, “Real-Time Python: Recent Advances in the Raspberry Pi Plus Arduino Real-Time
Control Approach,” in American Control Conference, and others, Ed., 2020.

[43] A. Vergnaud, J. B. Fasquel, L. Autrique, and IFAC Workshop on Internet Based Control
Education IBCE15, “Python Based Internet Tools in Control Education,” in IFAC-PapersOnLine,
ser. IFACWorkshop on Internet Based Control Education IBCE15, and others, Ed., vol. 48,
2015, pp. 43–48.

[44] Openjdk, “Openjdk,” 2021. [Online]. Available: https://openjdk.java.net
[45] Apache, “Apache Netbeans,” 2021. [Online]. Available: https://netbeans.apache.org
[46] Eclipse Foundation, “Eclipse,” 2021. [Online]. Available: https://www.eclipse.org
[47] Apache, “The Apache Commons Mathematics Library,” 2021. [Online]. Available: https:

//commons.apache.org/proper/commons-math

20/22

10.21105/joss.01738
https://www.python.org
https://stxnext.com/blog/2017/04/12/most-popular-python-scientific-libraries/
https://importpython.com/books
https://docs.python-guide.org/intro/learning
https://ocw.mit.edu/index.htm
https://www.coursera.org
https://www.scipy.org
https://www.pythonforengineers.com/python-for-scientists-and-engineers/
https://www.pythonforengineers.com/python-for-scientists-and-engineers/
https://numpy.org/devdocs/user/numpy-for-matlab-users.html
https://numpy.org/devdocs/user/numpy-for-matlab-users.html
https://python-control.readthedocs.io/en/0.9.0/
https://python-control.readthedocs.io/en/0.9.0/
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
https://openjdk.java.net
https://netbeans.apache.org
https://www.eclipse.org
https://commons.apache.org/proper/commons-math
https://commons.apache.org/proper/commons-math


[48] Hipparchus.org, “Hipparchus: A Mathematics Library,” 2021. [Online]. Available: https:
//www.hipparchus.org

[49] D. V. Schroeder, “Scientific Computing for Physical Systems,” 2021. [Online]. Available:
https://physics.weber.edu/schroeder/javacourse/

[50] H. Gould, J. Tobochnik, andW. Christian, “An Introduction to Computer SimulationMethods
Third Edition,” and others, Ed. CreateSpace Independent Publishing Platform, 09 2016.
[Online]. Available: https://www.compadre.org/osp/items/detail.cfm?ID=7375

[51] “TheModelica Association,” 2021. [Online]. Available: https://modelica.org/
[52] “Openmodelica,” 2021. [Online]. Available: https://openmodelica.org/
[53] “Open SourceModelica Consortium,” 2021. [Online]. Available: https://www.openmodelica.

org/home/consortium
[54] “Modelica Courses,” 2021. [Online]. Available: https://www.openmodelica.org/

useresresources/modelica-courses
[55] “Modelica By Example,” 2021. [Online]. Available: https://mbe.modelica.university
[56] M. Wetter and T. S. Nouidui, “Introduction to Modelica,” 2015. [Online]. Avail-

able: https://simulationresearch.lbl.gov/modelica/downloads/workshops/2015-06-22-
lbnl/slides/modelica-intro.pdf

[57] Open Source Robotics Foundation, “Tutorial: ROS Integration Overview,” 2014. [Online].
Available: http://gazebosim.org/tutorials?tut=ros_overview

[58] “Gazebo,” 2021. [Online]. Available: http://gazebosim.org/
[59] N. Koenig and A. Howard, “Design andUse Paradigms for Gazebo, AnOpen-SourceMulti-

Robot Simulator,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2004.

[60] N. Correll, R. Wing, Coleman, and D, “A One-year Introductory Robotics Curriculum for
Computer Science Upperclassmen,” IEEE Transactions on Education, vol. 56, no. 1, pp. 54–60,
2012.

[61] E. Tosello, N. Castaman, and E. Menegatti, “Using Robotics to Train Students for Industry
4.0,” in IFAC-PapersOnLine, ser. 12th IFAC Symposium on Advances in Control Education ACE
2019, and others, Ed., vol. 52, 2019, pp. 153–158.

[62] S. Michieletto, E. Tosello, E. Pagello, and E. Menegatti, “Teaching Humanoid Robotics by
Means of Human Teleoperation through RGB-D Sensors,” Robotics and Autonomous Systems,
vol. 75, pp. 671–678, 2016.

[63] E. Tosello, S. Michieletto, and E. Pagello, “TrainingMaster Students to ProgramBoth Virtual
and Real Autonomous Robots in a Teaching Laboratory,” IEEE Global Engineering Education
Conference (EDUCON), 2016.

[64] “Ros Tutorials,” 2021. [Online]. Available: http://wiki.ros.org/ROS/Tutorials
[65] J.W. Eaton, “ About GNUOctave,” 2021. [Online]. Available: https://www.gnu.org/software/

octave/about.html
[66] “Wiki GnuOctave,” 2021. [Online]. Available: https://wiki.octave.org/GNU_Octave_Wiki
[67] R. V. Aroca, F. Y.Watanabe,M. T. D. Vila, and A. C. Hernandes, “Mobile Robotics Integration

in Introductory Undergraduate Engineering Courses,” in 2016 XIII Latin American Robotics
Symposium and IV Brazilian Robotics Symposium (LARS/SBR), 2016.

21/22

https://www.hipparchus.org
https://www.hipparchus.org
https://physics.weber.edu/schroeder/javacourse/
https://www.compadre.org/osp/items/detail.cfm?ID=7375
https://modelica.org/
https://openmodelica.org/
https://www.openmodelica.org/home/consortium
https://www.openmodelica.org/home/consortium
https://www.openmodelica.org/useresresources/modelica-courses
https://www.openmodelica.org/useresresources/modelica-courses
https://mbe.modelica.university
https://simulationresearch.lbl.gov/modelica/downloads/workshops/2015-06-22-lbnl/slides/modelica-intro.pdf
https://simulationresearch.lbl.gov/modelica/downloads/workshops/2015-06-22-lbnl/slides/modelica-intro.pdf
http://gazebosim.org/tutorials?tut=ros_overview
http://gazebosim.org/
http://wiki.ros.org/ROS/Tutorials
https://www.gnu.org/software/octave/about.html
https://www.gnu.org/software/octave/about.html
https://wiki.octave.org/GNU_Octave_Wiki


[68] R. Balogh, “Using anOpen Software for Electronics and Robotics,” in Proceedings of the confer-
ence on Open Software in Research and Education (OSS 2011), and others, Ed., 2011.

[69] B. Jakubiec, “Application of SimulationModels for Programming of Robots,” Society. Integra-
tion. Education, International Scientific Conference, 2018.

[70] V. Pereira, V. A. Fernandes, and J. Sequeira, “Low Cost Object Sorting Robotic Arm Using
Raspberry Pi,” in IEEE Global Humanitarian Technology Conference - South Asia Satellite (GHTC-
SAS), 2014.

[71] “Control Tutorials for Matlab and Simulink,” 2021. [Online]. Available: http://ctms.engin.
umich.edu/CTMS/index.php?aux=Home

[72] “AdvancedMotion Controls,” 2021. [Online]. Available: https://www.a-m-c.com
[73] “OSS Paper Code Repository,” 2021. [Online]. Available: https://github.com/nlotfiy/OSS-

paper-scripts
[74] The SciPy Community, “API Reference: scipy.integrate.solve_ivp,” 2021. [Online]. Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
[75] matplotlib, “matplotlib,” 2021. [Online]. Available: https://matplotlib.org/
[76] O. F. Community, “Computer-Aided Control System Design,” 2019. [Online]. Available:

https://octave.sourceforge.io/control/index.html
[77] CS GROUP, “Dormand-Prince integrator for Ordinary Differential Equations,” 2021.

[Online]. Available: https://www.hipparchus.org/apidocs/org/hipparchus/ode/nonstiff/
DormandPrince853Integrator.html

[78] GNU, “ Gnuplot Homepage,” 2021. [Online]. Available: http://www.gnuplot.info

22/22

http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
https://www.a-m-c.com
https://github.com/nlotfiy/OSS-paper-scripts
https://github.com/nlotfiy/OSS-paper-scripts
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://matplotlib.org/
https://octave.sourceforge.io/control/index.html
https://www.hipparchus.org/apidocs/org/hipparchus/ode/nonstiff/DormandPrince853Integrator.html
https://www.hipparchus.org/apidocs/org/hipparchus/ode/nonstiff/DormandPrince853Integrator.html
http://www.gnuplot.info

	Introduction
	Overview of Different Open-source Software
	Python
	Java
	Modelica
	Gazebo
	GNU Octave

	Community Impressions of the Open-source Software
	Motor Case Study

	DC Motor Model Simulation and Analysis
	Python
	GNU Octave
	Modelica – Equation Mode
	Modelica – Graphical Modeling Mode
	Java

	Summary, Conclusions, and Future Work

